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Abstract

A quantitative understanding of the dynamics of bee colonies is important to support global

efforts to improve bee health and enhance pollination services. Traditional approaches

focus either on theoretical models or data-centred statistical analyses. Here we argue that

the combination of these two approaches is essential to obtain interpretable information on

the state of bee colonies and show how this can be achieved in the case of time series of

intra-day weight variation. We model how the foraging and food processing activities of

bees affect global hive weight through a set of ordinary differential equations and show how

to estimate the parameters of this model from measurements on a single day. Our analysis

of 10 hives at different times shows that the estimation of crucial indicators of the health of

honey bee colonies are statistically reliable and fall in ranges compatible with previously

reported results. The crucial indicators, which include the amount of food collected (foraging

success) and the number of active foragers, may be used to develop early warning indica-

tors of colony failure.

Author summary

Honey bees are under threat and dying at an alarming rate due to pesticides, parasites,

and other stressors. Obtaining information about the health of bee colonies is essential to

understand how this happens and to identify measures that can prevent this from happen-

ing. Herein, we built a mathematical model of the daily dynamics of hives that allows such

information to be extracted without detailed and expensive measurements. Based only on

measurements of how the weight of the hive changes during the day, our model can be

used to estimate how many bees are collecting food, how successful they are, and how

much time they spend outside the hive. Due to its simplicity, the model presented here

can be applied to a wide range of hive scale systems and help beekeepers track how healthy

and productive their bees are.
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1 Introduction

There is growing concern that crop pollination by honey bees might no longer be a sustainable

operation in the near future [1]. Single and combined stress from pesticides, parasites, and dis-

eases have led to an increase in bee colony mortality worldwide [2–7]. Despite beekeepers’

efforts to control pests and diseases, annual colony losses of about 30% are frequently reported

in countries across Europe [8] and North America [9–11]. Automated methods to track the

status of hives can play a key role in helping beekeepers prevent the death of colonies [12–16].

The social organization of a bee colony is complex and relies on positive and negative feed-

back loops to maintain homeostasis. Feedback loops can help buffer the effect of stressors or

cause snowballing effects which in some cases precipitate colony death. A well-known feed-

back loop that has been hypothesized to accelerate the failure of the colony is the one that regu-

lates the ontogeny of foraging [17]. In a bee colony, workers typically spend the first few days

of their adult life performing various maintenance, defence, and care tasks before transitioning

into foragers [18]. The presence of a sufficiently large number of foragers inhibits the transi-

tion of younger bees into foragers [17, 19]. Under ideal conditions, this ensures enough bees

are performing in-hive tasks, and that the colony is able to process all the food brought back

by the foragers and to raise the next generation of workers. If an environmental stress reduces

the number of foragers, then this same mechanism ensures the rapid replacement of the forag-

ing force. With fewer foragers, the transition of younger bees into foragers is increased and the

foragers’ population is rapidly replenished. Under sustained stress, it has been hypothesized

that this buffering mechanism can lead to generations of workers starting to forage at a youn-

ger age, which reduces their life expectancy and the foragers’ population increasingly fast until

colony death [20]. Thus, information about the number of forager bees and their activities can

provide important guidance about the health of the hive.

Directly measuring the number of forager bees is difficult, but the use of new technologies

provides opportunities to estimate them from more accessible data [12, 21]. Recently devel-

oped affordable and precise balances can easily be fitted to hives in the field to study the long-

term weight changes [22] and shorter within-day weight variations of hives [12, 23]. Within-

day hive weight variations are clearly visible and exhibit similar patterns that are consistent

across multiple day as shown in Fig 1. In the morning, rapid weight loss occurs because forag-

ers leave the hive [24]. For this reason, previous methods have focused on measuring the slope

and low point of the morning departure segment of daily hive weight’s curves [24], and have

used this measure as likely representing forager activity [25]. However, these phenomenologi-

cal methods provide limited information about the daily internal dynamics of the hive. Other

methods perform piece-wise linear regression analysis where up to five breaking points are

suggested after an abrupt change of slope [24, 26]. In particular, these methods do not provide

quantitative estimations of the relevant bee activities such as the number of forager bees or the

amount of food brought to the hive because the different bee activities are not explicitly mod-

eled. In this paper, we develop a mechanistic mathematical model of the daily dynamics of

hives which, in combination with hive weight time series, provides quantitative estimations of

key indicators of the state of the hive such as the total number of active forager bees and the

average mass of food they bring to the hive in each trip. We start in Sec. 2.1 with our model

presentation, its qualitative description, and its main properties. In Sec. 2.2 we present how the

parameters can be inferred from data. In Sec. 2.3 we apply our methodology to time series of

ten different hives measured across a year and show how in most cases the results lead to bio-

logically meaningful estimations. Finally, in Sec. 3 we summarize our conclusions. A detailed

description of our data and computational methods is presented in the Materials and Method

section. The data and codes used in our analysis are available in a repository [27].
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2 Results

2.1 Model

Our aim is to obtain a mechanistic model that contains the essential processes necessary to

describe how the weight W of a bee hive changes throughout time t over a daily cycle.

Qualitative description. Our model will incorporate the following well-known processes

and honey-bee behaviours that are also schematically illustrated in Fig 2:

1. In the morning, the weight of the hive rapidly falls as foragers leave the hive [24]. This initial

weight drop usually lasts for a few hours, indicating that the weight loss is only partly coun-

terbalanced by forager bees returning to the hive. A successful forager will return with pol-

len, nectar, water or propolis. The weight of a forager bee is expected to be higher when

they return than when they leave, if the resources they seek are available in their

environment.

2. Around midday, departures and arrivals reach roughly an equilibrium. Hives in environ-

ments with food resources start gaining weight, possibly indicating that the weight of

departing foragers is less than the weight of effective foragers returning with food to the col-

ony [24]. The weight increases until all foragers have returned at dusk.

3. In the late afternoon, the number of departures reduces until they stop completely around

dusk. Once all the foragers have returned, the hive stops gaining weight.

4. At night, the weight of a hive declines slowly until dawn due to respiration, food consump-

tion, and evaporation. The metabolic activity of a bee colony remains high at night because

Fig 1. (a) The weight of a bee hive shows systematic variations throughout a day. The blue dots show the weight of a

hive measured every minute for four consecutive days. (b) Each daily hive weight’s curve present consistent patterns at

specific time ranges of morning, afternoon, evening and night time.

https://doi.org/10.1371/journal.pcbi.1010880.g001
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bees actively maintain the temperature of the brood at about 35 ˚C, as well as humidity and

CO2 concentration to optimize development. Bees actively warm the colony by shivering,

or cool down and ventilate the hive by evapotranspiration and fanning. These activities

require a great deal of movement and, thus, cause honey bees to consume significant

amounts of honey at night. Sugars in the honey are broken down to produce energy and

exhaled as CO2. A colony also evaporates a large amount of water, either to facilitate

Fig 2. Schematic representation of the daily cycle of bee activities relevant to modeling colony weight, where time flows in a

clockwise direction (blue line). The main time-dependent elements we model are the number of forager bees N(t) and the food F(t) (in

green) inside the hive. The foragers are represented as active bees that depart the hive (black arrow) and return to it (red arrow) with food

(in orange). The ratio of forager bees inside the hive at a particular time is represented by x(t), which is constant before and after the

dynamics of forager bees because the Nmax foragers are all inside the hive. The static weight W0 is composed of the hive structure and bees

that do not leave the hive.

https://doi.org/10.1371/journal.pcbi.1010880.g002
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biological processes, concentrate sugars in food stores, or cool down the hive. Moreover, it

is likely that a small amount of the weight loss at night results from cleaning activities, with

bees likely getting rid of pests, dead bees and chewed brood cell caps throughout the night.

The cycle resumes the next day again.

The net outcome of the activities described above depends on the hive, the environment,

and the weather conditions. In favourable environments and at its peak population in summer,

a single bee colony can harvest a few kilograms of food in a single day. Most of this weight

comes in the form of nectar and honeydew, which generally contains more than 50% water

and diluted sugars [28]. Hives in environments with little or no resources may lose more

weight than they gain in a day as a consequence of honey consumption inducing respiration

and evaporation (i.e., foragers expend more resources than they are able to bring back to the

colony).

Mathematical model. We consider the time dependent weight W 2 Rþ (measured in g)

to depend on the number of forager bees N 2 Z; 0 � N � Nmax (measured in bees) and on the

food F 2 Rþ (measured in g) as

WðtÞ ¼ FðtÞ þ wNðtÞ þW0; ð1Þ

where W0 is the constant weight of the hive and w is the (average) weight of a bee. Next we dis-

cuss the variation in N(t) and F(t).
For mathematical convenience, we model the variation in the number of foragers bees N(t)

by focusing on the fraction x 2 R (nondimensional) of all Nmax foragers bees that are inside

the hive:

x �
N

Nmax
) NðtÞ ¼ NmaxxðtÞ: ð2Þ

We write the rate of change of x as

dx
dt
¼ aðtÞð1 � xÞ � dðtÞx; ð3Þ

where a(t), measured in 1/s, is the arrival rate of the fraction of forager bees outside the hive

and d(t), measured in 1/s, is the departure rate of the fraction of forager bees inside the hive.

The inverse of these rates can be thought of as the typical period a bee spends outside and

inside the hive, respectively. These terms multiply the fraction of bees outside (1 − x) and

inside (x), respectively. The rate of bees arriving is

AðtÞ ¼ aðtÞðNmax � NðtÞÞ ¼ aðtÞNmaxð1 � xðtÞÞ

and the rate of bees departing is

DðtÞ ¼ dðtÞNðtÞ ¼ dðtÞNmaxxðtÞ;

where A and D are measured in bees/s.
The food inside the hive F(t) increases due to the mass m (measured in g) of food brought

in by arriving bees and decreases due to evaporation, respiration, and food consumption,

which we model as a constant loss ℓ (measured in g/s) so that:

dF
dt
¼ � ‘þmAðtÞ ¼ NmaxðmaðtÞð1 � xÞÞ � ‘: ð4Þ
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Notice that F(t) is linear in x and can be computed directly from x(t) and a(t) by integrating

the above equation. Substituting F(t) and x(t) in Eq (1) we obtain the time-dependent weight

W(t) of the hive, our measurable quantity. This implies that the equations can be solved

sequentially, starting from x(t). The final step of our model is to specify the departure d(t) and

arrival a(t) rates defined in Eq (3) and then solve for x(t). We will consider a very simple

choice for a(t) and d(t)—piecewise constant in t—which allows for an explicit solutions for x
(t) and, thus, W(t). Note that more sophisticated models of food inside the hive F(t) could use

a time-dependent loss ℓ(t) dependent on temperature, weather variations, or a term propor-

tional to N (or x) to indicate a consumption rate proportional to the number of (forager) bees.

Furthermore, more elaborate functions a(t) and d(t), such as delay equations, could be

incorporated.

Day and night cycles. Without loss of generality, in our model, we consider:

t = 0 to be the time in the morning (around sunrise) at which the bees start exiting the hives.

t = 1 to be the time in the late afternoon (around sunset) when bees stop leaving the hive.

Therefore, in all cases below we assume d(t) = 0 for t< 0 and t> 1. The matching of the

model time t to the clock time requires the estimation from data of two clock times: t0 (corre-

sponding to t = 0) and t1 (corresponding to t = 1).

Night dynamics. Let us start with the (easiest) night case t> 1, when bees do not depart

d(t) = 0 and arrive at a constant rate a(t) = a. Assuming that at the beginning of this regime at

t = 1 there are x1 bees inside, the particular solution of Eq (3) is

xðtÞ ¼ 1 � ð1 � x1Þe� aðt� 1Þ; ð5Þ

which corresponds to an exponential decay towards all the bees being inside the hive (x = 1)

with a rate a. Therefore, we can consider 1/a proportional to the duration for which bees

remain outside the hive.

Day dynamics. Let us consider the simple case where d(t) = d and a(t) = a, both constant

in time. The initial condition in this case is x = 1 at t = 0 because we assume all forager bees

spent the night in the hive (i.e., 1/a� night period and all previous-day foragers return). In

this case, Eq (3) leads to

xðtÞ ¼
a

d þ a
þ

d
d þ a

e� ðdþaÞt: ð6Þ

Explicit solutions. We are now able to combine the results above to write explicit solu-

tions for the fraction of foragers inside the hive x(t), the weight of food inside the hive F(t),
and the total weight of the hive W(t). We consider the arrival rates during the day a1 and at

dusk a2 to be different:

aðtÞ ¼
a1 for t � 1;

a2 for t > 1;

(

ð7Þ

where we expect to retrieve a2 > a1 (bees spend less time out when it is getting dark).
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Introducing these arrival rates and a constant departure rate d in Eqs (5) and (6) we find an

explicit solution divided in three time intervals for x(t):

xðtÞ ¼

1 for t < 0;

a1

d þ a1

þ
d

d þ a1

e� ðdþa1Þt for 0 � t � 1;

1 � ð1 � x1Þe� a2ðt� 1Þ for t > 1

8
>>>>><

>>>>>:

ð8Þ

where x1 ¼
a1

dþa1
þ d

dþa1
e� ðdþa1Þ is the value of x(t = 1) and ensures the continuity of x(t).

We can now turn to the dynamics of food inside the hive F(t). From Eq (4) we obtain

FðtÞ ¼ C þ ð ~m � ‘Þt � ~m
Z

xðtÞdt;

where ~m ¼ mNmaxa and C is an integration constant to be fixed using the initial condition

F(0) = F0 and F(1) = F1. The solution for F(t) is then solved by integrating Eq (8), which can be

done analytically in each of the three branches leading us to

FðtÞ ¼

F0 � ‘t for t < 0;

F0 �
~md

ðd þ a1Þ
2
þ ~m 1 �

a1

d þ a1

� �

� ‘

� �

t þ ~m
d

ðd þ a1Þ
2
e� ðdþa1Þt for 0 � t � 1;

F1 þ ‘þ ~m
1 � x1

a2

� ‘t � ~m
1 � x1

a2

e� a2ðt� 1Þ for t > 1;

8
>>>>>>><

>>>>>>>:

ð9Þ

where F0� F(t = 0)—for this model an arbitrary constant that is incorporated into the static

weight of the hive W0 in Eq (1), consequently, without loss of generality, we take F0 = 0—and

F1� F(t = 1) is computed setting t = 1 in the second line of Eq (9) so that

F1 ¼ F0 �
~md

ðd þ a1Þ
2
þ ~m 1 �

a1

a1 þ d

� �

� ‘

� �

þ
~md

ðd þ a1Þ
2
e� ðdþa1Þ:

Finally, the weight of the hive W(t) is obtained from Eq (1) as the sum of Eq (8) (times

wNmax), Eq (9), and the constant weight of the hive W0, leading to an explicit piece-wise con-

tinuous function W(t) that will be compared to the measured data. A summary of the parame-

ters used in the model is given in Table 1.

Effective description of the model solution W(t). The mathematical model described

above is divided in three regimes—t< 0, 0� t� 1, t> 1—with similar characteristics as

shown in Fig 3. The three regimes contain segments of linear dependence of W(t)—a decay in

the first and last regime, and typically an increase in the intermediate regime—with a transi-

tion period (shaded region) between the regimes:

t< 0 The first regime corresponds to all bees inside the hive (x = 1) and a linear decay of W on

time t with rate ℓ—evaporation and respiration rate defined in Eq (4)—and with an inter-

cept A�W(t = 0).

0� t� 1 The second regime starts with an exponential relaxation of x(t) from 0 to the fixed

point value x� � a
dþa, as described in Eq (6), which leads to a sharp decay of W(t) until an

inflection time tc. Shortly after tc, W(t) shows a linear dependency with rate α and

constant B.
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t> 1 The third regime shows an exponential relaxation of x(t) from x� to x = 1 as described in

Eq (5), which leads to a sharp growth in W(t) as all the bees return and before the linear

decay of the first regime starts again completing the cycle.

The critical regime describing bee activities is the second regime that takes place during the

day 0� t� 1. It can be effectively described by the 4 parameters A, α, B, and tc (see Fig 3a),

which can be rewritten in terms of the parameters of the model (see Table 1) as:

A: The total weight of the hive at W(t = 0) defined as: A = Nmaxw + W0

α: The rate of weight gain due to foraging, from Eq (9): a ¼ ~mð1 � a1

dþa1
Þ � ‘

B: The intersection point of weight gain at t = 0: B ¼ � ðaþ ‘Þð w
ma1
þ 1

dþa1
Þ þ A

tc: The time of the minimum weight: tc ¼ � 1

ðdþa1Þ
lnð a

dNmaxwþaþ‘
Þ

Fig 3 shows an important mathematical property of our model: different choices of parame-

ters lead to nearly identical curves W(t) making our model effectively underdetermined by W
(t). Mathematically, this underdetermination happens because the four effective parameters

introduced above (A, B, α, tc), which provide a simplified quantitative description of the solu-

tion W(t), depend on five model parameters (Nmax, W0, m, a1, d, note that ~m � mNmaxa and

the mass of a bee w is taken as fixed). This means that there are different choices of the parame-

ters θ of our model that lead to the same four effective parameters describing the second

regime W(t) (even if the curves W(t) are mathematically distinct, their difference is indistin-

guishable in Fig 3 and much smaller than the experimental precision of the data). Biologically,

this underdetermination appears due to our definition of which bees in the hive count as for-

ager bees. Our model parameters are fixed and can be thought as an average over a spectrum

of bees that ranges from very active to those that do only very few forager excursions in a day.

Depending on whether we include the least active bees as foragers or not, we obtain different

model parameters but the same effective parameters defined above. For instance, the same

Table 1. The parameters θ of our model. For simplicity, the average weight of bees w is fixed based on previously

reported results. The remaining parameters are inferred from data within a prior range of admissible parameters (right

column). The boundaries of the range of flat priors were chosen based on the cited references or on values smaller/

larger than reasonably possible values (e.g., the maximum weight max(W) is chosen to be the maximum total weight of

the hive at all times). In all cases reported below, the inferred parameters remained away from the boundaries, indicat-

ing that our choice of boundaries has no influence on our results.

Parameter Description Prior Range

w Average weight of a single bee, introduced in Eq (1). 0.113 g/bee [29, 30]

W0 Static weight of the hive that includes the structure, food stores, non-foraging

bees, etc., see Eq (1).

[5000, max(W)]g

Nmax Total number of foragers active on that day, introduced in Eq (2). (0, 80000] bee

ℓ Continuous loss, introduced in Eq (4). (0, max(W)/h] g/h

m Average mass of food brought by foragers, introduced in Eq (4). (0, 0.78w] g/bee

[31–33]

a1, a2 Rates of arrivals, see Eq (7), inversely proportional to the time bees spend out. [0.10, 4.80] 1/h [34–

36]

d Rates of departures, see after Eq (7), inversely proportional to the time bees

spend in-side the hive.

[0.81, 3.01] 1/h [34–

36]

t0, t1 Clock time corresponding to t = 0 and t = 1, respectively. [6.50, 9.00] h

[14.5, 18.5] h

https://doi.org/10.1371/journal.pcbi.1010880.t001
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Fig 3. Graphical representation of the solution of our model. (a) The weight as a function of time, W(t), in which the

three linear regimes and the two transition regimes (shaded areas) are visible. (b-d) The three key elements that compose

W(t): (b) the number of foragers inside the hive x(t) that converges to the constant value x�; (c) the amount of food F(t)
inside the hive; and (d) the constant weight of the hive W0. In all four plots, five curves are shown for different model

parameters θ = {Nmax, W0, a1, a2, d, m, ℓ = 18.74 g/h, w = 0.113 g/bee} that lead to the same effective parameters A, B, tc, α
shown in panel (a). The values of the remaining parameters in numerical order for Nmax are W0[g] = 26230, 26173,

26117, 26060, 26004; a1[1/h] = 0.882, 0.914, 0.941, 0.964, 0.984; a2[1/h] = 2.329, 2.328, 2.328, 2.327, 2.327; d[1/h] = 0.469,

0.424, 0.387, 0.356, 0.330; and m[g/bee] = 0.038, 0.037, 0.036, 0.035, 0.034. The two grey spans highlight the time

intervals of exponential decay and growth in x(t), respectively.

https://doi.org/10.1371/journal.pcbi.1010880.g003
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initial weight A�W(t = 0) = Nmaxw + W0 can be obtained by including the less active bees as

foragers—thus increasing Nmax—or as part of the non-foragers bees that spend most of the

time in the hive—thus contributing to the constant W0. Similarly, counting the least active

bees as foragers reduces the average mass m of food brought to the hive, increases the average

time they spend in the hive (i.e., decreasing d), decreases the time spent outside the hive (i.e.,

increase a1, a2), and leads to a larger fraction of forager bees inside the hive (x� increases). As

shown in Fig 3, solutions of W(t) with very different Nmax, W0 in Fig 3b and 3d, respectively—

which imply also different d, a1, a2, and m—lead to essentially the same curves for the food F
(t) in panel Fig 3c and weight W(t) in Fig 3a.

2.2 Connecting model and data

Here we show how to combine our model with data to extract information about the state of

hives. We describe the theoretical and computational methodology used to infer the model

parameters θ from time series of hive weights W0(t).
Theory. We assume that the measured weight W0 deviates from the actual weight W as

W 0 ¼W þ ε;

where ε is an independent Gaussian distributed random variable with zero mean and standard

deviation σ, i.e., ε � N ð0; s2Þ, that accounts for measurement errors and random effects not

accounted in our model.

If θ are the model parameters generating W�Wθ, at an arbitrary time t, as described in the

model of the previous section, the probability likelihood of an observation W0 is a Gaussian

distribution centred at Wθ given by

PðW 0jyÞ ¼ N ðWy; s
2Þ:

Assuming that observations are performed at times q1, q2, . . .qn with qi = q0 + nδq and are

(conditionally) independent from each other, the log-likelihood of the observations is given by:

log PðW 0jyÞ ¼
Xn

i¼1

log N ðWyðqiÞ; sÞ ¼
Xn

i¼1

�
ðW 0ðqiÞ � WyðqiÞÞ

2

2s2
� logð

ffiffiffiffiffiffi
2p
p

sÞ ð10Þ

We can include further information on the parameters θ by considering a prior distribution

P(θ). Here we consider flat priors for all parameters, i.e., P(θ) = cst. for θ 2 [θ1, θ2] as specified

in Table 1 above. Effectively, this restricts the range of admissible parameters without changing

the probability of parameters within the range. The estimation of the parameters θ can be done

maximizing the posterior distribution P(θ|D) which in our case is equivalent to the maximiza-

tion of the log-likelihood (10) or to the minimisation of the squares of W0 −W as

L ¼
Xn

i¼1

ðW 0ðtiÞ � WðtiÞÞ
2

ð11Þ

in the range of admissible parameters set by the priors.

Computation. The problem of obtaining the ten parameters introduced in our model—

see Table 1—has been thus reduced to the optimization problem of finding the minimun of L
in a ten-dimensional space. The computational method we use for this optimization is centred

around the Levenberg–Marquardt algorithm as implemented in the library SciPy (See Materi-

als and methods Sec-4.1). However, a reliable estimation of the parameters cannot be obtained

directly through the naïve application of this method both because of the high-dimensionality

of the problem and the effective underdetermination of our model reported at the end of last
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section (which leads to essentially flat regions of L in the parameter space with multiple local

minima). Here we use properties of bee hives and our model to simplify this problem and

obtain a reliable estimation of parameters.

We start by considering four parameters:

w For simplicity, we fix the average weight of bees to w = 0.113 g/bee [29, 30].

t0, t1 We infer the times t0 and t1 in a grid of plausible values (separated by five minutes).

During this minimization we do not distinguish between model parameters that lead

to the same effective parameters A, B, α, and tc because t0 and t1 are not involved in

them. The estimation of t0 and t1 allow us to re-scale the data to the model time scale,

facilitating the numerical estimation of the remaining parameters.

ℓ The continuous loss can be calculated directly from the negative linear decrease when

t< 0.

These parameters, and the effective parameters (A, B, α, tc), are not strongly affected by the

underdetermination problem discussed above. The remaining six parameters—Nmax, W0, m,

a1, a2, d—are directly connected to the underdetermination problem and need to be estimated

with care. We start by obtaining an estimation of A, B, α, and tc by direct minimization of L.

The mapping of the effective parameters to the model parameters is done in two different ways:

(i) We seek a range of plausible model parameters determined as the values of W0 and Nmax

that keep the four effective parameters constant and that maintain the parameters ℓ, m, a1,

a2 and d within their prior range (set in Table 1). In practice, this is done by defining differ-

ent linear combinations between Nmax and W0 that are introduced in the system of six

equations that connect the parameters. For each possible Nmax, we obtain a particular a1, d,

and m by solving the systems of equations given by A, B and tc. The second rate of arrival,

a2, is obtained by the conservation of departed and returned bees. This method leads to the

estimation of an interval of possible parameters.

(ii) Alternatively, by pre-defining one parameter, we calculate the Nmax value directly because

the system of equations presents a unique solution. We focus on the departure rate d
because of the consistency among different reported studies on the time interval between

trips that a forager bee spends inside the hive [37] and because d can be directly connected

to the simplifying modeling decision of dividing bees into foragers and those that do not

leave the hive (i.e., we consider as foragers the most active bees so that collectively their

average departure rate is d, the other bees are considered to effectively stay inside the hive,

and their weight is counted as part of W0). In practice, we choose d so that the average time

spent by forager bees inside the hive between trips is τd = 0.816 h (the half-life τ is derived

from the arrival or departure rate, and defined in Eq (12) below) [36].

Even if the first approach does not lead to a point estimation of the parameters, in practice

most solutions can be restricted to relatively narrow intervals by considering physically-based

constraints. Some of these constraints are the average mass of food carried by a single bee m,

the interval of time between trips τ, and the number of trips needed to satisfy food require-

ments. Details on the computational methods appear in Materials and Methods Sec. 4.2 and

the codes are available in the repository [27].

2.3 Results from data analysis

In this section we report and discuss the results obtained by applying the model defined in Sec.

2.1 to data using the inference methods explained in Sec. 2.2.
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Data. We used 24h time series of weights W0(t) sampled every δt = 1 minute for ten differ-

ent hives on different days. The data was collected between 27th of November 2017 and 2nd of

March 2019, from hives located at Macquarie Park, NSW, Australia (33˚ 460 06.600 S 151˚ 060

43.800 E, see [34]). We show data from the 7th of April in Figs 4, 5a and 5b; additional dates

appear in Fig 5c. In all cases, the daily maximum temperature was above 16˚C (which is

Fig 4. Comparison between the model and data. Data corresponds to measurements on 2018–4-7 for ‘Hive 6’. By

fixing τd = 49 min, the estimated parameters are Nmax = 5830 bees, W0 = 24068 g, m = 0.03 g/bee, a1 = 0.99 h−1, a2 = 2.1

h−1, d = 0.85 h−1, l = 20.66 g/h, t0 = 8.40 h and t1 = 17.93 h.

https://doi.org/10.1371/journal.pcbi.1010880.g004

Fig 5. Inference of activity times t0 and t1. (a) Contour plot of L obtained performing multiple minimizations at fixed t0 and t1 (‘Hive 6’ at 2018–4-7). The minimum L is

at t0 = 8.40 h and t1 = 17.93 h. (b) Estimated t0 and t1 fluctuate around similar values for ten different hives located in close proximity when analysing data sets during the

same day. E.g. at 2018–4-7, the different activity times oscillate around t0 = 8.4 h and t1 = 17.85 h, respectively (dashed lines). (c) Time evolution for the optimum t0 and t1
for ‘Hive 6’ only. Transitioning from Autumn to Winter, we observe a linear increase for t0 and a linear decrease for t1 (linear regression).

https://doi.org/10.1371/journal.pcbi.1010880.g005
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sufficient for honeybees to forage [38]), and no rain was recorded (ensuring that the recorded

weights are not affected by precipitation). This dataset also contains an independent estima-

tion of the total number of bees in each of the hives, obtained from measures of the total weight

of the hive with and without bees (performed two days after the day we use to infer the param-

eters of our model) [34]. As a pre-processing step to the analysis of weight time series, we

removed outliers that correspond to exogenous influences as described in Materials and Meth-

ods Sec. 4.1.

Representative case. Fig 4 shows the comparison between our model with inferred

parameters and data for one specific hive. We see how the combination of the three piece-wise

continuous curves in our model (for t< 0, 0� t� 1, and t> 1, respectively) provides a rea-

sonable account of the characteristic pattern of within-day hive weight variations. The main

advantage of our methodology is the mechanistic generative model associated to this curve

which ensures the parameters describing the curve have a relevant meaning. For instance, we

estimate that on this day there were Nmax = 5, 830 active forager bees, that they brought on

average 0.03 g of food on each trip, and that trips were on average ta1
¼ 0:70 h long. The dif-

ference between our model and the data is particularly pronounced at t≳ 1, when a sharper

than expected transition is observed. This suggests that modifications of our model are needed

to better capture the return of the bees during the initial night period.

Activity time. As a further test of our inference method, and the meaningfulness of its

outcome, we look in detail at the inferred times in which foragers start (t0) and stop (t1) depart-

ing the hive on different days and different hives. The results were summarized in panels of

Fig 5. The Fig 5a shows a single well-defined optimal parameter value exists, confirming the

first and crucial step of our inference procedure; Fig 5b displays similar values across multiple

hives in the same day and similar location, in agreement with the expectation that the initial

times are similar for hives at similar locations; and in Fig 5c the estimated values for the same

hive varies throughout the year, with the period of activity becoming shorter as the days

become shorter (in the southern-hemisphere winter). These results confirm the success of our

approach which is to treat these times as additional parameters to be inferred from the data

simultaneously with the other parameters.

Systematic analysis. Motivated by the success of our methodology in the cases above, we

applied it systematically to 10 different hives on the same day (2018–4-7). The results obtained

from our two inference methods are reported in Table 2. The comparison of the inferred

parameters of these hives with expectations about the behaviour of bees and hives provides fur-

ther evidence that our mathematical model is capturing meaningful information from the

data. In particular:

• The time forager bees start (t0) and stop (t1) departing the hives are aligned with sunlight.

• The time of minimum weight was inferred to be around tc = 9: 45 a.m. shortly after t0 (for all

hives except ‘Hive 8’, which presents a later minimum). This result is compatible with the

minimum daily weights reported in experimental data [39], which reveal minimum weights

around 9: 00 a.m. Recently, results from segmented linear regression showed minimum

losses can take place even 4 hours after sunrise [40].

• The estimation of the number of forager bees Nmax is around a few thousand bees, in line

with alternative methods of estimation. In particular, Fig 6a shows that the total number of

bees per hive correlates positively with our estimation of Nmax (R2 = 0.596, p = 0.036). The

fraction of forager bees (assuming τd = 0.816h) is estimated to be around 18%, comparable

to previous estimations (around 25% − 30% in Refs. [41, 42]). Additionally, we obtained a

positive correlation between Nmax and rate of weight gained during the day α, (R2=0.778,
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p = 0.0056) consistent with the previously reported link between the size of the population

and the amplitude of weight variations during the active foraging period [40].

• The average amount of food brought back to the hive by a bee was inferred to be typically in

the range m 2 [10, 40] × 10−3 g/bee, which is comparable to reported crop loads carried by

active foraging bees when returning to the hive with loads of pollen [31], water [32], and dif-

ferent sweet solutions [33]. The two exceptions (Hives 8 and 9) show values up to

m = 77 × 10−3 g/bee and possible correspond to sugar concentrations with total dissolved sol-

ids (TDS) of 60% [33].

• In 90% of the cases, a1 < a2, which is in line with the expectation that bees return faster to

the hive at dusk (after they stop leaving).

• The typical time spent by forager bees inside and outside the hive is computed through an

analogy with the half-life, τ, which represents the time that half of the foragers’ colony will

need to go outside the hive or vice-versa. The half-life, τ depends on the departure or arrival

Table 2. Inferred parameters for 10 different hives on the same day (2018–4-7). Values ; in the interval estimation indicates that there was no interval of parameters sat-

isfying all imposed constraints for this hive.The values of τ next to the parameters a1, a2, and d correspond to the time spent outside (respectively, inside) the hive and were

computed using Eq (12). The uncertainties in the values of the estimation assuming τd = 0.816 h minutes, reported under the curly brackets, were computed using boot-

strapping, see Materials and methods Sec. 4.3.

Hives

θ 1 2 3 4 5 6 7 8 9 10

Effective parameters

t0 (h) 8.90 8.30 8.70 8.20 8.10 8.40 8.40 8.50 8.40 8.10

t1 (h) 17.77 17.36 18.42 18.26 17.36 17.93 17.93 17.77 17.77 17.93

l (g/h) 9.762 40.805 5.600 16.628 33.183 20.663 15.016 3.974 7.687 4.399

A(g) 17,503 23,384 17,878 26,809 23,412 24,731 21,244 18,057 19,485 19,364

B(g) 17,409 22,.849 17,808 26,562 22,905 24,369 20,940 17,925 19,342 19,262

α (g/h) 16.594 95.081 4.595 38.529 72.577 59.560 24.780 4.721 23.754 4.476

tc (h) 9.521 9.598 9.852 9.633 9.565 9.706 10.525 13.485 9.953 11.423

Interval estimation

Nmax (bees) [1950, 5400] [5050, 8200] [940, 2500] [2310, 3450] [7180, 7650] [4150, 6030] ; ; ; [840, 940]

W0(g) [16892, 17282] [22451, 22794] [17596, 17772] [26413, 26537] [22542, 22594] [24045, 24254] ; ; ; [19257, 19267]

a1(1/h) [3.59, 4.79] [0.61, 0.92] [1.44, 2.63] [0.54, 0.79] [0.81, 0.85] [0.76, 1.01] ; ; ; [0.20, 0.25]

τa1(h) [0.14, 0.19] [0.75, 1.13] [0.26, 0.48] [0.88, 1.28] [0.82, 0.86] [0.69, 0.92] ; ; ; [2.75, 3.40]

a2(1/h) [1.34, 1.34] [1.01, 1.02] [3.20, 3.21] [2.43, 2.47] [1.07, 1.07] [2.10, 2.11] ; ; ; [2.36, 2.35]

τa2(h) [0.52, 0.52] [0.68, 0.69] [0.22, 0.22] [0.28, 0.29] [0.65, 0.65] [0.33, 0.33] ; ; ; [0.29, 0.30]

d(1/h) [0.82, 2.38] [0.82, 1.41] [0.82, 2.28] [0.82, 1.26] [0.82, 0.87] [0.82, 1.24] ; ; ; [0.82, 0.94]

τd(h) [0.29, 0.85] [0.49, 0.85] [0.30, 0.85] [0.55, 0.85] [0.79, 0.85] [0.56, 0.85] ; ; ; [0.74, 0.85]

m �10� 3g
bee

� �
[7.00, 10.00] [37.40, 60.00] [7.00, 12.00] [38.50, 59.80] [32.40, 34.10] [28.80, 39.60] ; ; ; [39.00, 45.00]

Estimation assuming τd = 0.816 h

Nmax (bees) 5220±0 7930±0 2410±0 3330±0 7400±0 5830±0 3540±0 970±0 1260±0 910±0

W0(g) 16912±3 22481±7 17606±5 26426±3 22570±4 24068±5 20840±1 17946±4 19339±2 19260±1

a1(1/h) 4.77±0.6 0.90±0.0 2.60±0.2 0.77±0.0 0.83±0.0 0.99±0.1 0.50±0.0 0.11±0.0 0.44±0.0 0.24±0.0

a2(1/h) 1.34±0.1 1.02±0.1 3.21±0.3 2.47±0.2 1.07±0.1 2.11±0.1 2.00±0.3 1.56±0.1 1.84±0.1 2.35±0.2

d(1/h) 0.85±0.1 0.85±0.0 0.85±0.1 0.85±0.1 0.85±0.0 0.85±0.1 0.85±0.0 0.85±0.0 0.85±0.1 0.85±0.0

m �10� 3g
bee

� �
10.0±1 38.0±2 10.0±1 40.0±3 33.0±1 30.0±3 33.0±1 53.0±2 77.0±3 41.0±2

https://doi.org/10.1371/journal.pcbi.1010880.t002
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rate r 2 {d, a1, a2} in hours as

t ¼ ðt1 � t0Þ
ln 2

r
: ð12Þ

From the calculated values of d, a1,2, and t1 − t0, we determine that the time in the hive

between trips, τd, ranges from 0.29h to 0.85h and the typical time of a foraging trip, τa, is in

between 0.14h to 3.40h. These estimations align with the results in Refs. [36, 37, 42]. The

only hive that shows values up to 6.25 h for trip duration is Hive 8, this hive shows behaviour

outside the ones predicted by our model, as evidenced by ; in the interval estimation. How-

ever, some reports points that bees are able to be outside the hive 6.25 h at the age of 36 days

[35].

Arrivals and departures. Finally, we test the predictions of our model against indepen-

dent experimental measures that tracked the number of bees that arrive and depart from a

hive at a time interval [37]. Fig 6b compares these measurements to the assumption in our

model and reveals the limitations of our simplifying choice of constant and piece-wise linear

arrivals and departures in Eq (7). While our model captures the main characteristics of the

data, unsurprisingly, bee activities do not start or end abruptly and the measured data shows

smoother variations than the prediction of our model. A similar behaviour can be observed for

W(t)—such as in Fig 3—where the measured data do not show the abrupt changes seen in the

Fig 6. Comparing our model to independent measurements. (a) Our estimation of the number of active foragers Nmax correlates positively with the total number of

bees (R2 = 0.596, p = 0.036). The dashed straight line corresponds to 18.2% of all bees being foragers, constant across all hives. The total number of bees was estimated

through an independent measurement performed on 2018–04-9, two days after the data used in our inference [34]. The points without bars correspond to those that

had no successful interval estimation, as discussed in Table 2. In all our analysis of correlation between variables, the reported p-value p is the probability of obtaining a

positive coefficient of determination R2 equal or larger than the reported R2 under the null hypothesis that the variables are independent from each other. (b) The plot

represents the difference between the number of bees arriving and bees departing a honey-bee hive during a 5 minutes interval. The model prediction (blue line) was

computed integrating A(t) − D(t) over each time interval. The real data was measured using bee-tracking methods.

https://doi.org/10.1371/journal.pcbi.1010880.g006
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model curve at t = 0 and t = 1 (discontinuous derivative). This limitation can be partially over-

come within our modeling framework—Eqs (1) to (4)—by changing the assumptions of con-

stant a(t) and d(t)—e.g., in Eq (7). For instance, the next simplest alternative is to consider that

the arrival remains constant a(t) = a but that the departures varies continuously from 0 at time

t = 0 to a maximum value dmax at time t = 0.5 and back to 0 at t = 1. The simplest polynomial

with these characteristics is

dðtÞ ¼ 4dmaxtð1 � tÞ: ð13Þ

In this case, Eq (3) is a linear first-order equation and the solution is:

xðtÞ ¼
C
erðtÞ
þ a

Z

erðtÞdtdt; ð14Þ

where rðtÞ ¼ at þ 2dmaxt2 � 4

3
dmaxt3 and C is the arbitrary constant to be fixed by the initial

condition x(0) = 1. This alternative model has the same number of parameters (dmax instead of

d), but requires additional computational resources to numerically find the solution for x(t)
through the integration of Eq (14). This example illustrate the flexibility of our model to con-

sider more realistic settings and also the trade-off between model complexity and the need of

computational approaches.

3 Discussion

We introduced a simple mathematical model of the foraging activities of bees that reproduces

the observations of within-day weight variations of hives. Simplistic assumptions of the depar-

ture and arrival of bees allow us to obtain closed form solutions of the model that result in a

continuous and piece-wise differentiable curve W(t) with 10 biologically-relevant parameters.

We inferred the parameters of W(t) for 10 different hives and for different days across the

year. Overall, the results reveal that the parameters we infer agree with existing knowledge of

bee behavior and that the inferred number of forager bees is compatible with the expectation

based on the independent measure of the total number of bees in the same hives. Further work

is needed to quantitatively test the accuracy of our inferred parameters and the extent of valid-

ity of our model. For instance, future studies could simultaneously collect weight data and for-

ager activities with tracking devices for individual bees, allowing for a direct comparison

between our approach and estimations based on independent measurements.

The main advantage of our approach when compared to previous works is that it combines

mechanistic mathematical models with data analysis to obtain interpretable quantitative infor-

mation about the condition of the hive. Additional advantages of our model approach include:

(i) indications from the inference of when results cannot be trusted (either because they are

not capturing meaningful information or because optimal results lie outside of the allowed

error range); (ii) that our framework allows for the proposal of more sophisticated models,

e.g., by considering additional terms contributing to the food dynamics in Eq (4) or more

detailed modes of arrival a(t) and departure d(t) such as in Eq (13); and (iii) that our model

allows for a systematic exploration of the effect of foraging activities and food processing

parameters on how hive weight changes over time. An important methodological expansion of

our work would be to consider and compare different type of functional forms in our model.

This will require considering cases in which solutions are not obtained in closed forms and the

implementation of a Bayesian-model comparison that can compare models of different com-

plexities, in line with modern simulation-based and Bayesian inference that are increasingly

applied to dynamical systems of biological interest [43–45].
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The success of our model in extracting meaningful information about bee hives opens the

possibility of using it for a systematic analysis of the health of hives across different hives and

across time. Our model can be used to obtain interval estimations of the following quantities,

which are of particular interest:

• The number of active foragers in a bee colony N is a crucial parameter of the capacity of a

colony at sustaining itself. Environmental stressors such as pesticides can cause a rapid

depletion of the population of active foragers [46]. Estimations of N provide a rapid assess-

ment of the daily foragers population and allow quick intervention and stress reduction to

potentially prevent colony collapse [20].

• The time spent by foragers outside the hive τa can be connected to the efficiency of the col-

ony because long times outside the hive lead to a reduction of the life expectancy of foragers

[37].

• The amount of food collected by bees in each trip m allows for a better assessment of forag-

ing difficulty and thus of environments that can best support beekeeping operations [22].

• The rate of weight growth of a hive α gives a reliable indicator of whether foragers are sup-

plying their colony properly (leading to optimal colony development) or if instead the colony

is endangered (suggesting the existence of stressors or environmental limitations).

Tracking the daily evolution of these parameters opens the perspective of developing

weight-based early-warning indicators of bee colony failure that could lead to new strategies

for risk control.

4 Materials and methods

4.1 Computational methods

Here we describe the computational methods used to estimate ranges of the parameters θ of

our model presented in Table 1 from the within day time series of weights W0(t). In Sec. 2.2 of

this manuscript this issue has been formulated as the problem of finding the parameters θ that

minimize the sum of squares L in Eq (11). The ten parameters proposed in this model were

reduced to nine parameters after considering the weight of a bee w as 0.113 g/bee.

The minimisation was performed in a nine-dimensional space through a least-square

method composed of three different approximation levels. First, the clock times when bees

started departing t0, and when they stopped leaving t1. Next, a reliable estimation of the char-

acteristic features from the time series of the weight fluctuations was performed. Finally, the

remaining seven parameters were obtained from the connection with the effective parameters.

For the estimation of clock times for t0 and t1 we created a squared-grid for the times t0 2
[6:30am,9:00am] and t1 2 [2:30pm,6:30pm] spaced every 5 minutes. These times combinations

provides 1440 different scaling options. Then, we applied to each ordered pair, (t0, t1), the

Levenberg–Marquardt algorithm for square minimization. We used the python library SciPy

(through “scipy.optimize.curve_fit” Pythons’ function) with the inputs described in Table 3 to

apply the algorithm.

We chose the combination of t0 and t1 that minimizes the error as the inferred scale time

parameters. Then, after re-scaling our data set on the time axis, we proceeded with the estima-

tion of effective parameters; A, B, tc, and α from the daily-hive data. We infered the remaining

seven model parameters from a system of six equations, which consist of: (i) four equations

presented as the “effective description of the model”; (ii) one equation from the conservation

of the number of departed and returned bees; and (iii) the last equation is the rate of evapora-

tion ℓ, which can be calculated directly from the time series after the re-scaling process when
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t< 0. Then, we performed a simultaneous calculation with six equations and seven variables;

consequently, the system is undetermined with no unique solution due to an extra degree of

freedom. We proposed that our dependent system of equations must be solved for any possible

Nmax value. Note that the total weight of the hive at W(t = 0) can be decomposed in two terms

only: the weight given by the total number of forager bees Nmax, and the initial constant weight

W0. Consequently, our solution will depend on picking a value for Nmax and finding the corre-

sponding W0 value. Thus, an infinite number of solutions will be obtained and then reduced

to a confidence interval as can be observed in S1 Fig. Alternatively, by pre-defining one value,

such as departure rate d, we can reduce the variables of our equation’s system and obtain a

unique solution for the parameters ŷ. The solution has extended to 10 independent and differ-

ent hives during the day 2019–4-7 and is presented in Sec 2.3.

4.2 Pre-processing of data

Before any computation, we removed outliers that do not reflect actual change in hive weight

and that would otherwise affect our analysis. These outliers appeared due to equipment failure,

animal or human interactions with the hives, or rainfall. In practice, we removed all measure-

ment points that corresponded to a difference of 20g or more within two consecutive minutes,

a conservative threshold which ensures that strong oscillations were excluded. From the ten

different hives analysed, the hive that presented the highest number of outliers was hive ‘10’,

with 89 outliers, so at most only 6.1% of the data were excluded from this hive (S2 Fig).

4.3 Bootstrapping

Bootstrapping is used for assessing the effects of data uncertainty. We applied a bootstrapping

method to estimate the uncertainty around the estimated parameters ŷ. For each daily data of

10 different hives, 200 re-samplings were generated, and the minimisation procedure

described above was applied to them (for the fixed value of t0, t1 obtained in the full dataset).

Suppose the inference fails or the number of iterations exceeds 5, 000 evaluation, and the opti-

mal parameters are still not found. In that case, the re-sample is discarded (for the 10 analysed

hives listed in Table 2 only 5% of the 200 re-samplings were discarded). The inferred parame-

ters of the accepted re-samples are used to estimate the range of plausible parameters. The

uncertainty reported in the main manuscript corresponds to the standard deviation over the

parameters estimated in the re-sampled data. For 10 hives reported in Table 2 the uncertainty

of the 7 inferred parameters corresponds to an area of 95.4% under the curve of the probability

density function. The S3 Fig displays an example of the probability density to calculate the

range of values for the seven parameters of ‘Hive 6’ on 2018–4-7.

Table 3. The inputs required for the “scipy.optimize.curve_fit” Pythons’ function.

Parameter Description

ydata Measured weight W0 per minute over a full day.

xdata Time per minute scaled for the corresponding measured weight W0.
f Model function, introduced in Eq (1).

P0 Initial guess for the θ parameters that are not bee facts W0 = 15000 g, Nmax = 15000 bees, l = 17 g/h

m = 0.01 g/bee, a1 = 0.21 h−1, a2 = 0.41 h−1, d = 1 h−1.

Bounds Lower and upper bounds on parameters W0 = [5000 max(W0)) g, Nmax = (0 80000] bees, l = (0 max
(W0)) g/s, m = (0 0.78w] g, a1 = [0.10 4.80] h−1, a2 = [0.10 4.80] h−1, d = [0.81 3.01] h−1.

maxfev Maximum number of evaluations allowed, for this function, 5000 iterations were used.

t0, t1 Clock times corresponding to t0 and t1, obtained previously.

https://doi.org/10.1371/journal.pcbi.1010880.t003
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Supporting information

S1 Fig. Multiple solutions are obtained from the Hive 6 on 2018–4-7, and then reduced to

a confidence interval. (a) The time spent inside, τd, and outside the hive during the day, ta1
is

compared with reported intervals of time inside the hive taken by the forager bees between

trips, and an average of time outside the hive per flight. Then, a valid interval is selected con-

sidering previous reports. (b) The maximum reported food load collected per trip (crop load)

is 0.077 g. The shaded area represents a region where an acceptable crop load is obtained. (c)

Representation of two characteristic parameters, the rate of gained weight and the intersection

with t = 0, as Nmax decreases B and α become unstable. (d) Error calculated as the sum of the

squared difference between the model and the real data. The shaded area represents a region

where an acceptable error occurs based on bootstrapping simulation.

(PDF)

S2 Fig. Example of outlier detection for the Hive 10 on 2018–4-7. The outliers detected in

red were removed before the data analysis.

(PDF)

S3 Fig. Probability Density Function for the parameters displayed at Table 1 after the

bootstrapping process of the Hive 6 on 2018–4-7. These fitting parameters are: Nmax(bees),

W0(kg), m(g), a1(h−1), a2(h−1), d(h−1), l(g/h) with t0 = 8.4 h and t1 = 17.93 h after bootstrapping

process of ‘Hive 6’ during the 2018–4-7.

(PDF)
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