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Predicting locations of cryptic pockets
from single protein structures using the
PocketMiner graph neural network

Artur Meller 1,2,5, Michael Ward1,5, Jonathan Borowsky1, Meghana Kshirsagar3,
Jeffrey M. Lotthammer 1, Felipe Oviedo3, Juan Lavista Ferres 3 &
Gregory R. Bowman 1,4

Cryptic pockets expand the scope of drug discovery by enabling targeting of
proteins currently considered undruggable because they lack pockets in their
ground state structures. However, identifying cryptic pockets is labor-
intensive and slow. The ability to accurately and rapidly predict if and where
cryptic pockets are likely to form froma structurewould greatly accelerate the
search for druggable pockets. Here, we present PocketMiner, a graph neural
network trained to predict where pockets are likely to open in molecular
dynamics simulations. Applying PocketMiner to single structures from a newly
curated dataset of 39 experimentally confirmed cryptic pockets demonstrates
that it accurately identifies cryptic pockets (ROC-AUC: 0.87) >1,000-fold faster
than existing methods. We apply PocketMiner across the human proteome
and show that predictedpockets open in simulations, suggesting that over half
of proteins thought to lack pockets basedon available structures likely contain
cryptic pockets, vastly expanding the potentially druggable proteome.

Protein structural fluctuations often lead to the formation of cryptic
pockets1–5, which present druggable sites beyond pockets apparent
in experimentally-determined structures. From a drug development
perspective, targeting these cryptic pockets provides a number
of compelling opportunities. For example, proteins that lack an
obvious pocket in the native, folded structure may appear undrug-
gable, but could be targeted via cryptic pockets. Additionally,
whilemolecules that target an orthosteric site are obligate inhibitors,
molecules that target a cryptic pocket can modulate protein
function via inhibition or activation6,7. Finally, while orthosteric sites
are often highly conserved across proteins that need to bind
the same ligand, cryptic pockets are likely less conserved8,9. This
opens the possibility of developing molecules that have improved
specificity.

While cryptic pockets are alluring drug targets, it remains chal-
lenging to find and target them intentionally. Most known cryptic

pockets were discovered serendipitously by screening for inhibitors
and solving structures for hits2,4,10. While this process has unveiled
cryptic pockets, it does not specifically select for compounds that
target cryptic pockets and is both costly and labor-intensive. More-
over, the discovery of cryptic pockets through this approach is rare
because the lack of a priori knowledge of the cryptic pocket structure
prohibits the design of a small molecule library targeting the pocket.
Molecular dynamics simulations are another means to identify cryptic
pockets. Simulations provide an atomically-detailed ensemble of
structures that a protein adopts in solution, which commonly reveals
cryptic pockets that can be used as a template for drug design11–16.
However, molecular dynamics simulations are computationally
expensive, making it infeasible to screen large numbers of targets for
cryptic pockets.

Because identifying cryptic pockets is resource-intensive, a
screeningmethod thatquickly indicates if a protein is likely tohave any
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cryptic pockets would be extremely valuable. During the SARS-CoV-2
pandemic, researchers rapidly solved numerous experimental struc-
tures of different viral proteins17. Similarly, recent advances in protein
structure prediction have made many protein structures available for
structure-based drug design18–20. Proteins with pockets in their ground
state experimental structures may be prioritized as drug targets.
However, in cases where proteins lack ground state pockets or where
the design of specific modulators is challenging, an algorithm
designed to predict which proteins have cryptic pockets would also be
useful for prioritizing which proteins to target.

CryptoSite is an outstanding example of a supervised machine
learning algorithm that takes a protein structure as input and predicts
ligand-binding cryptic pockets21. Briefly, CryptoSite is trained to
identify amino acid residues that will transition from an orientation
that is incompatiblewith ligandbinding to anorientation that hasbeen
verified to accommodate a ligand based on a set of 84 confirmed
cryptic pockets derived from the Protein Databank (PDB). Even with
this relatively small dataset, CryptoSite achieves good accuracy clas-
sifying whether an amino acid residue will participate in a cryptic
pocket (ROC-AUC =0.83). Achieving this performance requires ~1 day
to run for a single protein because one of CryptoSite’s input features is
simulation data, which it needs to generate on-the-fly for each pre-
diction. The algorithm takes a performance hit without using simula-
tion data as a feature (ROC-AUC =0.74). A faster algorithm that
achieves the same or better accuracy would be of tremendous value
for prioritizing potential drug targets based on their likelihood of
having useful cryptic pockets.

We hypothesized that an algorithm trained to predict the prob-
ability a pocket forms within a fixed amount of simulation time would
accurately identify cryptic pockets in ligand-free experimental struc-
tures. Specifically, we propose using simulations to evaluate if each
residue in a protein structure can rearrange its orientation to partici-
pate in a cryptic pocket as part of its thermal fluctuations. In contrast
to CryptoSite, which relies on a small number of examples where a
ligand is known to bind in a cryptic site, the proposed training scheme
does not necessitate examples of ligands bound in cryptic pockets.
Instead, models can be trained on structural ensembles (e.g., from
molecular simulations) that contain examples of pocket opening
events. One benefit of the proposed training scheme is that at least an
order of magnitude more training examples can be obtained to train
models (e.g., thousands of cryptic pocket opening events can be
obtained from simulations).

In the current study, we trained a graph neural network to pre-
dict where pockets are likely to open in molecular dynamics simu-
lations (Fig. 1) and then tested whether it can predict the locations of
cryptic pockets from single, experimentally derived structures
(Supplementary Fig. 1). Specifically, we trained a model to take a
structure of a protein and forecast whether each residue will parti-
cipate in the formation of a cryptic pocket over the course of a short
simulation initiated from that structure. Our training dataset consists
of a previous molecular dynamics simulations study that identified
cryptic pockets across most proteins in the SARS-CoV-2 proteome12,
simulations from a previous study of Ebolavirus VP355, and a set of 16
proteins with known ligand-binding cryptic pockets that we simu-
lated for this study. To test the ability of PocketMiner to predict the
locations of ligand-binding cryptic pockets from single structures,
we curated a dataset of 39 examples of cryptic pockets from the
PDB. For each of these systems, there is a structure of the apo
protein where the cryptic pocket is absent and a holo structure with
a ligand bound in the cryptic pocket. We analyzed this dataset to
learn a taxonomy of cryptic pockets and tested PocketMiner’s
ability to identify the different types of cryptic pockets. Finally, we
applied PocketMiner to the entire human proteome and highlighted
new cryptic pockets we propose to be promising drug target
candidates.

Results
Known cryptic pockets open rapidly in simulations
There have been few studies which systematically evaluate whether
molecular dynamics (MD) simulations recapitulate known cryptic
pockets. In previouswork,MD simulations captured opening at known
cryptic sites in TEM β-lactamase22, Interleukin-223, and several other
protein drug targets13,24. MD simulations have also identified novel
cryptic pockets that were experimentally confirmed in thiol labeling
experiments5,25. However, these studies focused on a narrow set of
proteins or did not evaluatewhether pocket formationwas localized to
known ligand-binding sites. Given the recent interest in using MD
simulations for cryptic pocket discovery, there is a need for a sys-
tematic evaluation of how well MD simulations recapitulate known
cryptic pockets. Such a study could dually generate data to train a
machine learning model to identify the locations of cryptic pocket
formation.

Hence, we conducted unbiased adaptive sampling MD simula-
tions of 16 proteins known to formcryptic pockets fromapo, or ligand-
free, starting structures. Eleven of the pairs have ligand-binding resi-
dues which were closer together in the apo structure than in the holo
structure (i.e., they required an opening motion to form the pocket).
Multiple different types of motion are represented, including three
cases of secondary structure change. For each protein, we ran 2μs of
adaptive sampling simulations using the Fluctuation Amplification of
Specific Traits (FAST) algorithm26. Specifically, we launched 10 parallel
simulations from the apo structure, then constructed a Markov state
model (MSM)27,28 of the conformational ensemble and prioritized
structures for the next round of simulations using a ranking function
that balances exploitation (i.e., prioritizing states with large pockets)
with exploration. This procedurewas repeated four times to generate 5
‘swarms’ of simulations, each consisting of 400ns of aggregate simu-
lation (10 simulations 40 ns in length).

To our surprise, we find that the large majority of cryptic pockets
open in just 10 parallel simulations of 40 nanoseconds (Fig. 2). Pockets
were considered open if the pocket volume of a simulated structure
reached or exceeded the holo crystal structure pocket volume
(see Methods). One of the proteins had a cryptic volume that was
larger in apo than in holo and was thus eliminated from further ana-
lysis. Thirteen out of the remaining 15 proteins open in the first
10 simulations of 40 nanoseconds. One other, elongation factor TU,
opens after additional rounds of adaptive sampling (five rounds of 10
parallel 40 ns simulations). Only oneprotein,Niemann-PickC2Protein,
remains closed even after the 5 rounds of adaptive sampling simula-
tions. We hypothesize that cryptic pocket opening is not observed for
this protein because the ligand that binds in the cryptic pocket is
highly hydrophobic29. Encouragingly, we also find that cryptic pockets
that form in simulation are mostly localized to known ligand-binding
cryptic sites with the largest pocket volume changes occurring at
ligand-binding sites (Supplementary Fig. 2, Supplementary Table 6).
Altogether, the rapid pocket opening we observe suggests that for
most smaller proteins a modest amount of simulation data may be
enough to discover cryptic pockets. Additionally, this finding suggests
that machine learning models trained to predict cryptic pocket for-
mation over small simulation time windows (i.e., 40ns) would also be
able to identify cryptic sites in ligand-free experimental structures.

Graph neural networks accurately predict the time evolution of
pockets in simulation
Given a starting structure, we reasoned that one could predict where
cryptic pockets will form in that structure during an MD simulation.
Though MD simulations are stochastic, and no two simulations laun-
ched from the same structure will follow the exact same time evolu-
tion, we reasoned that sufficiently long simulations would sample
similar pocket opening events. For example, a residue that is loosely
packedwith few specific interactions with its neighborsmightmove to
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create a pocket consistently acrossmultiple simulations. Conversely, a
residue that is tightly packed with strong interactions with its neigh-
borswould bemore likely to remain locked in its initial position across
independent simulations.

To confirm our intuition, we evaluated the consistency of pocket
openings across independent simulations of known cryptic pocket
openings.We calculatedpocket volumesusing the LIGSITE algorithm30

for each structure visited in a simulation (2000 structures per 40 ns
simulation) and assigned pocket volumes to nearby residues. Specifi-
cally, we determined how many LIGSITE pocket grid points are within
5 Å of each residue. We then binarized residues into those that were
part of a pocket opening event and those that did not form pockets. A
residue was considered a positive example if at any point in simulation
the nearby pocket volume determined by the LIGSITE algorithm
increased by more than 40 A3relative to its assigned pocket volume in

the starting structure (see Methods). We find that independent 40 ns
simulations launched from the same starting structure produced
similar labels, with the vast majority of residues either always opening
or always remaining closed (Supplementary Fig. 3). When we visually
inspect a protein with a known cryptic pocket opening like TEM 1
β-lactamase, we observe opening in similar hotspots across simula-
tions (Supplementary Fig. 2).

Given that independent simulations converge to similar labels, we
set out to develop an algorithm that predicts sites of cryptic pocket
opening events in simulation. Specifically, we combined our simula-
tion data of known cryptic pocket openings with additional adaptive
sampling simulations of SARS-CoV-2 proteins12. This dataset included
37 proteins and 2400 independent MD simulations at least 40 ns in
length. We generated labels for each residue in each 40ns window’s
starting structure based on whether that residue participates in a
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Fig. 1 | PocketMiner uses graph neural networks to predict cryptic pocket
formation. A Proteins exist in an equilibrium between different structures,
including experimentally derived structures that lack cryptic pockets (left, PDB ID
1JWP)71 and those with open cryptic pockets (right, PDB ID 1PZO)4. Residues lining
the cryptic pocket are shown in yellow sticks. B PocketMiner relies on a series of
message passing layers to exchange information between residues and to generate
encodings that can predict sites of cryptic pocket formation. On the left, we show
the structural features that are fed into an input graph following transformationsby
Geometric Vector Perceptron (GVP) layers. Node features include backbone

dihedral angles as well as forward and reverse unit vectors (for a full list see
Methods). Edge features include a radial basis encoding of the distance between
residues and a unit vector between their alpha-carbons. In themiddle, we showhow
the input graph is transformed by messaging passing layers which influence a
residue’s embedding based on its neighbors’ node embeddings as well as its edge
embeddings. On the right, we show that the node embeddings from the output
graph are used to make predictions of cryptic pocket likelihood following another
GVP transformation. Finally, at the bottom right, we show an idealized prediction
for the protein shown in A.
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cryptic pocket at any point in the next 40 ns of simulation (Fig. 3A).
Altogether, this dataset included 941,650 unique examples. We then
used this data to train a graph neural network based on the geometric
vector perceptron graph neural network (GVP-GNN)31 as well as a 3D
convolutional neural network (3D-CNN)32. Both these architectures
have demonstrated robust performance on other protein structure
prediction tasks.

We find that both the GVP-GNN and the 3D-CNN learn to accu-
rately classify whether a given residue will form a cryptic pocket in
simulation based on a starting structure. We split the 37 protein
simulation datasets into 5 folds by protein and used 5-fold cross-vali-
dation to measure the performance of both architecture types. For
each split, we separately assessed how choices in model hyperpara-
meters (e.g., dropout rate) and training set up (e.g., class balancing
scheme) affected performance on 1 validation fold (3 folds were used
for training). The GVP-GNN and 3D-CNN that performed best on each
validation fold (Supplementary Table 2-4) for a certain split was then
assessed using a held-out test fold (Supplementary Table 1). Across the
5 splits, the best GVP-GNN model achieves an average test PR-AUC of
0.44 ±0.12 (average ROC-AUC: 0.83 ±0.04; Fig. 4B–C). The 3D-CNN
performs similarly (PR-AUC: 0.41 ± 0.05; ROC-AUC: 0.79 ±0.02). At
high levels of recall (0.6-0.8), the GVP-GNNmakes fewer false positive
predictions, as demonstrated by the higher precision on the right side
of the precision-recall curve (Fig. 4B). As a result, we decided to pro-
ceed with the GVP-GNN architecture for further prediction tasks.
Overall, these findings suggest that it may be possible to identify sites

where cryptic pockets form without computing intermediate states
(e.g., withMD simulations) when given a structure of the native, folded
state of a protein.

Cryptic pocket dataset reveals forward and reverse motions
To evaluate if our models could detect sites of cryptic pocket forma-
tion from experimentally validated ligand-binding cryptic pockets,
we first curated a dataset of cryptic pockets. Cimermancic et. al. 21

previously identified 93 apo-holo protein structure pairs containing
cryptic pockets, which will be referred to here as the CryptoSite set.
While useful, the CryptoSite set contains relatively few proteins in
which large conformational changes are necessary for pocket
formation33 (Supplementary Fig. 4). Furthermore, the PDB has roughly
doubled in size since the version used to generate the CryptoSite set
was downloaded, and Sun et. al. observed that some proteins in the
CryptoSite set had additional apo structures in which the pocket was
open34. We reasoned that curating a novel cryptic pocket dataset
would improve our understanding of cryptic pockets and provide a
test set for our model that has increased coverage of the large and
diverse space of cryptic pocket structures and motions. Thus, we fil-
tered the Protein Data Bank (PDB) to identify 38 apo-holo protein
structure pairs containing 39 cryptic pockets with large root mean
square deviations between apo and holo (see Methods, Supplemen-
tary Fig. 4).

The resulting collection of cryptic pockets, called the PocketMiner
dataset, includes pockets formed by multiple types of conformational

Fig. 2 | Cryptic pockets rapidly open in simulations started from closed apo
structures. A Structural overlay of theGluR2 subunit of theAMPA receptor protein
in its apo (grey, PDB: 1MY072) and holo (blue, PDB: 1N0T73) conformations reveals
that a loop and helix must shift to form a cryptic pocket. B A structure from anMD
simulation started from the closed apo conformation with a pocket at the binding
site with a volume exceeding that of the holo binding site pocket (orange).CMSM-
weighted violin plots of cryptic pocket volume in simulations of the GluR2 subunit
of the AMPA receptor show that the ligand binding site exceeds the volume seen in
the holo conformation within only 10 parallel simulations of 40 ns each. Cryptic
pocket volume was calculated by assigning each LIGSITE30 grid point to the single
nearest residue and summing up the volumes assigned to all cryptic pocket resi-
dues (see Methods). The grey ‘X’ indicates the apo binding site cryptic pocket
volume, the blue line indicates the holo volume, and the black dot indicates the

MSM-weighted mean volume of all frames for each round of simulation. D MSM-
weighed distributions of cryptic pocket volumes from simulation of 15 different
proteins show that even 10 short simulations are usually sufficient to reach the
cryptic pocket volume of the holo structure. The pocket volume distribution as a
fraction of the holo volume for 10 short simulations (400ns of cumulative simu-
lation) is shown in orange while the distribution for five rounds of adaptive sam-
pling (2microseconds of sampling) is shown inwhite. The grey ‘X’ indicates the apo
cryptic pocket volume as a fraction of holo, and the downward-pointing and
upward-pointing triangles represent the MSM-weighted mean volume after
10 simulations (1 round) or 5 rounds of adaptive sampling respectively. The max-
imum cryptic pocket volumes as a fraction of holo reached in simulation are shown
with tick marks or given numerically to the right of the plot if they lie outside the
plot’s range. Source data are provided as a Source Data file.
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changes. Interestingly, we notice that many pockets form via closing
motions, rather than the canonical pocket opening motion. For these
“reverse” pockets, structural elements start far apart, such that there is
little or no pocket present in the apo structure, but come together to
form a lid or walls, creating a cavity where a ligand can bind in holo
(Fig. 4D).Most pockets are formedprimarily by a single type ofmotion,
although in several casesmultiple types contribute significantly. Across
forward and reverse pockets, we observe four common structural
rearrangements. First, loops can move apart to create space for an
incoming ligand or clamp down to create a wall or lid over a ligand
(Fig. 4A). Second, secondary structural elements can shift via a trans-
lation and/or rotation (Fig. 4B). Third, secondary structural elements
can change to, or form from, a loop (Fig. 4C). Fourth, interdomain
motions can create space for ligands tobind (Fig. 4D). Thus, our cryptic
pocket dataset captures a diverse set of conformational rearrange-
ments and represents a challenging benchmark for evaluatingmachine
learning models.

PocketMiner accurately predicts ligand-binding cryptic pockets
from ligand-free crystal structures
Given that the GVP-GNN accurately predicts where cryptic pockets will
form in simulation, we wondered if this network architecture could be

used to predict the sites of cryptic pocket formation in experimental
structures. If known cryptic sites form quickly in simulations, then a
GVP-GNN that learns to predict where pocket formation occurs in
simulation might reasonably identify ligand-binding cryptic sites in
experimental structures.

As a result, we took all proteins from our previous training set and
generated training labels based on local changes in LIGSITE pocket
volume and fpocket druggability scores35 (seeMethods).Wedecided to
use fpocket labeling schemes since druggability scores consider not
only the geometry of a pocket but also the chemical environment of a
pocket. We trained GVP-GNNs using LIGSITE-derived labels only,
fpocket-derived labels only, and a combination of both labels (i.e.,
where a network is trained for several epochs using one labeling
scheme and then switches to learning from the other labels for several
more epochs). Though previous studies have found that LIGSITE and
fpocket can struggle to correctly rankwhich pockets bind ligands36, our
labels did not consider the ranking between pockets in a single struc-
ture. Instead, our labelswerebasedon the change in the LIGSITEpocket
volume or the maximum fpocket druggability score in the vicinity of a
residueover the course ofMDsimulations.We then evaluated ifmodels
trained using these labels could distinguish residues at ligand-binding
cryptic sites from residues that do not form cryptic pockets.

B C

Training Example

Positive Residues
Negative Residues

Cryptic
pockets

40 ns window
to t1 t2 MD sim. time
A

to structure

Fig. 3 | Graphneuralnetworksaccurately forecast the sitesofpocket formation
in new simulations. A We used MD simulations to generate training labels by
tracking where cryptic pockets (shown in red) form. Residues were labeled as
positive examples if a cryptic pocket formed nearby that residue at any point in
simulation (shown in cyan). As an illustration, we show the TEM β-lactamase pro-
tein, which forms cryptic pockets at two separate sites (i.e., the hornpocket and the
omega loop pocket) in a single MD simulation. Each opening event marks the
nearby residues as positive examples, so the training labels for this window reflect
both opening events with residues around both pockets marked as positive
examples. The starting structure can then be fed to a graph neural network that
predictswherecryptic pocketswill form.BPrecision-recall curves across 5 different

folds demonstrate that a graph neural network trained with simulation starting
structures and labels derived from simulation intermediates predicts which resi-
dues will form cryptic pockets in simulation (mean PR-AUC of 0.44). The shaded
region represents variation in performance across folds with the top of the shaded
region tracing the curve with the highest PR-AUC and the bottom of the shaded
region tracing the curve with the lowest PR-AUC. GVP-GNN refers to the Geometric
Vector Perceptron-based Graph Neural Network; 3D-CNN refers to the 3D Con-
volutional Neural Network. C Receiver operating curves across 5 different folds
demonstrate robust performance (mean ROC-AUC of 0.83). Shading represents
variation across folds (worst to best performance across 5 folds). Source data are
provided as a Source Data file.
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To evaluate if our model can distinguish sites that do not form
cryptic pockets, we curated a dataset of negative examples consisting
of rigid proteins and other proteins that were the targets of extensive
drug screening. In previous work, negative examples were defined as
any residue not known to participate in a ligand-binding cryptic
pocket21. However, many of these sites may have the potential to form
ligand-binding cryptic pockets. To increase our confidence in our
negative examples, we only used residues from proteins known to be
extremely rigidor extremely stableor residues fromproteins that have
been put through extensive drug screens. Our dataset of hyper rigid
proteins included three designed microproteins and a handful of
proteins with unusually rigid folds or crystal-like properties (see
Methods). We ran MD simulations of these proteins to verify that they
do not form cryptic pockets and removed any residues that were near
small pockets from the model evaluation dataset (see Methods). To
supplement this relatively small number of negative examples for
model evaluation, we also identified proteins that had been the sub-
jects of extensive drug screens and pulled out residues where ligands
didnotbind (SupplementaryFig. 5).Our reasoningwas that siteswhere
ligands did not bind would be highly unlikely to form cryptic pockets
given that these proteins had been co-crystallized or soaked with a
largenumber of ligands. Tobuild additional confidence inour negative
labels, we also ran simulations of these proteins and removed any
residues that were the sites of cryptic pocket opening in simulation
(Supplementary Fig. 6). Thus, we assembled a collection of negative
examples with both experimental and simulation evidence to support
our labels.

We find that our finalmodel, referred to as PocketMiner, achieves
very good performance at discriminating residues that form cryptic
pockets from those that do not (ROC AUC: 0.87). PocketMiner was
trained for 20 epochs with LIGSITE-derived labels and refined for 1
epoch with labels derived from fpocket druggability scores. To test

PocketMiner, wemade predictions on a total of 24 apo structures that
form ligand-binding cryptic pockets, 4 hyper-rigid proteins, and 7
proteins that were the subjects of extensive ligand screening. All of the
proteins in the test set had less than 55% sequence identity with pro-
teins in the training set (Supplementary Fig. 7, Supplementary Table 5).
In total, there were 563 residues that form cryptic pockets and 1283
residues that do not form cryptic pockets in our test set. Among apo
structures that form cryptic pockets, our model predicts a high like-
lihood of cryptic pocket formation at the experimental cryptic site
(Fig. 5A, Supplementary Fig. 7).We achieve robust performance across
several classes of cryptic pocket opening (Fig. 5C, Supplementary
Fig. 7, Supplementary Table 9). Conversely, our model predicts a low
probability of cryptic pocket formation for all the hyper-rigid proteins
and correctly assigns low predictions to regions that are unlikely to
form cryptic pockets from proteins with extensive ligand binding
(Fig. 5B, Supplementary Fig. 8). When we compared the performance
of our model against CryptoSite, we find that the two methods give
very similar performance, with PocketMiner providing a small advan-
tage (ROC-AUC: 0.87 for PocketMiner vs. 0.85 for CryptoSite). In par-
ticular, we find that PocketMiner predicts fewer false positives among
rigid proteins and sites that do not bind ligands, suggesting that
PocketMiner may be a more useful screening tool (Supplementary
Table 8). Moreover, we note that while CryptoSite must run simula-
tions that often take several hours to generate a prediction, ourmodel
makes predictions in under a second (>1000x improvement in pre-
diction time).

PocketMiner predicts thousands of cryptic pockets across the
human proteome
Given its ability to predict the locations of cryptic pockets accurately
and rapidly, PocketMiner can be used to search for cryptic pockets
across large numbers of protein structures. Thanks to decades of
effort in structural biology and the high accuracy of protein structure
prediction achieved by AlphaFold 219, there are proposed protein
structures for all genes in a standard humangenome.Wehypothesized
that PocketMiner could help uncover new opportunities for designing
drugs against human proteins that lack clear drug binding pockets in
their native, folded structures. Even in cases where there already exists
a clear binding pocket, PocketMiner may identify cryptic pockets
in other regions of the protein that could exert allosteric control over
the protein’s function or be used for the design of drugs with better
specificity.

To identify cryptic pockets across the human proteome, we
applied PocketMiner to over 10,000 human genes. For each gene, we
prioritized using high resolution, experimentally determined struc-
tures, but used the AlphaFold predicted structure as an alternative
when there were no available experimental structures. Finally, we
discarded structures that had long stretches of predicted disorder (see
Methods). We binned structures into three categories: proteins with
ground state pockets, proteins with cryptic pockets only, and proteins
which lack both. Each structure was binned based on calculating its
largest LIGSITE pocket volume and its highest PocketMiner prediction
(see Methods).

We find that several thousand proteins have predicted cryptic
pockets despite lacking pockets in their ground state structures (29.4%
of proteins in our set, Fig. 6A), expanding the fraction of proteins with
single structured domains that are likely to form pockets to over 80%.
A smaller number of single structured domain proteins lack both
ground state and cryptic pockets (18.5%) according toour analysis. The
large number of predicted cryptic pockets suggests that it may be
fruitful to run a drug screen on a protein even if there are no obvious
small molecule binding sites present in its native, folded structure.
Ideally, one would use PocketMiner on some group of proteins of
therapeutic interest, identify which ones are likely to have cryptic
pockets, then simulate the structural dynamics of that protein

A B

C D
Loop motion Secondary structure motion

Secondary structure change Interdomain motion

Fig. 4 | PocketMiner’s validation dataset contains diverse types of conforma-
tional changes that lead to cryptic pocket formation. Apo structures are shown
in gray, holo structures are shown in blue, and ligands are shown in magenta. The
red arrows highlight the main conformational change occurring between apo and
holo. A Cryptic pockets can arise as a result of loop motions like those seen in
dihydrofolate reductase (apo PDB: 2W9T74, holo PDB: 2W9S74); (B) secondary
structure element motions such as those seen in lipoprotein LpqN (apo PDB:
6E5D75, holo PDB: 6E5F75); (C) secondary structure changes like those observed in
calcium- and integrin-binding protein 1 (apo PDB: 1Y1A chain A76, holo PDB: 1Y1A
chain B); (D) or interdomain motions as in nopaline-binding periplasmic protein
(apo PDB: 4P0I77, holo PDB: 5OTA78). We refer to examples like those shown in
A–C as forward pockets because the residues adjacent to the ligand in the holo
structure are farther from one another than they are in the apo structure. We refer
to examples like that in D as reverse pockets because the residues adjacent to the
ligand in holo are closer together than they are in apo.
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to identify druggable structures that are adopted in its structural
ensemble. PocketMiner’s residue-level pocket site predictions could
inform the use of adaptive or enhanced sampling methods targeting
the region of a protein predicted to contain a cryptic pocket.

To demonstrate the utility of PocketMiner, we used it to help
identify cryptic pockets in proteins involved in the Jak/Stat pathway
implicated in several cancers37. First, we applied PocketMiner to all
proteins in the KEGG38 pathway called “Pathways in Cancer” (KEGG ID:
05200). We identified PIM2 as having a high cryptic pocket prediction.
PIM2 is a serine/threonine kinase proto-oncogene with a known
orthosteric ligand-binding site that has been the target of drug
screens39. PocketMiner predicts a cryptic pocket “above” the active site
that may be targeted for the design of more specific compounds
(Fig. 6D).We simulated PIM2 and found that a cryptic pocket does form
in the predicted region (Fig. 6E). Importantly, this pocket has not been
previously targeted by a small molecule, but the structures derived
from simulation could help lead a drug development campaign to do
so. Across theKEGGpathway, therewere several other proteins, such as
WNT2, which lackpockets in their ground state structuresbut havehigh
cryptic pocket predictions. PocketMiner predicts thatWNT2has cryptic
pockets, andour simulationsof this protein captured the formationof a
large pocket at the predicted site (Supplementary Fig. 9). Given that
WNT2 lacks any experimental structures, this suggests that applying
PocketMiner to AlphaFold structures is a viable strategy for expanding
the set of druggable proteins.

Discussion
We have introduced PocketMiner, a graph neural network for pre-
dicting sites of cryptic pockets from folded protein structures. Pre-
vious work demonstrated that ligand-binding cryptic pockets could be
predicted with reasonable accuracy by training a machine learning
algorithm on known examples in the PDB21. One drawback of the
previous approach is that the prediction is slow to compute since it
requires molecular simulations to be computed as an input feature to
the algorithm. We hypothesized that we could develop a faster and
more accurate algorithm by training a machine learning algorithm on
simulation data containing pocket opening events rather than on
proteins that are known to have ligand-binding cryptic sites. To test
this hypothesis, we trained PocketMiner to predict which residues will
formpockets over 2,400 simulations across 35 proteins. This approach
led to a model with improved performance (ROC-AUC 0.87 vs. 0.85)
and speed (>1000-fold speedup) when compared to CryptoSite after
being evaluated against a ground truth set of examples where an
experimental structure exists with a ligand bound in a cryptic pocket.

The current work strengthens the case for using molecular
dynamics simulations to identify cryptic pockets. Several studies
have detailed the discovery of cryptic pockets using molecular
simulation11–16. In this work, we systematically evaluated how well
cryptic pockets are identified by simulation across a large set of known
cryptic pockets. To our surprise, we found that most known ligand-
binding cryptic pockets canbe identifiedwith just400nsof aggregate,

Apo

Aligned
Ligand

HoloA

C D

B

Cryptic pocket likelihood
0 1

Highly
rigid
helical
bundle

Fig. 5 | The PocketMiner graph neural network accurately detects sites of
cryptic pocket formation in experimental structures. A PocketMiner predicts a
high likelihood of cryptic pocket formation at the site of ligand binding. The ligand
(cyan) from the aligned holo structure is shown on the apo structure to highlight
the steric clash between the ligand and a loop that must move to create the holo
binding site. Though PocketMiner only uses the apo structure to generate a pre-
diction (blue indicates low probabilities of cryptic pocket formation while red
indicates high probabilities), the predicted labels are also shown on the holo

structure to highlight that those high predicted labels cluster near the ligand
binding site. B PocketMiner correctly predicts that the probability of pocket for-
mation is low for a highly rigid helical bundle (PDB: 4TQL79) that did not form large
cryptic pockets in simulation. C Receiver Operating Curve for residue-level cryptic
site detection shows that PocketMiner achieves a better performance than Cryp-
toSite despite running >1000x faster. D A precision-recall curve highlights that at
high levels of recall (0.6–0.8) PocketMiner predicts fewer false positives. Source
data are provided as a Source Data file.
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unbiased simulation (Fig. 2). Notably, the simulations accurately
identify known ligand-binding cryptic pockets without numerous false
positives (Supplementary Table 6, Supplementary Fig. 2). Where
PocketMiner can be used to identify if a protein has a cryptic pocket,
simulations can then be used to sample structural configurations with
the pocket open, which enables structure-based drug design. Given
that this usually requires only a modest ~400ns of sampling, this
process should be accessible to a wide variety of researchers.

To demonstrate the utility of PocketMinerwe applied it across the
human genome to identify new cryptic pockets in human proteins. We
find over half of the proteins thought to lack pockets are predicted to
harbor a cryptic pocket that could render them druggable. Therefore,
proteins without obvious pockets in their folded structure should not
be overlooked as drug targets. To this point, we highlight WNT2, a
protein in the Jak/Stat signaling pathway that plays a crucial role in
tumorigenesis, lacks an obvious pocket in its folded structure, and is
predicted to form a cryptic pocket. Additionally, PocketMiner predicts
a cryptic pocket in PIM2, a kinase implicated in multiple cancers. In
both cases, we used molecular dynamics simulations to verify that
those cryptic pockets form (Fig. 6, Supplementary Fig. 9).

With our results indicating that PocketMiner can identify sites of
cryptic pocket formation and that simulations can sample open
structural states, we propose a pipeline for systematically targeting
cryptic pockets. Given a set of proteins implicated in a disease (e.g.,
SARS-Cov-2 proteome), first apply PocketMiner to these proteins to
learn which targets are likely to form cryptic pockets. Then, run MD
simulations of those proteins with high PocketMiner scores to sample
open structural states. One could even use adaptive sampling to pre-
ferentially sample opening events at the site(s) of predicted pockets.
These states can be used as templates for structure-based drug design
(e.g., molecular docking) to find small molecules that bind at the
cryptic pocket. Finally, these hits can be validated with experimentally
determined structures or binding assays. Thus, PocketMiner has the
potential to become a valuable tool for drug discovery.

Methods
Molecular dynamics simulations
System preparation. The structures of protein chains selected for
simulation were downloaded from RCSB PDB40. Structures were

loaded into PyMOL41 and only the protein chain was saved to generate
the simulation input structure. Unresolved internal loops were mod-
eled using SWISS-MODEL42, with the available crystal structure as a
template and the FASTA sequence from the same RCSB PDB entry as
the target sequence. Unresolved terminal regions were not modeled.

The structures of protein chains selected for simulation were
downloaded from RCSB PDB40. Structures were loaded into PyMOL41

and only the polypeptide chain was saved to generate the simulation
input structure. Unresolved internal loops weremodeled using SWISS-
MODEL42, with the available crystal structure as a template and the
FASTA sequence from the same RCSB PDB entry as the target
sequence. Unresolved terminal regions were not modeled.

GROMACS (Gromacs 2020.1)43 wasused to prepare all simulations
included in this study. The protein topology was prepared with
Amber0344. Virtual sites45 were used to allow for a 4 fs timestep during
production MD. It was solvated in a rhombic dodecahedral box of
TIP3P water46 with a minimum distance of 1 nm between the protein
and the edges of the box. Na+ andCl− ions were added to neutralize the
net charge of the system and achieve a salt concentration of
0.1mol/liter.

The protein’s potential energy was minimized using the steepest
descents algorithm with an initial step size of 0.01 nm. Minimization
ran until the maximum force fell below 100 kJ/(mol * nm) or for
500 steps.

The protein was equilibrated for 0.1 ns with a 2 fs time step. All
bonds were constrained using the LINCS algorithm47. The neighbor list
used a Verlet cutoff scheme and a 1.1 nm cutoff radius. A cutoff of
0.9 nm was used for Coulomb and van der Waals interactions. Long-
range interactions were treated using the particle mesh Ewald
method48 with a Fourier spacing of 0.12 nm. The velocity-rescaling
thermostat49 was used with the temperature set to 300K.

Molecular dynamics simulations. GROMACS (Gromacs 2020.1 and
Gromacs 2021.2) was used to simulate all proteins in this study. A 4 fs
timestep was used. The leap-frog algorithm was used for integrating
Newton’s equations of motion. All covalent bonds involving hydrogen
were constrained using LINCS47. A cutoff of 0.9 nm was used for
Coulomb and vanderWaals interactions. Long range interactionswere
treated using the particle mesh Ewaldmethod48 with a Fourier spacing

Fig. 6 | Applying PocketMiner across the human proteome reveals thousands
of cryptic pockets. A Though nearly half of proteins lack a pocket in their native,
folded state, the majority of these proteins are predicted to have a cryptic pocket.
Pie chart shows the number of human proteins containing pockets in their native
structures in wheat; proteins that lack pockets in their native structures but are
likely to form cryptic pocket(s) in red; and proteins that lack both ground state and
cryptic pockets in gray. B Schematic showing proteins involved in the cancer-

related Jak/Stat signaling pathway. C The crystal structure of the PIM2 kinase con-
tains an orthosteric binding site but does not reveal any allosteric pockets.
D PocketMiner predicts a cryptic pocket at an allosteric site. E Simulations reca-
pitulate a cryptic pocket predicted by PocketMiner. In simulations, a loop peels
back to reveal a cryptic pocket (shown in cyan) at the site pinpointed by Pock-
etMiner. The simulated PIM2 structurewith a cryptic pocket (orange) is overlaid on
the apo PIM2 structure (gray).
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of 0.12 nm. The velocity-rescaling thermostat49 was used to maintain
the system at 310K and the Parinello-Rahman barostat50 was used to
maintain the system at 1 bar of pressure.

Adaptive sampling protocols. Adaptive sampling simulations were
performed using the FAST algorithm26. FAST takes a single starting
structure and an order parameter and uses multiple rounds of parallel
unbiased molecular dynamics simulations to search for conformations
thatmaximizeorminimize theorderparameter. Thefirst roundof FAST
consists of n parallel trajectories started from a single structure. At the
end of each round of FAST, the simulation trajectory frames from all
FAST trajectories run thus far are clustered by RMSD and the cluster
centers are rankedby theorder parameter. The topn cluster centers are
then used to start n parallel trajectories for the next round of FAST.

The equilibrated crystal structure of each protein was used as the
FAST starting structure in this study. As our ability to generate accu-
rate training labels from simulation depended on the ability of our
simulations to sample cryptic pocket opening andwe needed an order
parameter not dependent on a priori knowledgeof pocket location,we
used total LIGSITE30 pocket volume as our order parameter. We clus-
tered using the k-centers algorithm and RMSD between all backbone
α-carbons as a distance metric. For each simulation, we determined a
cluster radius that resulted in 100–300 clusters and used this same
cluster radius for additional rounds of adaptive sampling. We per-
formed either 3, 5, or 7 rounds of adaptive sampling depending on the
simulation. For a full list of simulations that were conducted as part of
this study, please reference Supplementary Table 4. This study also
used pre-existing FAST simulation data from multiple sources, not all
of which had used the same FAST parameters5,12.

Network architectures
Geometric vector perceptron-based graph neural networks (GVP-
GNNs). The PocketMiner is an equivariant graph neural network
derived fromprevious work done by Jing et. al31. This geometric vector
perceptron-based graph neural network (GVP-GNN) was originally
designed to learn protein-level representations. In our work, we adapt
this model to learn residue-level representations so we can infer each
residue’s probability of participating in a cryptic pocket.

The GVP-GNN learns a representation of a residue’s chemical and
topological environment through an information exchange between
neighboring residues. Specifically, the input to the network includes
node features, which describe a residue’s properties, and edge fea-
tures, which describe relationships between residues. The node fea-
tures include the following:

• Scalar features {sin, cos} ◦ {φ, ψ, ω}, where φ, ψ, ω are the
dihedral angles computed from Ci−1, Ni, Cαi, Ci, and Ni+1.

• The unit vector in the imputed direction of Cβi −Cαi. This is
computed by assuming tetrahedral geometry and normalizing.

• Forward and reverse unit vectors.
• A one-hot representation of amino acid identity.

The edge features, which are computed for the nearest 30
neighbors of a residue of interest, include the following:

• The unit vector in the direction of Cαj −Cαi.
• The encoding of the distance | |Cαj −Cαi | |2 in terms of Gaussian

radial basis functions.
• A sinusoidal encoding of j − i, representing distance along the

backbone31.

Here, we will present an illustrative description of how the net-
work exchanges information between neighboring residues to learn a
representation for a residue. We refer the reader to the original
work for a mathematically precise description. During each graph
propagation step, residue i’s representation is updated based on the
properties of its 30 nearest neighbors and the spatial and sequence

relationship between residue i and each of those neighbors. The
neighbor’s node features and the edge features between residue i and
the neighbor are concatenated such that for a single residue i, the
network receives 30 vectors. The network transforms these vectors
through a “geometric vector perceptron” (see original paper) and then
takes the average of the 30 output vectors and adds that to a repre-
sentation of residue i’s self, based on its node features, to get an
updated representation of residue i. Simultaneously, this happens for
all residues in the protein. Residue i (and all others) go through this
update procedure n times. The consequence of the iterative updates is
that residue i’s representation is implicitly affected by its neighbor’s
neighbors (and so on) because residue i’s representation is computed
based on its neighbors’ representations, which are in turn affected by
their own neighbors. Ultimately, each residue gets its own repre-
sentation that accounts for the topology and chemical environment
across the whole protein.

We trained GVP-GNN models using the architecture described
above with the following hyperparameters:

• Structural feature node dimensions: 8 vector dimensions,
50 scalar dimensions.

• Structural feature edge dimensions: 1 vector dimension, 32 sca-
lar dimensions.

• GVP hidden dimensions: 16 vector dimensions, 100 scalar
dimensions.

• Encoding layers: 4.
• Neighbor list for graph propagation: 30.
• Dropout rate: 0.1.

With minor exceptions, these hyperparameters match those used
in the Model Quality Assessment Model in Jing et. al. We tuned these
hyperparameters using the optuna software package51 but found little
sensitivity to the choice of these hyperparameters (Supplementary
Table 2, see “Model Training – Task 1” for detailed information about
hyperparameter selection).

3D convolutional neural networks (3D-CNNs). We also tested the
ability of a 3D convolutional neural network to predict pocket volume
changes in simulations based on starting structures (task 1 in Supple-
mentary Fig. 1). The 3D CNN model we trained is similar to previous
models32, with three 3D convolutional layers with filters of size 3 × 3 × 3
and the following numbers of filters for each of the three layers: 32, 64
128. Each convolutional layer is followed by a max pooling layer and a
drop-out layerwith dropout probability of0.7 (“Model Training –Task
1” for detailed information about hyperparameter selection). The last
layer is a fully connected layer of size 128 × 2.

The 3D CNN model takes a 3D input with four different channels,
withonechannelper atomtype for carbon, oxygen, sulfur, andnitrogen
atoms52. Given an input protein, first a 3D grid with points 10Å apart is
placed over it with the origin being set to the minimum Cartesian x, y
and z coordinates of the structure. Next, every residue in the input
structure is assigned to the grid point that is closest to any atom that
belongs to it. A 20Å × 20Å× 20Å cube is then defined around the Cβ
atom and the cube is oriented such that the plane formed by the N-CA
and theC-CAbonds forms the x–yplane and the orthogonal orientation
with which the CA- Cβ bond has a positive dot product serves as the
positive z-axis. The cube is further divided into 1 Å 3D voxels, within
which the presence of the four atom types C, O, N, S is indicated (count
of 1 for presence, 0 for absence) to produce the resultant 4 channel 3D
grid. Gaussian filters are applied to the discrete counts to approximate
atomconnectivity and electron delocalization. See fig. S10 for the result
of the featurizationona structure fromanMDtrajectory for the SARS-2-
nsp5 monomer protein showing the 3D input for residue 51.

GVP-GNN and 3D-CNN model training and evaluation (task 1)
We trained two different architectures for the purpose of predicting
pocket volumechanges in simulation using starting structures (Task 1).
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Data featurization. We trained with protein structures from MD
simulations with each residue assigned a label depending on whether
pockets formed near that residue in the next 40 ns of simulation.
Specifically, we calculated pockets using the LIGSITE pocket detection
algorithm30, mapped pockets to residues, and determined the differ-
ence for each residue between its assigned pocket volume in the
starting structure and themaximum pocket volume for that residue in
the simulation. For the LIGSITE calculation implemented in enspara53,
we used amin rank of 7, a grid spacing of 0.7 Å, a probe radius of 1.4 Å,
and aminimum cluster size of 3 grid points. To assign pocket volumes
to residues, we calculated how many LIGSITE pocket grid points were
within 5 Å of each residue. We labeled each residue as a positive
example if at some point in the MD simulation (our trajectories were
saved out at a rate of 20 ps and we performed computations on every
frame) its assigned pocket volume increases by 40 A3 relative to its
volume in the starting structure.

Model evaluation. We evaluated the performance of GVP-GNNs and
3D-CNNs at predicting the pocket volume changes in simulation based
on starting structures using 5-fold cross-validation. We generated 5
folds based on their CAT codes and limited the overlap between folds
such that there was no overlap at the level of topology except for the
very common 3.40.50 code, which appears 1–3 times in every fold. We
performed 5 independentmodel evaluations using 3 folds for training,
1 fold for validation (i.e., to select amodel between training epochs and
decide which hyperparameters to select), and 1 fold for testing. For
each split, separate models were selected for final testing on the held-
out test set based on their PR-AUCs on the validation set.

GVP-GNNtraining. To optimize theperformance of theGVP-GNN,we
first assessed how different GVP network hyperparameters (i.e.,
dropout rate and hidden scalar dimension) and learning rate affected
performance for a single validation fold. These results are provided
in Supplementary Table 2. We found that a low learning rate was
associated with improved performance as assessed by PR-AUC.
However, the other hyperparameters did not have a substantial effect
on GVP-GNN performance in the ranges of interest. As a result, we
used the same network hyperparameters as reported in the original
GVP paper.

To select an optimal class balancing scheme and batch size, we
calculated a PR-AUC separately for each designated validation set for
each of the 5 dataset splits. To address the class imbalance between
positive and negative residues, we trained models with oversampling
of the positive class, undersampling of the negative class, loss
weighting, and drawing of balanced 160-residue batches through both
undersampling and oversampling. We also trained with and without
examples with intermediate values (i.e., residues with pocket volume
differences between 10 A3and 40 A3). To evaluate the relationship
between model performance and batch size, we trained with protein-
sized batches, 32-residue-sized batches, and 4-residue-sized-batches.
We find that model performance was generally better when we used
smaller batch sizes but was not significantly affected by the choice of
class balancing schemes or inclusion of intermediate examples (Sup-
plementary Table 3). For each split, we selected the GVP-GNN model
with the best performance on the validation set (Supplementary
Table 3) and report its test set performance (Supplementary Table 1).

All GVP-GNN models were trained on AMD Radeon Vega 20
GPU nodes.

3D CNN training. To optimize the performance of the 3D-CNN, we
initially compared dropout rates (0.1, 0.3, 0.5, 0.7, 0.9) and learning-
rate (1e-2, 1e-3, 1e-4, 1e-5) on a single validation fold and picked the one
with the best validation performance (Supplementary Table 4). These
values were then kept fixed for the rest of the experiments. Then, for
each fold, we did a grid search across the following hyperparameters

and ranges: batch-size (1, 32, 64, 128) and class balancing schemes
(None, skew of 1:2, skew of 1:1). Batch size and class-skew both affected
model performance and the best hyperparameter set was selected
based on a validation fold (Supplementary Table 4). Fig. S11 shows
convergence in the Precision-Recall AUC for a 3D CNN model. Finally,
for each split, we took the 3D-CNN model with the best performance
on a validation set and report its performance on the corresponding
test set (Supplementary Table 1).

Assembly of a novel set of cryptic pockets
We used the steps described below to assemble a novel set of proteins
containing cryptic pockets with solved apo and holo structures. The
cryptic pockets in this set have, inmany if not all cases, been identified
individually by the authors of their respective crystal structures. but
have not to our knowledge previously been systematically assembled
into one cryptic pocket dataset.
1. We BLAST searched54,55 the amino acid sequence of every struc-

ture in the Binding MOAD ligand binding database (MOAD)56

against the set of RCSB PDB structures not inMOAD.We removed
hits with amino acid sequence identity below 90% (The 90%
threshold at this stage was present for programmatic reasons and
to ensure inclusion of selenomethionine and selenocysteine mis-
matches, and subsequent filtering steps ensured that protein
structures with 100% sequence identity were ultimately used). We
selected each MOAD structure with at least one remaining BLAST
hit (other than itself) as a holo candidate and selected each PDB
BLAST hit as an apo candidate.

2. We removed each candidate structure which did not have at least
2.5 Å resolution. This criterion removedNMR structures, which do
not have resolutions reported in PDB files. We also excluded
multi-conformer X-ray structures (not to be confused with
structures which have only a few residues modelled in multiple
conformations).

3. We removed each candidate structure which did not have a
monomeric biological unit assigned in remark 350 of the PDB file.
The author-assigned biological unit was usedwhere available, and
the software-assigned biological unit was used elsewhere.

4. Weprocessed each chain of each candidate structure individually,
removing the following chains:
a. We removed chains with gaps longer than 3 residues.
b. We removed chains with alphabetic residue insertion

codes (e.g., 35 A).
c. We treated holo candidate chains without biologically relevant

ligands as apo candidate chains for the remainder of the
analysis. Suchchains occurredwhen only someof the chains
in the holo candidate crystal structure had occupied
binding sites.

d. We removed holo candidate chains in which the holo ligand
was a polymer.

5. We removed chains with non-canonical residues, except for those
containing selenocysteine and selenomethionine, which were
treated as cysteine and methionine respectively.

6. We removed apo candidate structures with less than 100%
sequence identity to their respective holo candidate structures,
except for mismatches between selenocysteine and cysteine and
selenomethionine and methionine (see above). This step did not
check for differences between unresolved terminal residues,
which can result from variation in the placement of histidine tags.
As this stepdidnot use a sequencealignmentbut instead reliedon
matching PDB residue numbers, it may have excluded some
structures with mismatched PDB residue numbering.

7. We removed apo candidate structures with ligands (excluding
water, heavywater, sodium, chloride, andpotassium)within 5 Åof
all MOAD-assigned biologically relevant residues in the holo
candidate structure (aligned by all-residue Cα RMSD).
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8. We selected the apo structure with the lowest all-atom Cα RMSD
to its holo structure for further analysis.

9. We defined the cryptic ligands and ligand-lining residues as
follows:
a. Cryptic ligands are the holo ligands with ligand-free apo

binding sites, plus any associated ions within 3.5 Åwhich are
absent from apo (i.e., when ADP and Mg2+ bind together,
both are treated as cryptic ligands even though Mg2+ alone
would not be considered a valid cryptic ligand in a holo
candidate structure).

b. Ligand-lining residues are residues with any heavy atomwithin
5 Å of any heavy atom of a cryptic ligand.

10. We ranked and manually filtered the apo-holo candidate pairs as
follows:
a. We ranked all apo-holo pairs in descending order of all-residue

Cα RMSD and manually inspected the top 220 proteins*
(reaching anRMSDof 0.085 nm). The lowest-ranked protein
to survive subsequent rounds of filtering was the 142nd
protein on the list (apo PDB ID 6YPK), with an RMSD of
0.124nm.

b. We calculated the mean distance between heavy atoms of
ligand-lining residues and the apo-holo heavy-atom RMSD
of these residues. We sorted the structures in which the
ligand-lining residues were closer together in the apo
structure than in the holo structure in order of descending
RMSD andmanually filtered the top 121* (reaching an RMSD
of 0.038 nm). The lowest-ranked protein to survive subse-
quent rounds of filtering was the 86th protein on the list
(apo PDB ID 4w51), with an RMSD of 0.123 nm.

c. *The minimum RMSDs and numbers of proteins to filter
manually were determined manually in the course of filter-
ing rather than being derived a priori. We stopped filtering
proteins onceweconcluded thatwewere encountering only
marginal cryptic pocket examples.

11. We removed the following classes of proteins in the course of
manual filtering:
a. monomeric truncation mutants of proteins which oligomerize

in their complete forms.
b. proteins with covalently conjugated holo ligands.
c. proteins with gaps longer than three residues in the resolved

structures which had escaped automatic filtering due to
anomalies in protein numbering and/or remark 465 of the
PDB file.

12. To ensure that our dataset did not contain redundant examples,
we calculated the pairwise sequence identities of the proteins
selected during manual filtering. Sequence identities were calcu-
lated from alignments generated by BioPython57 using the
BLOSUM62 scoringmatrix (the same one used by protein BLAST).
We removed the protein with the lower cryptic site RMSD when
the sequence identity of a pair of proteins exceeds 40%.

13. We removed proteins with sequence identity to a CryptoSite21,
SARS-CoV-2, or ‘brick’ protein exceeding 40%, except for those
listed in the sequence_identity tab of the attached SI spreadsheet,
which had very poor structural homologies. See fig. S7 and Sup-
plementary Table 5 for examples of such alignments.

14. To ensure that pockets were larger in the holo structure than the
apo structure, we removed any apo-holo pairs in which the LIG-
SITE pocket volume assigned to the ligand-lining residues in apo
(see “Data Featurization” above) was greater than the volume
assigned to them in holo by at least 20Å3. As LIGSITE calculates
solvent accessible volume rather than van der Waals volume, and
volume alone does not indicate steric compatibility, this thresh-
old could not easily be chosen by reference to the volumes of
common small molecules. The threshold was therefore assigned
manually.

15. Unresolved internal loops were modeled using SWISS-MODEL42,
with the available crystal structure as a template and the FASTA
sequence from the same RCSB PDB entry as the target sequence.
Unresolved terminal regions were not modeled.

Identification of residues unlikely to form cryptic pockets
Proteins extensively crystallized with ligands. Having reliable
examples of protein residues which do not form cryptic pockets is
important for measuring the specificity of cryptic pocket prediction
methods. However, identifying such residues is difficult because the
existence of any single structure in which certain residues do not line
cryptic pockets does not prove that those residues would notmove to
form cryptic pockets in the presence of other ligands. Given the
immense size of both chemical space and protein configuration space,
it is not possible to conclusively determine that a given protein residue
would never form part of a cryptic pocket capable of binding small
molecules. However, one can obtain a degree of confidence by using
residues in well-studied proteins with many solved holo structures
which never bind ligands as negative examples. Additional confidence
in the stability of these residues can be gained by including holo
structures of closely related mutants. We collected a set of these
residues as described below:
1. We clustered all of the proteins in MOAD to 90% sequence iden-

tity using the USEARCH algorithm58 and ranked the resulting
clusters in order of descending size.

2. WeBLAST searched the centroidof eachUSEARCHcluster against
the PDB and collected results with sequence identity exceeding
90% and high BLAST scores (ensuring high coverage). The latter
criterion eliminated chance and fragmentary alignments which
did not represent the complete protein structure. The results
included the contents of the USEARCH cluster plus additional
structures not in MOAD. Structures containing multiple different
sequences were excluded as they are typically hetero-multimeric
complexes not consistent with this work’s focus on monomeric
proteins.

3. We aligned all the sequences of structures in the BLAST output in
a multiple sequence alignment (MSA)59.

4. For each structure in the BLAST results which was in MOAD, we
identified all residues within 5 Å of any ligand identified as biolo-
gically relevant (‘valid’) by MOAD. These residues were projected
onto the USEARCH cluster centroid using the MSA. The use of
MOAD-identified compounds excluded small hydrophilic mole-
cules such as DMSO, glycerol, and ethylene glycol which are
miscible in water and are often added as cryoprotectants, as well
as small ions. Such substances, when they are present in crystal
structures, may sit at any point on the protein surface and are
unlikely to occupy larger pockets in the hydrophobic interior of
the protein.

5. The residues of the USEARCH cluster centroid which were not
found within 5 Å of any valid MOAD ligand were taken as candi-
date negative examples.

6. As this study focuses on predicting cryptic pockets in monomeric
proteins, we removed clusters which did not have more than 50%
of the structures labeled asmonomeric. The oligomerization state
of each PDB BLAST hit was determined from remark 350 of the
PDB file, using the author-assigned state if available and the
software-assigned state otherwise.

7. Clusterswere rankedby the number of uniqueMOAD ligands they
contained.

8. The top 12 remaining clusters and lysozyme,which ranked 22nd in
number of uniqueMOAD ligands but has been extensively studied
and is known to be relatively thermostable, were selected for
further analysis.

9. Clusterswith centroidshavingmore than40%sequence identity to
proteins in the training setwere removed, eliminating twoclusters.
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10. For each of the remaining clusters, the apo structures identified
from the PDB BLAST were ranked by their sequence homology to
the consensus sequence for that USEARCH cluster, and the apo
structure with the greatest homology was selected for use in the
simulations described below. In some cases, holo structures not
indexed in MOAD were eliminated to identify a suitable apo
structure.

Highly stable and/or highly rigid proteins. To identify additional
examples of residues which are unlikely to form cryptic pockets, we
searched for proteinswhich hadpreviously been studied as examples
of extremely stable and/or rigid proteins. These proteins have been
characterized by methods such as nuclear magnetic resonance
(NMR) and circular dichroism (CD) spectroscopy which do not rely
on sampling the chemical space of possible cryptic ligands. NMR
measurements suggest that ubiquitin, the third IGG binding domain
from streptococcal protein G, and flavodoxin (PDB IDs 4HJK, 1IGD,
and 1OFV respectively) have minimal internal motion60–62. γ-B Crys-
tallin (PDB ID 1AMM) is believed to have a highly rigid structure based
on tryptophan fluorescence measurements of a γ-D crystallin with
which it shares its fold and all four relevant tryptophan residues63.
Hydrogen deuterium exchange (HDX) experiments demonstrate
extremely slow solvent exposure of internal residues of alpha-lytic
protease (PDB ID 2ALP), severely restricting the set of residues which
could possibly form pockets on biologically relevant timescales64.
Crambin, a designed three helix bundle, Top7, and a designed TIM
barrel (PDB IDs 2FD7, 4TQL, 1QYS, and 5BVL respectively) lacked
observables providing similarly direct evidence of ground state
rigidity and were chosen on the basis of thermodynamic stability
on the assumption that many such proteins would also have
deep ground state energy wells which would disfavor cryptic pocket
formation. Crambin was characterized by thermal denaturation
measured by 1H-NMR65, while the other three were characterized
by thermal and chemical denaturation measured by CD
spectroscopy66–68 (slow unfolding kinetics were reported for the
designed three-helix bundle well). However, as CD spectroscopy
itself only measures secondary structure content, such assays do not
rule out the formation of cryptic pockets involving other types of
protein motion at temperatures well below the melting point. Six of
the above proteins are naturally occurring, and the other three (the
three-helix bundle, Top7, and the TIM barrel) are engineered pro-
teins, one of which (Top7) has a novel fold. Two of the natural pro-
teins (alpha-lytic protease and flavodoxin) possess non-cryptic
ligand-binding pockets while the remainder are believed to lack
pockets. The residues within 5 Å of those ligands were not used as
negatives, while all other residues of the resulting 9 proteins were
taken as candidate negative examples. To build further confidence in
negative labels, we also conducted simulations of these proteins and
tracked cryptic pocket opening in those simulations.

Simulations. Molecular dynamics simulations were performed to
search for additional cryptic pockets not yet identified experimen-
tally and to ensure a high degree of confidence in the negative labels.
We ran simulations of the 9 hyper-rigid proteins and the 10 exem-
plars of proteins with extensive holo crystal structures. Candidate
negative residues adjacent to pockets which formed in simulation
were eliminated. Specifically, we eliminated any residues that had an
assigned LIGSITE pocket volume greater than 20 A3. This threshold
was determined by finding the residue-level LIGSITE pocket volumes
in 13 holo structures from the CryptoSite dataset and selecting a
value at the 10th percentile of the distribution. The remaining nega-
tive residues that both (a) do not bind any ligands in extensive holo
crystal structures and (b) were not adjacent to a cryptic pocket in
simulation were used as negative true labels in the validation and
test sets.

PocketMiner training and evaluation (Task 2)
PocketMiner was trained with simulation data to predict ligand-
binding cryptic pockets in experimental structures (Task 2).

Data featurization. Like in the previous prediction task, we trained
with protein structures from MD simulations with each residue
assigned a label depending onwhether pockets formed at that residue
in the next 40 ns of simulation. Because there are multiple ways to
calculate pockets and assign them to nearby residues, we trained with
several labeling schemes. We used the LIGSITE pocket detection
algorithm with the hyperparameters described above as well as the
fpocket detection tool with default parameters35. We assigned LIGSITE
volumes to nearby residues in two different ways: (1) by assigning all
pocket grid points within 5 Å of each residue and (2) assigning each
pocket grid point to the nearest residue.

The fpocket algorithm identifies cavities in theprotein. Eachpocket
is a composite of both alpha spheres and the associated residues within
that pocket. The fpocket algorithm implements a ranking function to
estimate the druggability of the concavities in a protein. To generate
residue-level labels, we iterated through all pockets in the protein and
assigned each residue either themaximum score of its nearby pocket(s)
or a value of 0 if the residue did not participate in a pocket.

Next, we found the maximum increase in residue-level pocket
volumes or druggability scores over the course of the 40 ns simulation
(for fpocket druggability scores, we also trained with labels based on
the maximum drug score in the simulation rather than the maximum
increase). To find the maximum increase over a 40 ns window, we
determinedpocket volumes forevery structure spaced20 ps apart and
fpocket druggability scores for every structure spaced 100ps apart.
Finally, we binarized the assigned LIGSITE pocket volumes at different
thresholds that were determined based on an analysis of pocket for-
mation at known cryptic sites (e.g., 20, 30, and 40 A3 for the first
assignment procedure). Fpocket druggability scores were not binar-
ized since they are already between 0 and 1.

GVP-GNN training. We trained with the same hyperparameters as
described in the Methods section entitled “GVP-GNN and 3D-CNN
Model Training andEvaluation”onAMDRadeonVega 20nodes.Models
trained with different residue labels (LIGSITE pocket volume changes
across different binarization thresholds vs. fpocket druggability scores),
batch sizes (1 protein batches vs. 4 residue batches), and class balancing
schemes (no balancing vs. constant size balanceddraws of 640 residues
vs. undersampling negatives) were compared using a validation set of
experimental structures including hyper rigid proteins, proteins with
extensive ligand-bound crystal structures, and examples of cryptic
pockets. We found that a model trained for 20 epochs with LIGSITE-
derived labels and refined for 1 epoch with labels derived from fpocket
druggability scores had the best validation AUC among GVP-GNNs that
we trained.Thismodel, dubbedPocketMiner,was trainedwith4 residue
batches where labels were based on finding the difference in LIGSITE
pocket volumes assigned by mapping each pocket grid point to its
nearest residue in the first phase of training. Residue labels were
binarizedusing a thresholdof 20A3. In the secondphaseof training, the
same residues were relabeled using the maximum fpocket druggability
score assigned to each residue based on a 3 A cutoff.

Model evaluation. Following the selection of a single model, we
evaluated the performance of PocketMiner using a held-out test set.
This test set included 24 apo structures with ligand-binding cryptic
pockets, 4 hyper-rigid proteins, and 7 proteins that were the subjects
of extensive ligand screening (see Methods section entitled “Identifi-
cation of non-cryptic-pocket-forming residues from extensively crys-
tallized proteins and hyper-rigid proteins”). None of the protein
structures in our test set hadmore than 60% sequence similarity to our
training proteins, but the proteins with >40% sequence identity had
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very poor structural homology (Supplementary Fig. 7, Supplementary
Table 5).

Applying PocketMiner to the human proteome
To obtain a protein for each gene in the human genome, we used the
UNIPROT human reference proteome (UP000005640)69. For each
protein, we checked the Protein Data Bank for an experimentally
determined structure that is monomeric, has resolution <2.5 Å, and is
between 50 and 1000 amino acid residues in length. If there wasmore
than one such entry, we chose the longest version of the protein. If
there was no experimentally determined structure, we used the
AlphaFold predicted structure19. We only used the AlphaFold pre-
dicted structure if it had no stretches of more than 25 residues with a
low confidence prediction (i.e., <70 pLDDT confidence score),
excluding the N- and C- terminal segments of the protein.We chopped
low confidence N- and C-terminal segments from the protein structure
because our validation and test sets did not contain disordered
structural elements. In the case of extremely large proteins, AlphaFold
breaks the prediction into fragments. We only considered the first (N-
terminal) fragment for these proteins.

We classified the remaining 10,806 structures into one of three
categories: those proteins containing “ground state pockets”; those
proteins containing “cryptic pockets” only; and proteins with neither
ground state nor cryptic pockets (“no pocket” in Fig. 6). For each
structure, we calculated PocketMiner’s prediction across all residues
and calculated the size of the largest pocket in the structure using
the enspara implementation of the LIGSITE algorithm. For LIGSITE, we
used a min rank of 7 and a minimum cluster size of 3 grid points. We
consideredproteins to have a “ground state pocket” if they contained a
LIGSITE pocket with volume over 30Å3 (Fig. 6). We then determined if
all the remaining proteins formed cryptic pockets using PocketMiner’s
predictions. Specifically, we looped over all residues in the protein and
took the average of that residue’s prediction and its 10 neighboring
residues to define a cryptic pocket hotspot. If a protein had a hotspot
with a score over 0.7, we considered it to have a cryptic pocket. This
threshold was based on applying this score to the proteins in our test
set where proteins with ligand-binding cryptic pockets were con-
sidered positive examples and hyper rigid proteins were considered
negative examples. At a threshold of 0.7, we achieve an accuracy of
0.90with 3/4 negative examples correctly identified and 21/24 positive
examples correctly identified.

Finally, we manually inspected a random sampling of proteins in
the KEGG pathway “Pathways in Cancer”38. During this manual
inspection, we identified proteins (PIM2 and WNT2) with high Pock-
etMiner predictions on regions of the protein that lacked a pocket.
Then, we simulated PIM2 and WNT2 using the same procedure as all
other simulations described. We then analyzed the simulations for
pocket opening using LIGSITE as described above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within this
study, the code repository, and the supplementary information files or
available on request. The dataset of cryptic pockets thatwas generated
as part of this work can be found in the Supplementary Data 1. The
following PDB codeswere used in the figures: 1JWP, 1PZO, 1MY0, 1N0T,
2W9T, 2W9S, 6E5D, 6E5F, 1Y1A, 4P0I, 5OTA, 4TQL. Source data are
provided with this paper.

Code availability
The PocketMiner web interface is available at https://pocketminer.
azurewebsites.net/. The PocketMiner codebase is freely available on

Github (https://github.com/Mickdub/gvp/tree/pocket_pred) and
Zenodo70. Code implementing the 3D-CNN in PyTorch as well as
checkpoint files containing the best 3D-CNN model for each task 1
dataset split are available at https://github.com/meghana-kshirsagar/
3DCNN_protein_structures/tree/main/models.

References
1. Amaro, R. E.Will the real cryptic pocket please standOut?Biophy. J.

https://doi.org/10.1016/j.bpj.2019.01.018 (2019).
2. Knoverek, C. R., Amarasinghe, G. K. & Bowman, G. R. Advanced

methods for accessing protein shape-shifting present new ther-
apeutic opportunities. Trends Biochem. Sci. https://doi.org/10.
1016/j.tibs.2018.11.007 (2019).

3. Schames, J. R. et al. Discovery of a novel binding trench in HIV
integrase. J. Med. Chem. https://doi.org/10.1021/jm0341913 (2004).

4. Horn, J. R. & Shoichet, B. K. Allosteric inhibition through core dis-
ruption. J. Mol. Biol. https://doi.org/10.1016/j.jmb.2003.12.
068 (2004).

5. Cruz, M. A. et al. A cryptic pocket in Ebola VP35 allosterically con-
trols RNA binding. Nat. Commun. 13, 1–10 (2022).

6. Hollingsworth, S. A. et al. Cryptic pocket formation underlies allos-
teric modulator selectivity at muscarinic GPCRs. Nat. Commun. 10,
1–9 (2019).

7. Hart, K. M. et al. Designing small molecules to target cryptic
pockets yields both positive and negative allosteric modulators.
PLoS One 12, e0178678 (2017).

8. Wenthur, C. J., Gentry, P. R., Mathews, T. P. & Lindsley, C. W. Drugs
for allosteric sites on receptors. Annu. Rev. Pharm. Toxicol. 54,
165–184 (2014).

9. Ivetac, A. & Andrew McCammon, J. Mapping the druggable allos-
teric space of g-protein coupled receptors: a fragment-based
molecular dynamics approach. Chem. Biol. Drug Des. 76,
201–217 (2010).

10. Günther, S. et al. X-ray screening identifies active site and allosteric
inhibitors of SARS-CoV-2main protease.Science (1979). https://doi.
org/10.1126/science.abf7945 (2021).

11. Vithani, N. et al. SARS-CoV-2 Nsp16 activation mechanism and a
cryptic pocket with pan-coronavirus antiviral potential. Biophys. J.
https://doi.org/10.1016/j.bpj.2021.03.024 (2021).

12. Zimmerman, M. I. et al. SARS-CoV-2 simulations go exascale to
predict dramatic spike opening and cryptic pockets across the
proteome. Nat. Chem. 1–9 https://doi.org/10.1038/s41557-021-
00707-0 (2021).

13. Kuzmanic, A., Bowman, G. R., Juarez-Jimenez, J., Michel, J. & Ger-
vasio, F. L. Investigating cryptic binding sites by molecular
dynamics simulations. Acc. Chem. Res. https://doi.org/10.1021/
ACS.ACCOUNTS.9B00613 (2020).

14. Raich, L. et al. Discovery of a hidden transient state in all bromo-
domain families. Proc. Natl. Acad. Sci. USA.https://doi.org/10.1073/
pnas.2017427118 (2021).

15. Sztain, T., Amaro, R. & McCammon, J. A. Elucidation of cryptic and
allosteric pockets within the SARS-CoV-2 main protease. J. Chem.
Inf. Model. https://doi.org/10.1021/acs.jcim.1c00140 (2021).

16. Comitani, F. & Gervasio, F. L. Exploring cryptic pockets formation in
targets of pharmaceutical interest with SWISH. J. Chem. Theory
Comput. 14, 3321–3331 (2018).

17. Lynch, M. L., Snell, E. H. & Bowman, S. E. J. Structural biology in the
time of COVID-19: perspectives on methods and milestones. IUCrJ.
https://doi.org/10.1107/S2052252521003948 (2021).

18. Baek, M. et al. Accurate prediction of protein structures and
interactions using a three-track neural network. Science (1979).
https://doi.org/10.1126/science.abj8754 (2021).

19. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature. https://doi.org/10.1038/s41586-021-03819-
2 (2021).

Article https://doi.org/10.1038/s41467-023-36699-3

Nature Communications |         (2023) 14:1177 13

http://doi.org/10.2210/pdb1JWP/pdb
http://doi.org/10.2210/pdb1PZO/pdb
http://doi.org/10.2210/pdb1MY0/pdb
http://doi.org/10.2210/pdb1N0T/pdb
http://doi.org/10.2210/pdb2W9T/pdb
http://doi.org/10.2210/pdb2W9S/pdb
http://doi.org/10.2210/pdb6E5D/pdb
http://doi.org/10.2210/pdb6E5F/pdb
http://doi.org/10.2210/pdb1Y1A/pdb
http://doi.org/10.2210/pdb4P0I/pdb
http://doi.org/10.2210/pdb5OTA/pdb
http://doi.org/10.2210/pdb4TQL/pdb
https://pocketminer.azurewebsites.net/
https://pocketminer.azurewebsites.net/
https://github.com/Mickdub/gvp/tree/pocket_pred
https://github.com/meghana-kshirsagar/3DCNN_protein_structures/tree/main/models
https://github.com/meghana-kshirsagar/3DCNN_protein_structures/tree/main/models
https://doi.org/10.1016/j.bpj.2019.01.018
https://doi.org/10.1016/j.tibs.2018.11.007
https://doi.org/10.1016/j.tibs.2018.11.007
https://doi.org/10.1021/jm0341913
https://doi.org/10.1016/j.jmb.2003.12.068
https://doi.org/10.1016/j.jmb.2003.12.068
https://doi.org/10.1126/science.abf7945
https://doi.org/10.1126/science.abf7945
https://doi.org/10.1016/j.bpj.2021.03.024
https://doi.org/10.1038/s41557-021-00707-0
https://doi.org/10.1038/s41557-021-00707-0
https://doi.org/10.1021/ACS.ACCOUNTS.9B00613
https://doi.org/10.1021/ACS.ACCOUNTS.9B00613
https://doi.org/10.1073/pnas.2017427118
https://doi.org/10.1073/pnas.2017427118
https://doi.org/10.1021/acs.jcim.1c00140
https://doi.org/10.1107/S2052252521003948
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2


20. Mirdita,M. et al. ColabFold:makingprotein folding accessible toall.
Nat. Methods 19, 679–682 (2022).

21. Cimermancic, P. et al. CryptoSite: expanding the druggable pro-
teome by characterization and prediction of cryptic binding sites.
J. Mol. Biol. 428, 709–719 (2016).

22. Bowman,G. R., Bolin, E. R., Hart, K.M.,Maguire, B. C. &Marqusee, S.
Discovery of multiple hidden allosteric sites by combining Markov
state models and experiments. Proc. Natl. Acad. Sci. USA. 112,
2734–2739 (2015).

23. Bowman, G. R. & Geissler, P. L. Equilibrium fluctuations of a single
foldedprotein reveal amultitudeof potential cryptic allosteric sites.
Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.
1209309109 (2012).

24. Oleinikovas, V., Saladino, G., Cossins, B. P. & Gervasio, F. L.
Understanding cryptic pocket formation in protein targets by
enhanced sampling simulations. J. Am. Chem. Soc. https://doi.org/
10.1021/jacs.6b05425 (2016).

25. Porter, J. R. et al. Cooperative changes in solvent exposure identify
cryptic pockets, switches, and allosteric coupling. Biophys. J. 116,
818–830 (2019).

26. Zimmerman, M. I. & Bowman, G. R. FAST conformational searches
by balancing exploration/exploitation trade-offs. J. Chem. Theory
Comput. 11, 5747–5757 (2015).

27. Bowman, G. R., Pande, V. S. & Noe, F. An Introduction to Markov
State Models and Their Application to Long Timescale Molecular
Simulation. Vol. 797 (Springer Netherlands, 2014).

28. Pande, V. S., Beauchamp, K. & Bowman, G. R. Everything you
wanted to know about Markov State Models but were afraid to ask.
Methods 52, 99–105 (2010).

29. Xu, S., Benoff, B., Liou, H. L., Lobel, P. & Stock, A. M. Structural basis
of sterol bindingbyNPC2, a lysosomalprotein deficient in niemann-
pick type C2 disease. J. Biol. Chem. 282, 23525–23531 (2007).

30. Hendlich, M., Rippmann, F. & Barnickel, G. LIGSITE: automatic and
efficient detection of potential small molecule-binding sites in
proteins. J. Mol. Graph Model 15, 359–363 (1997).

31. Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L. & Dror, R.
Learning fromprotein structurewithgeometric vector perceptrons.
arXiv https://doi.org/10.48550/ARXIV.2009.01411 (2020).

32. Torng, W. & Altman, R. B. High precision protein functional site
detection using 3D convolutional neural networks. Bioinformatics
35, 1503–1512 (2019).

33. Beglov, D. et al. Exploring the structural origins of cryptic sites on
proteins. Proc. Natl Acad. Sci. USA. 115, E3416–E3425 (2018).

34. Sun, Z., Wakefield, A. E., Kolossvary, I., Beglov, D. & Correspon-
dence, S. V. Structure-Based Analysis of Cryptic-Site Opening.
https://doi.org/10.1016/j.str.2019.11.007 (2020).

35. Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: An open
source platform for ligand pocket detection. BMC Bioinformatics.
https://doi.org/10.1186/1471-2105-10-168 (2009).

36. Chen, K., Mizianty, M. J., Gao, J. & Kurgan, L. A critical comparative
assessment of predictions of protein-binding sites for biologically
relevant organic compounds. Structure 19, 613–621 (2011).

37. Thomas, S. J., Snowden, J. A., Zeidler, M. P. & Danson, S. J. The role
of JAK/STAT signalling in the pathogenesis, prognosis and treat-
ment of solid tumours. Br. J. Cancer 113, 365–371 (2015).

38. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M.
KEGG as a reference resource for gene and protein annotation.
Nucleic Acids Res. https://doi.org/10.1093/nar/gkv1070 (2016).

39. Wang, Y., Xiu, J., Ren, C. & Yu, Z. Protein kinase PIM2: A simple PIM
family kinase with complex functions in cancer metabolism and
therapeutics. J. Cancer 12, 2570 (2021).

40. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28,
235–242 (2000).

41. The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger,
LLC, 2015).

42. Waterhouse, A. et al. SWISS-MODEL: homology modelling of pro-
tein structures and complexes. Nucleic Acids Res. 46,
W296–W303 (2018).

43. Abraham, M. J. et al. Gromacs: high performance molecular simu-
lations through multi-level parallelism from laptops to super-
computers. SoftwareX 1–2, 19–25 (2015).

44. Duan, Y. et al. A point-charge force field for molecular mechanics
simulations of proteins based on condensed-phase quantum
mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003).

45. Feenstra, K. A.,Hess, B. &Berendsen,H. J. C. Improvingefficiencyof
large time-scale molecular dynamics simulations of hydrogen-rich
systems. J. Comput. Chem. 20, 786–798 (1999).

46. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. &
Klein, M. L. Comparison of simple potential functions for simulating
liquid water. J. Chem. Phys. 79, 926–935 (1983).

47. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a
linear constraint solver formolecular simulations. J. Comput.Chem.
18, 14631472 (1997).

48. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N⋅log(N)
method for Ewald sums in large systems. J. Chem. Phys. 98,
10089 (1998).

49. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through
velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

50. Parrinello,M.&Rahman,A. Polymorphic transitions in singlecrystals:
a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1998).

51. Akiba, T., Sano, S., Yanase, T.,Ohta, T. &Koyama,M.Optuna: Anext-
generation hyperparameter optimization framework. Proceedings
of the 25th ACM SIGKDD. Int. Conf. Knowl. Discov. Data Min.
https://doi.org/10.1145/3292500.

52. Torng,W.&Altman, R.B. 3Ddeepconvolutional neural networks for
amino acid environment similarity analysis. BMC Bioinforma. 18,
1–23 (2017).

53. Porter, J. R., Zimmerman, M. I. & Bowman, G. R. Enspara: modeling
molecular ensembles with scalable data structures and parallel
computing. J. Chem. Phys. 150, 044108 (2019).

54. Camacho, C. et al. BLAST+: architecture and applications. BMC
Bioinforma. 10, 421 (2009).

55. Altschul, S. F., Gish,W., Miller,W., Myers, E.W. & Lipman, D. J. Basic
local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

56. Benson, M. L. et al. Binding MOAD, a high-quality protein-ligand
database. Nucleic Acids Res. 36, D674 (2008).

57. Cock, P. J. A. et al. Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinfor-
matics 25, 1422–1423 (2009).

58. Edgar, R. C. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics 26, 2460–2461 (2010).

59. Edgar, R. C. MUSCLE: A multiple sequence alignment method with
reduced time and space complexity.BMCBioinforma.5, 113 (2004).

60. Zhang, P., Dayie, K. T. &Wagner, G. Unusual lack of internalmobility
and fast overall tumbling in oxidized flavodoxin from Anacystis
nidulans11Edited by P. E. Wright. J. Mol. Biol. 272, 443–455 (1997).

61. Clore, G. M. & Schwieters, C. D. Amplitudes of protein backbone
dynamics and correlated motions in a small α/β protein: corre-
spondence of dipolar coupling and heteronuclear relaxation mea-
surements. Biochemistry 43, 10678–10691 (2004).

62. Lakomek, N. A. et al. Side-chain orientation and hydrogen-bonding
imprint supra-τc motion on the protein backbone of ubiquitin.
Angew. Chem. Int. Ed. 44, 7776–7778 (2005).

63. Chen, J., Toptygin, D., Brand, L. & King, J. Mechanismof the efficient
tryptophan fluorescence quenching in human gammaD-crystallin
studied by time-resolved fluorescence. Biochemistry 47,
10705–10721 (2008).

64. Jaswal, S. S., Sohl, J. L., Davis, J. H. & Agard, D. A. Energetic
landscape of α-lytic protease optimizes longevity through kinetic
stability. Nature 415, 343–346 (2002).

Article https://doi.org/10.1038/s41467-023-36699-3

Nature Communications |         (2023) 14:1177 14

https://doi.org/10.1073/pnas.1209309109
https://doi.org/10.1073/pnas.1209309109
https://doi.org/10.1021/jacs.6b05425
https://doi.org/10.1021/jacs.6b05425
https://doi.org/10.48550/ARXIV.2009.01411
https://doi.org/10.1016/j.str.2019.11.007
https://doi.org/10.1186/1471-2105-10-168
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1145/3292500


65. de MARCO, A., LECOMTE, J. T. J. & LLINÁS, M. Solvent and tem-
perature effects on crambin, a hydrophobic protein, as investigated
by proton magnetic resonance. Eur. J. Biochem. 119, 483–490 (1981).

66. Huang, P.-S. et al. De novo design of a four-fold symmetric TIM-
barrel protein with atomic-level accuracy. Nat. Chem. Biol. 12,
29–34 (2016).

67. Po-Ssu, H. et al. High thermodynamic stability of parametrically
designed helical bundles. Science (1979) 346, 481–485 (2014).

68. Kuhlman, B. et al. Design of a novel globular protein fold with
atomic-level accuracy. Science (1979) 302, 1364–1368 (2003).

69. Bateman, A. et al. UniProt: the universal protein knowledgebase in
2021. Nucleic Acids Res. 49, D480–D489 (2021).

70. Ward, M., Jing, B. & Meller, A. Mickdub/gvp: PocketMiner V0.0.
https://doi.org/10.5281/zenodo.7532504 (2023).

71. Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic
resistance enzyme constrained by stability and activity trade-offs.
J. Mol. Biol. 320, 85–95 (2002).

72. Jin, R. & Gouaux, E. Probing the function, conformational plasticity,
and dimer - dimer contacts of the GluR2 ligand-binding core: stu-
dies of 5-substituted willardiines and GluR2 S1S2 in the crystal.
Biochemistry 42, 5201–5213 (2003).

73. Hogner, A. et al. Competitive antagonism of AMPA receptors by
ligands of different classes: crystal structure of ATPO bound to the
GluR2 ligand-binding core, in comparison with DNQX. J. Med.
Chem. 46, 214–221 (2003).

74. Heaslet, H. et al. Structural comparison of chromosomal and exo-
genous dihydrofolate reductase from Staphylococcus aureus in
complex with the potent inhibitor trimethoprim. Proteins Struct.
Funct. Bioinforma. 76, 706–717 (2009).

75. Melly, G. C. et al. Structural and functional evidence that lipopro-
tein LpqN supports cell envelope biogenesis in Mycobacterium
tuberculosis. J. Biol. Chem. 294, 15711–15723 (2019).

76. Blamey, C. J., Ceccarelli, C., Naik, U. P. & Bahnson, B. J. The crystal
structure of calcium- and integrin-binding protein 1: insights into
redox regulated functions. Protein Sci. 14, 1214–1221 (2005).

77. Lang, J. et al. Agrobacteriumuses a unique ligand-bindingmode for
trapping opines and acquiring a competitive advantage in the niche
construction on plant host. PLoS Pathog. 10, e1004444 (2014).

78. Vigouroux, A. et al. Structural basis for high specificity of octopine
binding in the plant pathogen Agrobacterium tumefaciens. Sci.
Rep. 2017 7:1 7, 1–13 (2017).

79. Huang, P. S. et al. High thermodynamic stability of parametrically
designed helical bundles. Science (1979) 346, 481–485 (2014).

Acknowledgements
Wewould like to thankMicrosoft AI for Health for an Azure grant aswell as
Fabian Salamo, Marcelo Duarte, Pedro Costa and Anthony Citron for help
in developing the PocketMiner web interface. We are grateful to Neha
Vithani for proposing the name PocketMiner and Bowen Jing for help in
using the geometric vector perceptron codebase. We would like to thank
AMD for the donation of critical hardware and support resources from its
HPC Fund that enabled the computations for this work. We would like to
acknowledge the Folding@home community for its support. AM was
supported by the National Institutes of Health F30 Fellowship

(1F30HL162431-01A1). JML was supported by the National Science Foun-
dation via grant number DGE-2139839. MDW was supported by a MolSSI
COVID-19 seed software fellowship. Thisworkwas fundedbyNSFCAREER
Award MCB-1552471 (GRB) and NIH grants R01 GM124007 (GRB) and
RF1AG067194 (GRB). G.R.B holds a Packard Fellowship for Science and
Engineering from The David & Lucile Packard Foundation.

Author contributions
AM, MDW, JB, MK, FO, and JML conceptualized and performed the
analyses for this study. AM performed molecular dynamics simulations
and created training labels. JB curated the cryptic pocket dataset that
was used formodel evaluation. AM, MDW, and JB created the figures for
themanuscript. AMandMDWdrafted themanuscript. AM,MDW, FO,MK
conceptualized, wrote, and tested software. JLF provided edits to the
manuscript and acquired funding. GRB proposed the initial project idea,
provided edits to the manuscript, and acquired funding.

Competing interests
GRB is a co-founder and equity holder in Decrypt Biomedicine. The
remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36699-3.

Correspondence and requests for materials should be addressed to
Gregory R. Bowman.

Peer review information Nature Communications thanks Pratyush
Tiwary, and the other, anonymous reviewer for their contribution to the
peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36699-3

Nature Communications |         (2023) 14:1177 15

https://doi.org/10.5281/zenodo.7532504
https://doi.org/10.1038/s41467-023-36699-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Predicting locations of cryptic pockets from�single protein structures using the PocketMiner graph neural network
	Results
	Known cryptic pockets open rapidly in simulations
	Graph neural networks accurately predict the time evolution of pockets in simulation
	Cryptic pocket dataset reveals forward and reverse motions
	PocketMiner accurately predicts ligand-binding cryptic pockets from ligand-free crystal structures
	PocketMiner predicts thousands of cryptic pockets across the human proteome

	Discussion
	Methods
	Molecular dynamics simulations
	System preparation
	Molecular dynamics simulations
	Adaptive sampling protocols
	Network architectures
	Geometric vector perceptron-based graph neural networks (GVP-GNNs)
	3D convolutional neural networks (3D-CNNs)
	GVP-GNN and 3D-CNN model training and evaluation (task 1)
	Data featurization
	Model evaluation
	GVP-GNN training
	3D CNN training
	Assembly of a novel set of cryptic pockets
	Identification of residues unlikely to form cryptic pockets
	Proteins extensively crystallized with ligands
	Highly stable and/or highly rigid proteins
	Simulations
	PocketMiner training and evaluation (Task 2)
	Data featurization
	GVP-GNN training
	Model evaluation
	Applying PocketMiner to the human proteome
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




