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Abstract

Lung segmentation in dynamic thoracic magnetic resonance imaging (dMRI) is a critical step for 

quantitative analysis of thoracic structure and function in patients with respiratory disorders. Some 

semi-automatic and automatic lung segmentation methods based on traditional image processing 

models have been proposed mainly for CT with good performance. However, the low efficiency 

and robustness of these methods and inapplicability to dMRI make them unsuitable to segment the 

large numbers of dMRI datasets. In this paper, we present a novel automatic lung segmentation 

approach for dMRI based on two-stage convolutional neural networks (CNNs). In the first stage, 

we utilize the modified min-max normalization method to pre-process MRI for increasing the 

contrast between the lung and surrounding tissue and propose a corner-points and CNN based 

region of interest (ROI) detection strategy to extract the lung ROI from sagittal dMRI slices, which 

can reduce the negative influence of tissues located far away from the lung. In the second stage, 

we input the adjacent ROIs of target slices into the modified 2D U-Net to segment the lung tissue. 

The qualitative and quantitative results demonstrate that our approach achieves high accuracy and 

stability in terms of lung segmentation for dMRI.
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1. INTRODUCTION

Dynamic thoracic magnetic resonance imaging (dMRI) has been employed to evaluate lung 

function in adolescent idiopathic scoliosis (AIS) [1], to analyze diaphragmatic motion [2], 

to quantify regional dynamic thoracic function in thoracic insufficiency syndrome (TIS) 
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[3], and to understand developmental changes in normal respiratory dynamics [4]. In 

these applications, lung tissue segmentation in MRI plays a crucial role in quantitative 

analysis. Manual delineation of the lung is extremely time-consuming, labor-intensive, 

and suffers from inter-reader variability, particularly since dMRI acquired over several 

respiratory cycles can include 100s of slices. As such, there is an urgent need for clinicians 

and researchers to have access to a robust automatic and accurate lung segmentation 

method to improve work efficiency. To solve this problem, traditional image processing 

models based on semi-automatic and automatic methods [5–8] have been proposed with 

good performance. However, semi-automatic methods are not appropriate to process large 

numbers of dMRI datasets due to their low efficiency, complex shape variability, low 

contrast, other nearby confounding tissues of similar appearance, and poor signal-to-noise-

ratio of lung tissue in dMRI. These challenges seriously hamper the robustness of the 

automatic methods.

In this paper, we propose an automated lung segmentation system based on two-stage 

deep convolutional neural networks (CNNs) for dMRI, achieving a high agreement with 

reference standard manual segmentations. The main innovations of our study include: 1) A 

fully automatic, robust, and accurate lung segmentation system for dMRI using a two-stage 

deep CNNs model; 2) An accurate and adaptive lung ROI detection strategy based on the 

corner-points concept and CNN; 3) An ingenious design of network architecture combing 

pixel-wise classification and regression to detect the location of the corner-points of the lung 

ROI; 4) Demonstration of as close to the highest possible lung segmentation performance 

considering the quality of the lung ROI.

2. MATERIALS & METHODS

Figure 1 is a schematic depiction of the main stages in our method. In the first stage, 

we proposed an automatic corner-points detection model based on U-Net [9] to locate the 

top-left and bottom-right points of the bounding boxes for the lung tissue in sagittal 2D 

MRI slices. To enhance the contrast between the lung and surrounding tissues, we modified 

the min-max normalization method to pre-process the MRIs. Then, we extracted the ROIs 

of lung from MRI slices as the input data for the lung segmentation model according to 

the location of the detected two corner points, reducing the negative effect of the tissues 

located far away from the lung. To ensure that the generated ROI can cover the lung region, 

we enlarged the size of the ROI by 1.2 times. Encouraged by our previous work [10], the 

adjacent slices of the target slice were inputted into the segmentation network as the context 

information to improve lung segmentation performance. Finally, the output probability map 

of the segmentation model was transformed into a binary image using the thresholding 

method with a threshold of 0.5. To restore the spatial information of segmentation results, 

we utilized zero-padding to embed the segmentations in the full image outside the ROI.

2.1 Image datasets

All MRI studies were acquired under an IRB-approved research protocol at the Children’s 

Hospital of Philadelphia along with Health Insurance Portability and Accountability Act 

waiver. The de-identified MRI data sets were subsequently analyzed at the University of 
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Pennsylvania. The data set (Table 1) consists of sagittal bright-blood dMRI scans from 

63 subjects acquired over several natural breathing cycles using the following parameters: 

True-FISP sequence, TR=3.82 ms, TE=1.91 ms, and flip angle=76°. 103 3D frames of 

these scans were annotated by individuals with a background and appropriate training in 

human anatomy and the radiological appearance of the relevant structures, through use of 

the open-source software CAVASS [11].

2.2 Modified min-max normalization method

As shown in Figure 1, the discrepancy of intensity between the lung and surrounding tissues 

is not obvious, increasing the difficulties for lung ROI detection and segmentation. The main 

reason is that the high contrast between the lung and tissue located far away from the lung 

suppresses the local contrast between the lung and surrounding tissue. To solve this problem, 

we propose a pre-processing method based on the min-max normalization model and lung 

intensity statistics. Assuming that I(x) represents the intensity of pixel x, the pre-processed 

image IN(x) is obtained as follows:

IN(x) =
Imin,  if I(x) < Imin
Imax,  if I(x) > Imax
I(x), otherwise

. (1)

Subsequently, IN(x) is rescaled.

IN(x) = IN(x) − Imin
Imax − Imin

, (2)

where Imin and Imax represent the minimum and maximum intensity of lung tissue in MRI, 

respectively. The first equation is used to map the intensity range of I(x) into the new range 

[Imin, Imax] to increase the contrast between the lung and surrounding tissue, and the second 

equation rescales the intensity range of IN(x) into [0, 1] for accelerating the convergence 

speed for the deep learning models. In our experiments, the parameters Imin and Imax were 

set to 0 and 400, respectively, after MRI signal intensity standardization [12].

2.3 Corner-points and CNN based ROI strategy

In [10], we developed a generalized ROI strategy for upper airway in static and dynamic 

MRI by exploiting the spatial information of the annotated dataset, in which the bounding 

box is determined by the location of the center point (xc, yc) and window size (2dh, 2dv), 

as shown in Figure 2(a). However, this method is not appropriate to produce the ROI of 

the lung in dMRI, due to the complex variability of lung location. To solve this problem, 

we propose an adaptive lung ROI detection method based on U-Net, named Corner-points 

based ROI, in which the ROI is determined by the location of the top-left (xTL, yTL) 

and bottom-right (xBR, yBR) points as well as the horizontal and vertical distance offset 

(ΔxTL, ΔyTL, ΔxBR, ΔyBR), as shown in Figure 2(b). Firstly, we utilized the manual lung 

segmentation results of training data to automatically generate the bounding boxes and 

extracted the coordinate information of the top-left and bottom-right corner-points. Then, 

we exploited the coordinates of two corner-points as the centers to draw two solid circles 
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with a radius of 5 pixels. The background, top-left, and bottom-right circles were annotated 

with labels “0”, “1” and “2”, respectively. Next, we utilized these annotation data to train 

the deep CNN for segmenting the top-left and bottom-right circles from MRI and extracted 

the location of the local-maximum in the possibility map as the detected top-left (xTL, 

yTL) and bottom-right (xBR, yBR) corner-points. To reduce the spatial error of corner-points 

detection, we computed the horizontal and vertical distances between pixel x and the center 

of the circles as additional annotation data, training the deep CNN to predict the distance 

offset (ΔxTL, ΔyTL, ΔxBR, ΔyBR). The refined location of the top-left and bottom-right 

corner-points was expressed as follows:

xTL* , yTL* , xBR* , yBR* = xTL, yTL, xBR, yBR + ΔxTL, ΔyTL, ΔxBR, ΔyBR . (3)

Finally, the detected top-left and bottom-right corner-points were employed to produce 

the lung ROI for improving the segmentation accuracy and training speed of the lung 

segmentation model in the second stage.

2.4 Network architecture

We designed a novel deep CNN based on 2D U-Net to detect the corner-points of the lung 

ROI, as shown in Figure 3. The network consists of four modules: i) the feature learning 

module (left side) for extracting multi-scale features from the input images including 16 

convolutional layers with 3×3 kernels, 4 max-pooling layers with stride 2, 3 dropout layers 

with rate 0.6, and 5 batch-normalization layers, ii) the feature fusion module (right side) 

for up-sampling the feature maps and integrating the multi-scale features as a feature 

pyramid including 12 convolutional layers with 3×3 kernels, 4 up-sampling layers based 

on bilinear interpolation, and 4 concatenation layers, iii) the pixel-wise classification module 

for classifying the feature map into three categories (background, top-left, and bottom-right 

corner-points) including 2 dropout layers with rate 0.6, 2 convolutional layers with 3×3 

kernels, and 1 soft-max function, and iv) the regression module for predicting the distance 

offset including 2 dropout layers with rate 0.6, and 2 convolutional layers with 3×3 kernels. 

The main differences between our network and U-Net include replacing the de-convolutional 

layer with an up-sampling layer for reducing the number of parameters in our model 

and using the convolutional layer with 3×3 kernels and 32 output channels to reduce the 

redundancy of the feature pyramid. In the second stage of our framework, a similar network 

was employed to segment the lung tissue in the extracted ROIs. However, the distance offset 

regression module is not needed for the lung segmentation task.

2.5 Loss function

We combined the cross-entropy and L1 loss functions together to define the loss function of 

the corner-points detection network as:

L SG, OG; W = − 1
N ∑x ∈ Ωlog P l = SG(x) ∣ x

+ λ1
N ∑x ∈ Ω OG(x) − O(x) 1 + λ2 W 1,

(4)
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where SG(x) and OG(x) denote the ground truth of the category and distance offset at pixel 

x, P(l = SG(x)|x) represents the possibility value of pixel x classified as ground truth SG(x), 

O(x) denotes the predicted distance offset at pixel x, W and Ω represent the parameters 

of the network and image domains, ‖·‖1 is the L1-norm, and λ1 and λ2 serve as trade-off 

parameters among the three terms. To improve the lung segmentation performance, we 

utilized the FP&FN+DICE loss function [10] to train the lung segmentation network, which 

has been shown to efficiently reduce the false-positive and false-negative rates.

3. RESULTS AND DISCUSSION

We utilized the testing data to test our two-stage CNNs and calculated the 2D Dice index 

(2D DICE) for evaluating the lung ROI detection performance and the 3D Dice index 

(3D DICE) and 3D average Hausdorff distance (HD) for evaluating the lung segmentation 

performance in dMRI. To investigate the effect of ROI strategy on lung segmentation 

performance, we conducted three comparison experiments by removing the ROI strategy 

(Non-ROI) and replacing the corner-points and CNN based ROI strategy with the ground 

truth of ROI and generalized ROI method [10]. Figure 4 illustrates lung detection results, 

indicating that the proposed corner-points and CNN based ROI strategy obtains good 

agreement with the manual ROI and that the offset correction can efficiently increase 

the degree of overlap between automatic and manual ROIs. Figure 5 shows three lung 

segmentation results and Table 2 summarizes the quantitative results. We observe that the 

proposed two-stage deep CNNs model achieves a high mean value of 0.97 and a low 

standard deviation of 0.02 for 3D DICE, indicating excellent segmentation accuracy and 

stability. A 2D DICE value of 0.92 shows that the corner-points and CNN based ROI 

strategy achieves an acceptable accuracy of lung detection. The comparison between the 

performance values in the Non-ROI row of Table 2 with others demonstrates that the ROI 

detection strategies can efficiently improve the lung segmentation accuracy. In addition, 

the lung segmentation accuracy improves with increasing the lung ROI detection accuracy. 

These experimental data demonstrate the importance of the object detection strategy for 

object segmentation.

4. CONCLUSIONS

In this paper, we utilize deep learning techniques to construct a fully automatic system 

for lung segmentation in dynamic thoracic magnetic resonance imaging (dMRI) for the 

quantitative analysis of lung function. Our method can be divided into two stages: 1) 

extraction of the lung ROI from sagittal dMRI slices using the corner-points and CNN 

based ROI strategy for reducing the negative influence of the tissue located far away from 

the lung, 2) segmentation of the lung tissue in the lung ROIs using the modified 2D 

U-Net. Experimental results demonstrate that our approach achieves excellent agreement 

with manual detection and segmentation of lung tissue in dMRI and can be utilized routinely 

for segmenting lungs in dMRI of TIS patients where the thorax is often highly distorted, 

adding to segmentation challenges coming from poor and confounding intensity appearance.

Considering that the ROI detection accuracy is positively correlated with the segmentation 

performance of our approach, we are developing an interactive ROI strategy in order to 
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ensure that each ROI detection result in the dMRI acquisition sequences is sufficiently 

accurate, even in the presence of extreme distortions of the anatomy of the chest as observed 

in severe cases of TIS.
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Figure 1. 
Illustration of two-stage CNN structure for automatic lung segmentation from dynamic 

thoracic MRI.
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Figure 2. 
Illustration of ROI strategies: (a) Generalized ROI. (b) Corner-points based ROI.
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Figure 3. 
The architecture of the corner-points detection network.
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Figure 4. 
Examples of lung detection in dynamic thoracic MRI. The green and red colors represent 

manual and automatic detection results, respectively. (a) Generalized ROI strategy. (b) 

Corner-points and CNN based ROI strategy without offset correction. (c) Corner-points and 

CNN based ROI strategy.
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Figure 5. 
Examples of lung segmentation in dynamic thoracic MRI. The green and orange colors 

represent manual and automatic segmentation results, respectively. (a) Original sagittal 

MR images; (b) manual segmentation; (c) automatic segmentation using modified U-Net; 

(d) automatic segmentation using generalized ROI and modified U-Net; (e) automatic 

segmentation using corner-points and CNN based ROI and modified U-Net; (f) automatic 

segmentation using ground truth of ROI and modified U-Net.
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Table 1.

Summary of the dynamic thoracic MRI data set.

Data set # of Subjects # of 3D Frames

Training set 36 59 (2225 slices)

Validation set 6 11 (414 slices)

Testing set 21 33 (1254 slices)

Total 63 103 (3893 slices)

Voxel size (mm3) 1.46 × 1.46 × 6.00
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Table 2.

Lung ROI detection and segmentation performance on testing data. All values are expressed as “mean/

standard deviation.”

First stage Second stage
ROI detection Lung segmentation

2D DICE 3D DICE 3D HD (pixels)

Non-ROI

Modified U-Net

- 0.83/0.13 4.18/2.54

Generalized ROI 0.23/0.12 0.86/0.06 5.64/5.18

Corner-points and CNN based ROI 0.92/0.13 0.97/0.02 3.11/4.89

Ground truth of ROI 1.00/0.00 0.98/0.01 1.30/0.52
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