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Cross-species comparative analyses of single-cell RNA sequencing (scRNA-seq) data allow us to explore, at single-cell res-

olution, the origins of the cellular diversity and evolutionary mechanisms that shape cellular form and function. Cell-type

assignment is a crucial step to achieve that. However, the poorly annotated genome and limited known biomarkers hinder us

from assigning cell identities for nonmodel species. Here, we design a heterogeneous graph neural network model, CAME,

to learn aligned and interpretable cell and gene embeddings for cross-species cell-type assignment and gene module extrac-

tion from scRNA-seq data. CAME achieves significant improvements in cell-type characterization across distant species ow-

ing to the utilization of non-one-to-one homologous gene mapping ignored by early methods. Our large-scale

benchmarking study shows that CAME significantly outperforms five classical methods in terms of cell-type assignment

and model robustness to insufficiency and inconsistency of sequencing depths. CAME can transfer the major cell types

and interneuron subtypes of human brains to mouse and discover shared cell-type-specific functions in homologous

gene modules. CAME can align the trajectories of human and macaque spermatogenesis and reveal their conservative ex-

pression dynamics. In short, CAME can make accurate cross-species cell-type assignments even for nonmodel species and

uncover shared and divergent characteristics between two species from scRNA-seq data.

[Supplemental material is available for this article.]

Single-cell RNA sequencing (scRNA-seq) has rapidly emerged as a
powerful tool to characterize a large number of single-cell
transcriptomes in different tissues, organs, and species (Kolod-
ziejczyk et al. 2015). It not only deepens our knowledge of cells
but also provides novel insights into evolutionary and develop-
mental biology (Marioni and Arendt 2017). Cross-species integra-
tion and comparison of scRNA-seq data sets allow us to explore, at
single-cell resolution, the origins of cellular diversity and evolu-
tionary mechanisms that shape cellular form and function (Mari-
oni and Arendt 2017; Sebé-Pedrós et al. 2018; Tosches et al. 2018;
Geirsdottir et al. 2019; Hodge et al. 2019; Shafer 2019; Drokhlyan-
sky et al. 2020; Shami et al. 2020; Wang et al. 2021).

Cell-type assignment (or cell typing) and data integration are
both vital steps involved in these analyses. For the cell-type assign-
ment, a traditional approach includes three steps: clustering single
cells, performing differentially expression analysis to find cluster-
specific genes, and matching these genes with known markers.
However, this strategy fails when clustering different cell types
into one group and when analyzing many nonmodel species that
lack prior knowledge of cell-type biomarkers. Several tools have
been developed for this task recently (Abdelaal et al. 2019). Some ex-
isting approaches like CellAssign (Zhang et al. 2019a) and scCATCH
(Shao et al. 2020) require prior knowledge of cell-type-specificmark-

ers. Some like SingleCellNet (Tan and Cahan 2019), SciBet (Li et al.
2020), SingleR (Aran et al. 2019), and Garnett (Pliner et al. 2019)
were designed based on a reference data set and can achieve the
cell-type assignment without providing marker information. In ad-
dition, several methods designed for data integration can also
achieve cell-type assignment by transferring labels from the refer-
ence data set (Stuart et al. 2019; Gao et al. 2021). Seurat-v3 (Stuart
et al. 2019) combines canonical correlation analysis and mutual
nearest neighbors to perform data integration and label transfer
based on “anchors.” Cell BLAST (Cao et al. 2020), ItClust (Hu
et al. 2020), and scArches (Lotfollahi et al. 2022) make use of deep
neural networks for both cell-type querying and cell embedding. LI-
GER (Welch et al. 2019) and CSMF (Zhang and Zhang 2019) extract
the common and private features of two data sets, respectively, by
joint nonnegative matrix factorization to achieve cell alignment
across data sets and omics.

Despite all the progress, a tool for effective and robust cross-
species integration and comparison is still immature and in de-
mand. There are several computational challenges to be overcome.
First, it is hard to determine cell identities for nonmodel species
that lack prior knowledge of cell-type biomarkers, and most of
the methods may fail when generalizing to cross-species label
transfer. Second, many biological and technical factors, such as
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transcriptome variation between species, different experimental
protocols, and inconsistent sequencing depths, can make cross-
species data integration and comparison even more difficult.
Third, homologous cell-type alignment requires quantifying the
similarities of gene expression profiles, which usually vary across
distinct normalizations and gene selections (Marioni and Arendt
2017). Fourth, cross-species cellular alignment is usually based
on homologous genes, and current approaches are mostly restrict-
ed to one-to-one homologies shared by both organisms (Marioni
and Arendt 2017; Sebé-Pedrós et al. 2018; Tosches et al. 2018;
Geirsdottir et al. 2019; Hodge et al. 2019; Drokhlyansky et al.
2020; Shami et al. 2020; Wang et al. 2021), where non-one-to-
one homologous genes characterizing cell-type conservative fea-
tures could be lost. Lastly, evolutionary divergences are thought
to be caused by transcriptional changes of groups of genes that
evolve in a modular fashion and are controlled by transcription
factors (Arendt et al. 2016). Extraction and comparison of gene
modules between species will provide deep insights into evolu-
tionary conservation and divergences (Oldham et al. 2006; Aibar
et al. 2017;Wang et al. 2021). To this end, we develop a semisuper-
vised heterogeneous graph neural network model, CAME, to
achieve the aligned and interpretable cell and gene embeddings
for cross-species cell-type assignment and genemodule extraction.

Results

Overview of CAME

CAME takes two scRNA-seq data sets from different species, along
with their homologous genemappings as input. One data set with
cell-type labels is taken as the reference, and the other whose cell
types need to be assigned is the query (Fig. 1A). CAME encodes
these two expression matrices and the mappings of homologous
genes as a heterogeneous graph, where each node acts as either a
cell or a gene,whereas a cell–gene edge indicates a non-zero expres-
sion of the gene in that cell, and an edge between a pair of genes
indicates the homology between each other. Note that one-to-
many andmany-to-many homologies are allowed as well. In addi-
tion, CAME adopts single-cell networks precomputed from refer-
ence and query data sets using the k-nearest-neighbor (KNN)
method, respectively, where a cell–cell edge indicates this pair of
cells has similar transcriptomes with each other (Methods).

CAME adopts a heterogeneous graph neural network to em-
bed each node into a low-dimensional space (Methods) (Fig. 1B).
For the initial cell embeddings, CAME takes the expression pro-
files followed by linear transformation with a nonlinear activa-
tion function, whereas for the initial gene-embeddings, CAME
aggregates the expression profiles (called “messages”) from its
neighbor cells that expressed it and then treats them with linear
transformation and nonlinear activation, as performed for cells
(Methods). Then the initial embeddings are input to two param-
eter-sharing graph convolution layers with heterogeneous edges
and nodes. As a result, cells with more coexpressed genes are
more likely to exchange the embedding message with each other
and thus be encodedwith similar embeddings; the same principle
applies to genes. CAME further uses a heterogeneous graph atten-
tion mechanism (Veličkovic ́ et al. 2017) to classify cells with em-
beddings of their neighbor genes as input, where each cell pays a
distinct level of attention to each certain neighbor gene
(Methods) (Fig. 1C). High attention paid by a cell to a gene im-
plies that the gene is of relatively much importance for the cell
to be characterized.

We note that a reference cell could be assignedwithmultiple
labels in different hierarchies, and a cell type in query species
might correspond to multiple ones in the reference. Thus, multi-
label classification can be helpful to depict the state of a cell.
CAME calculates the cross-entropy between the predicted cell-
type probabilities and the true labels for the reference data to ob-
tain both the multiclass and the multilabel loss, and sums them
up as the training loss. Finally, CAME minimizes it by the back-
propagation algorithm (Methods). The training process of
CAME is semisupervised in an end-to-end manner. We found
that the training process was quite stable, and the model tended
to be well trained before 200–300 epochs (Supplemental Fig.
S1A). In addition, CAME introduces the adjusted mutual infor-
mation (AMI) between the predicted labels and preclustered
ones of query cells to automatically determine the model check-
point for downstream analysis (Methods) (Supplemental Fig.
S1A).

CAME outputs the quantitative cell-type assignment for each
query cell, that is, the probabilities of cell types that exist in the ref-
erence species, which enables the identification of the unresolved
cell states in the query data. For most cells with homologous cell
types in the reference, CAME assigns them with a maximal proba-
bility approximating one, whereas for those unobserved cell types
or states, CAME would assign them to their analogs with relatively
low confidences (Supplemental Fig. S2). In addition, CAME gives
the aligned cell and gene embeddings across species, which facili-
tates low-dimensional visualization and joint genemodule extrac-
tion (Methods) (Fig. 1D).

CAME shows superior accuracy and robustness for cell-type

assignment compared with state-of-the-art methods

We collected 54 scRNA-seq data sets from five tissues across seven
different species including human, macaque, mouse, chick, turtle,
lizard, and zebrafish (Methods) (Supplemental Fig. S3A; Supple-
mental Table S1). More than a half of the homologous genes be-
tween zebrafish and other species are not one-to-one matched
(Supplemental Fig. S3B). In addition, the proportion of non-one-
to-one homologies between highly informative gene (HIG; Meth-
ods) sets with one associated with zebrafish (Hoang et al. 2020) is
significantly higher than that of other cross-species data set pairs
(60%–75% vs. 15%–40%) (Supplemental Fig. S3C). The ablation
study shows that, when excluding non-one-to-one homologies,
the cell typing accuracy of CAME suffers a significant drop (rang-
ing from 1.5% to 8.7% for different species-pairs, 6.26% on aver-
age, with P-value=7.8 ×10−23) on the zebrafish-associated data
set pairs (Supplemental Figs. S3D, S4). Therefore, we divided these
pairs into two scenarios: zebrafish-excluded (139 pairs) and zebra-
fish-associated (510 pairs; Methods).

We compared the cell typing performance of CAME with five
current methods including one specifically designed for cross-spe-
cies integration (SAMap) (Tarashansky et al. 2021), one deep-learn-
ing method (Cell BLAST) (Cao et al. 2020), and three other
methods—SciBet (Li et al. 2020), scmap (Kiselev et al. 2018), and
Seurat-v3 (Stuart et al. 2019)—in terms of accuracy, macro-F1
score, and weighted F1 score (Methods). CAME distinctly outper-
forms the others in most cases with statistical significance P-val-
ues < 10−16 and 10−54 using a Wilcoxon signed-rank test for both
the zebrafish-excluded and zebrafish-associated scenarios, respec-
tively (Fig. 2A,B; Supplemental Figs. S5, S6).

To evaluate the robustness of CAME in the cases in which the
reference and query data sets have inconsistent and insufficient
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sequencing depths, we performed down-sampling experiments (at
various sampling rates 75%, 50%, 25%, 10%) for read counts on
the reference, query, and both reference and query data sets. Again,
CAME achieves superior performance comparedwith all five bench-
marked methods (Fig. 2C; Supplemental Figs. S7, S8). In contrast,
when the down-sampling rates are extremely unbalanced, some
of these methods may fail. For example, at a down-sampling rate
of 0.1 for query data sets, Seurat detects too few anchors to abort in-
tegration for label transfer, scmap fails to find enough genes because
the median expression in the selected features is zero in each cell
cluster, and SAMap fails because it cannot find cross-species edges
to link the data sets. Also, we have tested the robustness of CAME
under several hyperparameter settings including different hidden

units, different hidden layers, and two gene selection strategies
(highly variable gene [HVG] selection and the number of used
genes) (Supplemental Fig. S9). Generally, the results of CAME are
very robust under different settings. Although it may achieve a bit
better performance under 512 hidden units, but the computational
expense would be roughly four times as before, which may exceed
the graphic memory limit of a typical graphic card on some data
sets. When the graphic memory is enough, we suggest to use 512
hidden units to replace our default setting. All these results show
that CAME is robust to the insufficient and inconsistent sequencing
depths between reference and query pairs. The more comprehen-
sive comparisons with other methods can be seen in Supplemental
Figures S5 through S8.

A

D

B

C

Figure 1. Overview of CAME. (A) The architecture of the heterogeneous graph neural network in CAME. The scRNA-seq data of both reference and query
species and their homology genes are encoded as a heterogeneous cell–gene graph. The cell–gene edge indicates that the cell has non-zero expression of the
gene. The gene homologous mappings are represented by a gene–gene bipartite graph, with each edge indicating a gene homology. Note that the homol-
ogous gene mappings can be many-to-many homologies. To preserve the intrinsic data structure, the within-species cell–cell edges are adopted where an
edge between a pair of cells indicates that one is the k nearest neighbor of the other (k=5 by default). The heterogeneous graph and the gene expression
profiles are input to CAME, passing through the inductive embedding layer, the recurrent relational graph neural network, and the graph classifier with at-
tentionmechanisms. Themodel is trained byminimizing the cross-entropy loss calculated between themodel prediction and the given labels of the reference
cells in an end-to-endmanner. (B) Graph spatial convolutions for six different types of edges, including “a cell expresses a gene,” “a gene is expressed bya cell,”
“cell–cell similarity,” “gene–gene homology,” “cell self-loop,” and “gene self-loop” with the edge type–specific convolution weights. (C) Heterogeneous
graph attention classifier on the last layer, where each cell pays different attention to its neighbor genes. The output cell-type probabilities are calculated
by theweighted sum of the neighbor-gene embeddings, followed by the softmax normalization. The attention weights are calculated from the concatenated
cell and gene embeddings with a linear transformation, followed by activation and the softmax normalization among the neighbor genes of the cell. (D) The
output of CAME includes the probabilistic cell-type assignment of the query species, as well as low-dimensional embeddings of the cells and genes from both
species. The gene embeddings are used for joint module extraction that allows inter-species comparison of conservative or divergent characteristics.
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CAME robustly aligns homologous cell types across

species and multiple references

In addition to the accurate cross-species cell-type assignment,
CAME is also capable of aligning homologous cell types from dif-

ferent species, even when crossing distant species. For example,
when aligning cell types between the mouse (Tasic et al. 2018)
and turtle (Tosches et al. 2018), CAME successfully distinguishes
and aligns eachmajor type, like inhibitory and excitatory neurons,
whereas the alignments by Seurat are incapable. CAME also

A

B

C

Figure 2. Benchmarking cross-species cell-type assignment performance of CAME. (A,B) Performance comparison of CAME and five other approaches in
terms of cell typing accuracy on 139 pairs of cross-species scRNA-seq data sets (A) and on 510 pairs of cross-species scRNA-seq data sets that associatedwith
zebrafish (B), where each point represents a pair of cross-species data sets and is colored by tissue. The notation “X-Y” indicates that X is the reference and Y
is the query. (H) Human, (M) mouse, (C) chick, (Z) zebrafish. (C) Performance comparison of the classification accuracies of CAME and the five other meth-
ods on different down-sampling rates (0.75, 0.5, 0.25, 0.1) for read counts.
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separates the neural progenitor cells from excitatory neurons,
whereas LIGER merges these two groups. The visualization plots
using a uniform manifold approximation and projection
(UMAP) (McInnes et al. 2018) of cell embeddings of Cell
BLAST tend to lose some relations between cell types. For instance,
the inhibitory and excitatory neurons are not linearly separable on
the two-dimensional (2D) UMAP plot (Fig. 3A; Supplemental Fig.
S10).

When handling multiple references and batch information
is unavailable, most integration methods will suffer from batch
effects. In this situation, owing to the semisupervised manner,
CAME can ignore the batch effects of reference data. In contrast,
other integration toolsmay suffer from diverse sources of noises if
the potential batch effects (such as noises from different individ-
uals) are not considered. For instance, when aligning human and
mouse pancreas cell types with a human reference composed of
eight batches, cells of the same type (e.g., pancreatic A cell) but
from different batches are still separated from each other. The
query cells tend to be close to reference cells of the same protocol
on the UMAP plot of Cell BLAST (Fig. 3B). Even when the batch
labels are given, for some of the methods (e.g., LIGER [Welch
et al. 2019] and Seurat-v3 [Stuart et al. 2019]), the reference batch
effects still exist after cross-species integration (Supplemental Fig.
S11). We also used the graph connectivity (GC) score (Luecken
et al. 2022) to measure the quality of the integration across data
sets derived from different species. CAME achieved the best per-
formance compared with other methods in terms of this score
(Fig. 3).

CAME accurately assigns cell types in mouse brains and reveals

cell-type-specific gene modules

We applied CAME to assign themajor types of single cells from the
primary visual cortex and the anterior lateral motor cortex of mice
(Tasic et al. 2018), and used human brain cells as the reference data
set (Lake et al. 2018), which contains the cells from the hindbrain
that are not included in the mouse data set. CAME achieves an ac-
curacy of∼98%, similar to that of Seurat and SciBet, superior to the
other benchmarkedmethods (93%byCell BLAST and only 55%by
scmap). CAME also gets a highermacro-F1 score (0.55) than that of
Seurat (0.44) and SciBet (0.46), indicating that CAME also accu-
rately classifies the small groups. Specifically, those nonneuronal
types accounting for a small proportion of mouse cells are accu-
rately assigned, including endothelial cells (accounting for 0.6%
of human cells and 0.85% of mouse cells) and its subclass, brain
pericytes (0.61% of human cells and 0.14% of mouse cells). The
macrophages (0.56% in mice) are classified as microglial cells
(2.1% of human cells) that are biologically similar to this type
(Diehl et al. 2016). Both oligodendrocyte precursor cells (OPCs)
and oligodendrocytes inmicewere originally assigned as oligoden-
drocytes (0.75% of mouse cells) by the investigators, but they are
distinguished from each other in the reference of the human
data (Fig. 4A). The identities of OPCs are also verified by examining
the expression of typical marker genes (Zhang et al. 2019b) in each
cell type (Fig. 4B). In addition, the genes with top attention from
each cell type show high cell-type specificities, although these
genes are quite different across species (Supplemental Fig. S12A).
The UMAP plots of cell embeddings show that thesemajor homol-
ogous cell types arewell alignedwith each other. This suggests that
the major types of brain cells in humans and mice are well con-
served (Supplemental Fig. S10). Meanwhile, the two cell types
SMC and VLMC that did not appear in the reference data set

were predicated by CAME as brain pericyte (Fig. 4A). It is reason-
able because brain pericytes, VLMCs, and SMCs are all vascular
cells (Saunders et al. 2018). Moreover, another study suggested
that SMC and brain pericytes are both subtypes of mural cells
(Hughes and Chan-Ling 2004). Compared with other cell types
(e.g., neuron, endothelial, or oligo) in the reference, it is reasonable
that SMCs and VLMCs in the query data set were predicted by
CAME as brain pericytes with relatively low assignment scores.
The weak connection from SMC and VLMC to gene modules in-
deed indicates that the assignment of these two cell types is of
low confidence.

Similar results are observed when comparing four subtypes of
the inhibitory neurons (VIP+, SST+, LAMP5+, PVALB+) between hu-
mans and mice. CAME still achieves a cell typing accuracy of
98.3% and 95.5% for human-to-mouse and mouse-to-human la-
bel transfers, respectively, which are consistently higher than
that of the other methods (93.4% and 92.0% for SciBet, 98.0%
and 78.9% for Cell BLAST, 69.5% and 78.9% for scmap, 94.2%
and 87.2% for Seurat) (Supplemental Fig. S13A,B), although differ-
entially expressed genes (DEGs) for each homologous subtype
seem to not be transferrable across species (Supplemental Fig.
S13C,D).

CAME can also give interpretable gene embeddings and en-
able us to explore both intra- and inter-species relationships be-
tween genes. The UMAP plots of gene embeddings show that the
relative positions of human and mouse homologous genes are
very consistent (Fig. 4C).We further showed the averaged gene ex-
pression profile on the UMAP plots of gene embeddings, where
each point represents a gene (Fig. 4C; Supplemental Fig. S12B). It
is worth noting that the neighbor genes tend to be coexpressed
in the same cell types, such as those in excitatory or inhibitory
neurons, oligodendrocytes, and OPCs (Fig. 4D). There are more
cell-type-specific genes in human oligodendrocytes than in
mice, indicating the evolutionary divergence between humans
and mice. A population of genes is only detected in the human
data set, and most of them are associated with Purkinje cells and
cerebellum granule cells, which are not detected in the mouse
data set owing to their sources from different brain regions. These
genes are arranged where there are few mouse genes around (Fig.
4F; Supplemental Fig. S12B).

To further explore the influence of species-specific cell types
on CAME and call species-specific features, we used the inhibitory
cells from the mouse and human cortex as reference and query
data, respectively (Tasic et al. 2018; Hodge et al. 2019). Using the
inhibitory neuron homology provided by the investigators (Hodge
et al. 2019), we combined the subclass of the data sets into fivema-
jor cell types: LAMP5+, VIP+, SST+, PVALB+, and MEIS2+, where
MEIS2+ is a mouse-specific cell type that was not detected in the
human data. CAME still achieves a high cell typing accuracy of
95.3% for mouse-to-human label transfers, and few cell types in
the human data set were predicted as MEIS2+ cells (Supplemental
Fig. S14A). The embedding of MEIS2+ cells was consistent with
our expectations, where it showed a distinct position and barely
mixed with other human cells in the UMAP plot (Supplemental
Fig. S14B). From the aspect of gene modules, the four shared cell
types (LAMP5+, PVALB+, SST+, VIP+) are quite conservative, and
we also found a MEIS2+-specific gene module 8 from mouse genes
in the heterogeneous cell–gene graph (Supplemental Fig. S14C).
The mouse genes frommodule 8 showed enrichment in forebrain
development (Supplemental Fig. S14D). This is reasonable because
MEIS2+ is mainly involved in the positive regulation of neuron dif-
ferentiation and forebrain development in mice (Su et al. 2022).
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These results indicate that CAME preserves species-specific fea-
tures, and it will not force the integration of species-specific cell
types and related genes.

The aligned gene embeddings across species can facilitate us
to jointly extract cell-type-specific genemodules with different de-
grees of conservancies between species, and each module corre-
sponds to a cell type like OPCs or to related cell types like
endothelial cells and their subtypes (Methods) (Fig. 4E). As expect-
ed, based on Gene Ontology (GO) (The Gene Ontology Consor-
tium et al. 2000) enrichment analysis, we can see that the
functions associated with most homologous gene modules are
generally consistent with each other (Supplemental Table S2).
For example, both the human and mouse genes in module 2
(which is associated with inhibitory neurons) tend to relate func-
tions like “forebrain neuron differentiation” and “learning or
memory.” Both the human and mouse genes in module 6 (corre-
sponding to humanmicroglia and mouse macrophage) are related
to functions like “positive regulation of cytokine production” and
“leukocyte migration.” In contrast, the function “ventral spinal
cord development” is only enriched in human module 3 but not
in mice, considering their gene members are quite different, al-
though they are both associated with the function “cell differenti-
ation in hindbrain” and “cerebellar cortex formation.”

CAME reveals conserved expression dynamics during

spermatogenesis between human and macaque

The comparison of continuous biological processes between two
species is of much interest in evolutionary biology. We applied
CAME to two scRNA-seq data sets from human and macaque tes-
ticular single cells (Shami et al. 2020) with the former as the refer-
ence. CAME achieves a very distinct cell typing accuracy of 95.0%
(86.0% for SciBet, 76.1% for Cell BLAST, 87.3% for scmap, 89.1%
for Seurat) and a precise alignment of the homologous cell types of
human and macaque with each other (Fig. 5A,B). In addition, the
labeled spermatogonia, spermatocyte, round spermatid, and elon-
gating cells are correctly merged along the underlying differentia-
tion trajectory. This suggests that CAME could well decipher the
conserved four-stage spermatogenesis processes of humans and
macaques.

The continuously dynamic changing process of spermato-
genesis can also be revealed by the UMAP plot of gene embeddings
(Fig. 5C). As illustrated, the known stage-specific marker genes ex-
tracted by CAME (Shami et al. 2020) are highly coexpressed in the
four main stages of spermatogenesis and form well-organized ex-
pression dynamics, suggesting the order of critical gene activations
during spermatogenesis (Fig. 5C). By joint extraction of gene

A

B

Figure 3. Alignment comparison of cell embeddings across data sets by CAME and four other methods. (A) The UMAP plots of the cell embeddings by
CAME and four integration methods on the scRNA-seq data from turtle (reference) and mouse (query) brains. Cells are colored by their cell types (the first
column) or data set identities (the second column). (B) Similar settings to A. Here the reference data sets are the human pancreatic scRNA-seq data from
eight batches by three different platforms, and the query is frommouse pancreas cells. The UMAP plots of the third column show the reference cells, colored
by batch identities. The scores under both the figures in A and B represent the graph connectivity score for each method.

Cross-species cell-type assignment of single cells

Genome Research 101
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276868.122/-/DC1


A

C

E F

D

B

Figure 4. Application of CAME to human andmouse scRNA-seq data of brain cells. (A) The predicted cell-type probabilities for each cell (each column) in
the mouse brain scRNA-seq data. A maximum of 50 cells was subsampled from each type for visualization. The gene expressions of the human brain were
taken as the reference. Each row indicates a cell type in human data. (OPC) Oligodendrocyte precursor cells, (SMC) smooth muscle cell, (VLMC) vascular
and leptomeningeal cell. (B) The top homologous DEG expressions of oligodendrocytes and (predicted) OPCs in human andmouse data, including several
marker genes reported by previous literature (collected from CellMarker; colored by red or blue). (C) Cross-species alignment of the gene embedding out-
put by CAME, where each dot represents a gene, and each edge indicates the homology between a pair of genes. Genes shared between species are col-
ored by light blue (human) or pink (mouse), and the other genes are colored by dark blue (human) or dark red (mouse). (D) The UMAP plots of gene
embeddings showing the average expression patterns (z-scored across cell types for each gene) of four cell types (excitatory neurons, inhibitory neurons,
oligodendrocytes, OPCs) of human and mouse brains, where the color of each dot is scaled by the expression level of that cell type in the gene. (E)
Abstracted graph of the heterogenous cell–gene graph; each node represents a cell type (pink) or a gene module (light blue). The size of a node is scaled
by the number of single cells in that type or the number of genes in that gene module. The width of an edge is scaled by either the normalized mean ex-
pression levels of a cell type in the connected gene module or the conservancy of inter-species gene modules based on the gene embeddings learned by
CAME. (F ) Gene modules detected by joint module extraction of genes from humans (above) and mice (below).
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modules, we can see that the four stages of spermatogenesis are
quite conservative from the aspect of gene modules (Fig. 5D,E),
which cannot be revealed by separate module extraction

(Supplemental Fig. S15). For example,modules 3, 4, and 0 arehigh-
ly expressed in spermatogonia and spermatocyte, respectively, for
both humans and macaques. And round spermatids and

A

C

D

B

E

Figure 5. Application of CAME to human and macaque scRNA-seq data during spermatogenesis. (A) The predicted cell-type probabilities for each ma-
caque testicular cell (each column). A maximum of 50 cells was subsampled from each type for visualization. Gene expression in human testis was taken as
the reference. Each row indicates a cell type in the human data. (B) The UMAP plots of cell embeddings output by CAME, colored by data sets (left) or cell
type (right). (C) 2D visualization of gene embeddings showing the average expression patterns (z-scored across cell types for each gene) of the four stages
across spermatogenesis, where each point represents a gene, and the color of each scatter is scaled by the expression level of that cell type in the gene. (D)
Abstracted graph of the heterogeneous cell–gene graph. Each node represents a cell type (pink) or a gene module (light blue). The size of a node is scaled
by the number of single cells in that type or the number of genes in that gene module. The width of an edge is scaled by either the normalized mean ex-
pression levels of a cell type in the connected gene module or the conservancy of inter-species gene modules based on the gene embeddings learned by
CAME. (E) Gene modules detected by joint module extraction of genes from humans (above) and macaques (below).
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elongating spermatids share modules 2, 1, and 5 in different de-
grees. Typically, both human andmacaquemodules 4 are associat-
ed with functions like “RNA splicing,” and module 1 was
associated with “sperm motility” and “spermatid development/
differentiation,” which are typical characteristics of elongating
spermatids (Supplemental Table S3).

CAME accurately assigns retinal cell types between distant species

and shows superior power even for nonmodel species

For distant species, the markers of homologous cell types can be
quite diverse. For example, for themajor cell types in the retina de-
fined by scRNA-seq data, there are only a few shared DEGs for hu-
man, mouse, chicken, and zebrafish (Supplemental Fig. S16A),
which limits the performance of many marker-based methods
for cross-species cell-type assignment. Here we took the retinal
scRNA-seq data of adult zebrafish (Hoang et al. 2020) as the refer-
ence, and applied CAME to assign the retinal cells for two distant
species, human (Menon et al. 2019) and mouse (Macosko et al.
2015), and a nonmodel species, chick (Hoang et al. 2020). The pre-
diction performance of CAME is significantly higher than the four
othermethodswith distantly improved accuracy by 27.1%, 14.7%,

and 26.0% compared with the second best one for the zebrafish–
chick, zebrafish–mouse, and zebrafish–human pairs, respectively
(Fig. 6A). As a distance-basedmethod, scmap fails tomake effective
cell-type assignment between zebrafish and chick owing to the sys-
tematic differences in gene expression space cross-species. It is
worth mentioning that even for chick, CAME achieves superior
cell typing accuracy (with >27.1% improvement), showing its
great application potential in diverse nonmodel species.
Specifically, both Seurat and Cell BLAST fail to identify retinal
bipolar cells in chick, probably because there are only two one-
to-one-homologous genes that were differentially expressed in
both the zebrafish and chick retina (Fig. 6B; Supplemental Fig.
S16). Seurat mistakenly assigns retinal cone cells as rod cells for it
found few anchors between reference and query cone cells. In ad-
dition, the nonastrocytic inner retinal glial (NIRG) cells in chick
retina, which have no homologous type in the reference (zebra-
fish), are assigned as “macroglial cells”with the probabilities lower
than the true macroglial cells (by 8% on average). The close loca-
tion distributions of NIRG and macroglial cells in the UMAP plot
indicate their high similarity (Fig. 6C), as described by previous
studies (Fischer et al. 2010; Zelinka et al. 2012). Moreover, 53 cells
originally annotated as “amacrine cell” are assigned as “microglial

A

B C

s

Figure 6. Application of CAME to retina scRNA-seq data between distant species. (A) Performance comparison of CAME and four other approaches, in-
cluding Seurat, scmap, SciBet, and Cell BLAST, in terms of cell typing accuracy on three pairs of cross-species scRNA-seq data sets about the retina with
zebrafish as the reference and with three species (chick, mouse, and human) as the queries. (B) Heatmap comparison of the assignment probabilistic ma-
trices of CAME and another top twomethods (Seurat and Cell BLAST) in A for each query cell (column) about the retina with zebrafish as the reference and
with chick as the query. For convenience, only 100 cells were subsampled from each cell type to visualize. Note that Cell BLAST only provides the P-value for
each query cell to its k (k=5 by default) nearest reference cells, so the probabilities were computed by averaging the labels of these reference cells with P-
values lower than 0.05. (C ) UMAP plots of the chick retinal cells colored by the original assignments and the predicted ones by CAME, Seurat, and Cell
BLAST using zebrafish as the reference.
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cell,” and canonical markers of “microglial cell” (C1QC, C1QA,
CSF1R, and CD74) (Xu et al. 2022) are indeed highly expressed
but rarely those of “amacrine cell” (Supplemental Fig. S16B), sug-
gesting CAME could potentially correct prior annotations. Note
that gene CD74 in chick and its two homologous genes cd74a
and cd74b in zebrafish aremore conserved than otherDEGs,which
indicates that non-one-to-one homologies can provide conserva-
tive features between distant species.

Discussion

Cross-species comparative and integrative analysis at single-cell
resolution has deepened our understanding of the origin and evo-
lutionary mechanisms of cellular states. Exploring the conserva-
tive and divergent characteristics of homologous cell states
between human and other model and nonmodel species can
help us to determine the animalmodel for studyinghumandisease
(Geirsdottir et al. 2019; Hodge et al. 2019; Drokhlyansky et al.
2020).

Existing approaches for cross-species integration were mainly
based on one-to-one homologous genes, but when it is needed to
align cell types across distant species, especially when a large num-
ber of gene duplications were involved during the evolution pro-
cess (Glasauer and Neuhauss 2014; Ravi and Venkatesh 2018),
considering only the one-to-one homologous genes will lead to
significant loss of information. Even so, cells of homologous types
are thought to have similar expression patterns; that is, they may
coexpress a cell-type-specific combination of genes. These genes
may not be easy to be identified as the marker genes with high ex-
pression levels but can act as “bridges” between cells that coexpress
them. In addition, the gene-homology mappings can bridge the
gene nodes of two species, where the non-one-to-one homologies
can also be used. Based on this, we propose CAME to use a hetero-
geneous graph neural network to encode the cell–gene–gene–cell
multipartite graph, boosting the “message-passing” from one spe-
cies to the other. As a result, the utilization of non-one-to-one ho-
mologous gene mappings makes a significant improvement on
cell-type assignment across zebrafish and other species. The het-
erogeneous graph is a good strategy to model the current task
with cross-species scRNA-seq data and gene homology mapping.
In the future, if one wants to adopt some prior knowledge about
cells or genes (e.g., GO), the hypergraph strategy can potentially
be adopted to expand the current model.

When handling multiple references, most integration ap-
proaches have to performpairwise alignment for individual batch-
es. However, the order of pairwise alignment can affect the results,
and the computational complexity rises quadratically with the
number of batches. Others like Harmony (Korsunsky et al. 2019)
andCell BLAST (Cao et al. 2020) can alignmultiple data sets simul-
taneously, once the batch labels are given. We showed that CAME
can remove batch effects for multiple references even when batch
labels are not provided. This is an important characteristic for inte-
grating various data sets and constructing a unified cell typing
reference.

By comparative analysis between human-versus-mouse
brains and human-versus-macaque spermatogenesis process, we
showed that CAME can not only achieve accurate and robust
cell-type assignment but also give gene embeddings that facilitate
the visualization of cell-type expression profiles on 2D UMAP
plots. In addition, the extracted cell-type-specific gene modules
can provide functional insights into the conservative and diver-
gent characteristics between species. We note that CAME relies

on the correct and reasonable annotation of reference data, which
limits the use of CAME in unsupervised scenarios.We expect it will
be solved in the future.

It should be noted that the inter-species gene homologymap-
ping is still developing, and different methods like Ensembl_Com-
para (Vilella et al. 2009), Domainoid (Persson et al. 2019), and
Hieranoid (Schreiber and Sonnhammer 2013; Kaduk and Sonn-
hammer 2017) could share different levels of inconsistency (Ne-
vers et al. 2022). We compared the performance of CAME with
the homologous gene relationships inferred by Ensembl_Compara
and Domainoid, respectively. The homologous gene relationships
inferred by them indeed showed different levels of inconsistency
but still shared very larger proportions, ranging from 47.5% to
88.9% (Supplemental Fig. S17A). The accuracies of CAMEwith ho-
mologous genes provided by these twomethods are very compara-
ble and have no significant differences (i.e., P-value=0.701 with
the paired t-test, and P-value =0.941 with the rank-sum test) (Sup-
plemental Fig. S17B–D). These results show the stability and ro-
bustness of CAME under homologous gene relationships inferred
by different methods.

Last but not least, the heterogeneous graph neural network
structure of CAME can also be applied to the scenarios of within-
species data integration or when we consider only the one-to-
one homologous genes. The only adjustment is to replace each
gene–gene edge with a single gene node. Moreover, this strategy
can be applied for multi-omic label transfer and data integration.
In summary, we believe that CAME will serve as a powerful tool
for integrative and comparative analysis across species as well as
multi-omic integration.

Methods

Building a heterogeneous cell–gene graph

Let us denote a gene expressionmatrix withN cells andM genes as
X= (X1, X2, …, XN)

T∈RN×M, where each row Xi= (xi1, xi2, …xiM)∈
RM with an element xij representing the (normalized) expression
value of a cell i in a gene j. We take X(R) [ RNR×MR and
X(Q) [ RNQ×MQ as the reference and query data sets, respectively;
Y = (y1, y2, . . . , yNR ) [ RNR as the cell-type labels of the reference
data set; and a set of gene pairs {(gi, gj)}ij to indicate the homology
between two species. Note that MR is not necessarily equal to MQ.

The reference and query expression matrices and the homol-
ogy together are represented as a heterogeneous cell–gene graph
with binary edges, with each node acting as a cell or a gene (Fig.
1A). A cell–gene edge indicates that this cell has non-zero expres-
sion of the gene, a gene–gene edge indicates a homology between
each other, and a cell–cell edge indicates the expression profiles of
these two cells are similar to each other. In short, in this graph,
there are two types of nodes, cell and gene, and six types of edges
(relations) including “a cell expresses a gene,” “a gene is expressed
by a cell,” “cell–cell similarity,” “gene–gene homology,” “cell self-
loop,” and “gene self-loop.” Although the edge type “cell–cell sim-
ilarity” seems redundant, we have observed an accuracy improve-
ment of 1.29% on average when combining this edge type
(Supplemental Fig. S1B).

Designing a heterogeneous graph neural network

CAME adopts a heterogeneous graph neural network, which was
motivated by a relational graph convolutional network
(Schlichtkrull et al. 2018), for a graph of homogeneous nodes
but heterogeneous edges. We denote the convolution weights
for these six edge types as Wcg, Wgc, Wcc, Wgg, Wc, and Wg,
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respectively (Fig. 1B). Note that the values of Wgg are assigned in
the same way for one-to-one gene homologies and non-one-to-
one homologies. For each cell i, its initial embedding (the 0-th lay-
er) is calculated as

h(0)
ci = s(W(0)

c xci + b(0)c ),

where σ is the leaky ReLU activation functionwith a negative slope
of 0.05, xci is the gene expressions in the cell i (one-to-one homol-
ogous genes are taken as the common input features), and
b(0)c [ Rd(0) is the learnable bias vector. The genes, however, lack
the initial embeddings in the 0-th layer and can be aggregated
from their neighbor cells as follows:

h(0)
gj = s

∑

i[N c
gj

1
zgj ,c

W(0)
cg xci + b(0)g

⎛

⎜⎝

⎞

⎟⎠,

where N c
gj is the set of cells that have expressed the gene j, and

zgj ,c = |N c
gj | is the normalization factor. This approach keeps the

number of model parameters constant to the number of genes,
which differs from the commonly used initialization that assigns
a learnable embedding for those nodes without input features,
where the increasing number of model parameters might lead to
an overfitted model. It can also allow inductive learning for the
genes not involved in the training process.

In each hidden layer l≥1, the node features for the cell i and
the gene j can be calculated as

h(l)
ci = s

∑

j[N g
ci

1
zci ,g

W(l)
gc h

(l−1)
gj +

∑

k[N c
ci

1
zci ,c

W(l)
cc h

(l−1)
ck +W(l)

c h(l−1)
ci + b(l)c

⎛

⎜⎝

⎞

⎟⎠,

and

h(l)
gj = s

∑

i[N c
gj

1
zgj,c

W(l)
cg h

(l−1)
ci +

∑

k[N g
gj

1
zgj ,g

W(l)
gg h

(l−1)
gk +W(l)

g h(l−1)
gj + b(l)g

⎛

⎜⎝

⎞

⎟⎠,

respectively, and zci ,g = |N g
ci |, zci ,c = |N c

ci |, zgj,c = |N c
gi |, and

zgj ,g = |N g
gi | are the normalization factors. Note that we treat the

edges between homologous genes and the self-loop on each gene
identically; that is, W(l)

gg = W(l)
g . To boost the “message” flow be-

tween reference and query nodes, we adopt a recurrent convolu-
tion, where the parameters are shared across the hidden layers;
that is, W(l)

gc = Wgc, W(l)
cg = Wcg , W(l)

gg = W(l)
g = Wg , W(l)

c = Wc

and b(l)c = bc, b(l)g = bg for 1≤ l≤L, where L is the total number
of the hidden layers. Ablation experiments showed that this
recurrent manner gave an accuracy improvement of 2.09% on
average. We recommend setting L as two or three in practice,
and the default setting is two. We also adopt the layer normali-
zation (Lei Ba et al. 2016) for all the hidden states to facilitate
fast training convergence and high performance (Supplemental
Fig. S1).

When it comes to the cell-type classifier, we adopt the atten-
tion mechanism for graph convolution (Veličković et al. 2017),
where each cell pays distinct attention to its neighbor genes.
Specifically, for each cell i, the output states hout

ci for cell-type iden-
tification is only aggregated from their neighbor genes:

hout
ci =

∑

j[N g
ci

aijWout
g h(L)

gj + bout ,

where αij is the attention that the cell i pays to the gene j, calculated
as

aij = softmax(eij) =
exp (eij)∑

k[N g
ci

exp(eik)
,

with

eij = leakyReLU(aT [Wout
c h(L)

ci ‖ Wout
g h(L)

gj ]).

In addition, we usemultihead attention to enhance themod-
el capacity and robustness, where there are several attention heads
with their own parameters, and their outputs aremerged by taking
averages:

hout
ci = 1

K

∑K

k=1

hout,k
ci = 1

K

∑K

k=1

∑

j[N g
ci

aijWout, k
g h(L)

gj + bout,k

⎛

⎜⎝

⎞

⎟⎠,

where K is the total number of attention-heads, set as eight by de-
fault. We found that the attentionmechanism could give an accu-
racy improvement of 5.45% on average, and not accounting for
the cell self-loop edges on classifier edges could give an improve-
ment of 7.40% on average (Supplemental Fig. S1B).

Finally, the output layer states for cell-type classification were
normalized in two different ways. First is the softmax function over
cell types for multiclass classification:

Y ′ = softmax(Hout ), Hout = (hout
c1 , . . . , hout

cN )T ,

where Y
′
∈RN×T, and each row is the predicted probabilities over

the T cell types for a cell. Second is the sigmoid function for multi-
label classification:

Y ′′ = sigmoid(Hout ) = 1
1+ exp(Hout )

,

where Y
′ ′
∈RN×T, and each element Y ′′

it is the predicted probability
of the cell type t for the cell i. Note that Y

′ ′
is the multilabel predic-

tion that gives the probability independently for each cell type.

The classification loss and label smoothing

The classification loss for cells in reference data sets is calculated by
the weighted cross-entropy loss between the ground-truth label Y
and the predicted probabilities (Y

′
and Y

′ ′
, respectively), combined

with the L2 regularization as below:

Lc(XR, YR) = 1
NR

∑NR

i=1

∑T

t=1

wtYit ln (Y ′
it )+

∑T

t=1

wtYit ln (Y ′′
it )

[ ]
+ lu22

= 1
NR

∑NR

i=1

∑T

t=1

wtYit ln (Y ′
itY ′′

it )+ lu22,

where wt is the class-weight for cell-type t, satisfying
∑T

t=1
wt = 1. To

avoid the model being dominated by the major populations and

ignoring those rare types, we set wt / 1���
Nt

√ , and Nt is the number

of cells of cell type t in the reference data set. θ represents all the
learnable parameters, λ is the penalization coefficient that controls
the power of L2 regularization, and the default value of λ is 0.01.

To prevent the model from being overconfident and to im-
prove the stability and generalization of the model, we use label
smoothing (Szegedy et al. 2016).Weminimize the cross-entropy be-
tween the modified targets YLS [ RNR×T and the model outputs Y

′
,

where YLS
it = Yit(1− a)+ a/K, and the final objective function is
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as below:

Lsc = (1− a)Lc + a

T

∑T

t=1

1
NR

∑NR

i=1

ln (Y ′
itY ′′

it),

where ε controls the degree of smoothness, set as 0.1 by default.
Finally, CAME adopts the Adam optimizer (Kingma and Ba 2015)
with a learning rate of 0.001 for training.

Checkpoint selection

When training the heterogeneous graph neural network, we
would like to choose the epoch where the classification result of
query data sets achieves the highest accuracy.However, in practice,
the exact type labels of the query cells are unknown, hindering us
from choosing the best model.We put forward ametric to approx-
imate the accuracy. Specifically, we first cluster the query cells to
get the pseudolabel Ycluster for the query cells and introduce AMI
(Vinh et al. 2010) to account for the chance between the model-
predicted cell-type labels and the pseudolabels of the query cells
to help decide when to stop. AMI is defined as

AMI(Ycluster , Y ′) = MI(Ycluster , Y ′)− E[MI(Ycluster , Y ′)]
mean{H(Ycluster), H(Y ′)}− E[MI(Ycluster , Y ′)]

,

where H(X) is the entropy of X, andMI(X, Y) is the mutual informa-
tion between variables X and Y. E[MI(Ycluster, Y

′
)] is the expected mu-

tual information based on a “permutation model” (Ahrens 1971) in
which cluster labels are generated randomly subject to having a fixed
number of clusters and points in each cluster. We think that a well-
trained model is expected to preserve the intrinsic data structure so
that the predicted labels should be highly consistent with the pseu-
dolabels to some extent. We run the model with 400 epochs and
choose the checkpoint with the largest AMI. The clustering process
is described in detail in the section Preclustering of the Query Cells.

Training using the mini-batches on subgraphs

When training CAME on the graphic processing unit (GPU), the size
of a data set will be limited by the GPUmemory. For example, train-
ing CAME on 100,000 cells could take about 13.75 GB of GPUmem-
ory, which exceeds the graphic memory of most GPUs. To handle
this issue, we used a mini-batch training process by using the graph
segmentation technique. Specifically, we first randomly divided all
the cells (including cells in reference and query) into several groups,
taken as mini-batches. For each mini-batch, we created a node-in-
duced subgraph for a given group of cells, which contains all the cells
in this group and all the genes expressed by these cells. Then, we it-
erated all subgraphs and fed the subgraphs to the graph neural net-
work one by one. All the parameters were updated for each mini-
batch training process. We performed extensive experiments by us-
ing themini-batch training process and found it is suitable to choose
the batch size as 8192 or more, for that achieved the comparable ac-
curacy compared with whole graph training (Supplemental Fig.
S18A), and the cost of GPU memory stays constant (2.4 GB) for
data sets at different scales (Supplemental Fig. S18B). Such a low con-
sumption of graphic memory means you can use CAME on almost
all graphic cards. It is worth noting that the runtime of the batch-
training process will be largely increased (Supplemental Fig. S18B)
because we cannot feed forward the whole graph on a single epoch.
To fully test whetherCAME can be scaled to atlas-scale datawithmil-
lions of cells,we synthesized apair of data setswith about amillionof
cells in total by up-sampling from the human and mouse pancreas
data sets, which is shown in Figure 3B. Here, the number of cells
for both the reference and query data sets are 505,571 and
501,676, respectively. The peak GPU memory usage is still very low
(5.78 GB) because we used a default mini-batch size of 8192 (which

is relatively small compared with the number of cells); the peak RAM
usage is 87GB, andmost servers canmeet thismemory requirement.
The running time of CAME on such a large pair of data sets is 5.48 h,
which is acceptable, and one can use a bigger batch size to reduce the
running time if the GPU memory is large enough. All the tests were
run on a 3.79-GHz AMD 3900X central processing unit with 128GB
of RAM and a 3090 graphic card with 24 GB of RAM.

Preprocessing of the single-cell data sets

For each scRNA-seq data set, we first normalized the counts of each
cell by its library size (the total counts of that cell) with a scale fac-
tor multiplied (the median of library sizes by default) and log-
transformed with a pseudocount added for the downstream
analysis.

Gene selection

HVGs and DEGs are generally thought to be highly informative,
and the latter is especially useful for cell-type characterization.
Therefore, we used both HVGs and DEGs and extended them us-
ing homologous mappings to form the HIG sets for constructing
the heterogeneous graph. We adopted the same approach as
used in Seurat-v2 (Butler et al. 2018) with the SCANPY (Wolf
et al. 2018) built-in function highly_variable_genes() to identify
HVGs separately from both the reference and query data.
Specifically speaking, it calculated the average expression and dis-
persion (variance/mean) for each gene and placed these genes into
several bins based on the (log-transformed) average expression.
The normalized dispersions were then obtained by scaling with
the mean and standard deviation of the dispersions within each
bin. We selected the top 2000 genes with the highest dispersions
as HVGs of that data set.We computed the DEGs separately for ref-
erence and query data set by a Student’s t-test, which is performed
through the rank_genes_groups() function from the SCANPY
package (Wolf et al. 2018). For reference data, cells are grouped
by their cell-type labels, whereas for the query data, cells are
grouped by their pseudolabels, that is, the preclustering labels.

Genes used as the cell-node features should be shared be-
tween species (or data sets). For both reference and query data
sets, we first took the top 50 DEGs for each cell group and retained
genes with one-to-one homology in the other species. We then
took the union of the resulting two sets of genes for input. The re-
sultingnumber of genes used for defining cell-node features ranges
from 240 to 400 for distant species pairs (e.g., human to zebrafish)
and from 400 to 900 for the others.

We combined both HVGs and DEGs from the reference and
query data to decide the node genes used for training the graph
neural network. Specifically, we first took the union of the HVGs
and DEGs for each data set, denoted as Gr and Gq for reference
and query, respectively. Thenwe extracted the genes that have ho-
mologies in Gr from the query data, and the homologous genes for
Gq from the reference data, denoted as G(homo)

r and G(homo)
q respec-

tively. Finally, we determined Gr <G(homo)
q , the union of Gr and

G(homo)
q , as the node genes for the reference species and G(homo)

r <G
q

as the node genes for the query species. The resulting number of
node genes for each pair of data sets ranges from 5415 to 7050,
with a median around 6787.

Orthology inference

We downloaded the gene homology information for each species
pair from the BioMart web server (http://www.ensembl.org/
biomart/martview) derived from the was derived from the
Ensembl Compara pipeline (Kinsella et al. 2011). We also adopted
Domainoid (Persson et al. 2019) to rerun our benchmarks. We
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downloaded protein sequence per gene (FASTA) for all the species
used in this study from UniProt (Apweiler et al. 2004; https://www
.uniprot.org/tool-dashboard) and then used Domainoid to infer
orthologous protein pairs. After that, we converted the protein
ID to the gene name (or Ensembl gene id) according to the gene
format of each species involved in the data set by UniProt.

Construction of the single-cell graphs based on KNNs

The normalized expression matrices were centralized and scaled
within each data set, followed by principal component analysis
(PCA) to reduce the dimensionality. We searched approximate
KNNs for each cell based on the top 30 PCs with the highest ex-
plained variances. We adopted k=5 neighbors for each cell to
make the graph sparse enough for computational efficiency.
These neighbor connections provided “cell–cell” edges as a part
of the heterogeneous graph.

Preclustering of the query cells

To facilitate model selection, we preclustered the query cells using
a graph-based clustering method, that is, performing community
detection using the Leiden algorithm (Traag et al. 2019) on the sin-
gle-cell KNN graph. We constructed the KNN graph in almost the
sameway as described above, except that the number of neighbors
kwas set as 20, and the clustering resolution is set as 0.4 by default.

Unifying cell-type labels across data sets

For the data sets downloaded from the Cell BLAST web server (Cao
et al. 2020), their cell-type labels were already unified by Cell
Ontology (Diehl et al. 2016), a structured vocabulary for cell types,
whereas for unifying annotations of the other data sets, we referred
to Cell Ontology and manually adjusted the annotations. These
annotations were used as ground truth.

Gene module extraction

To extract cell-type-specific gene modules shared between species,
we took all the gene embeddings (of both species) on the last hid-
den layer and performed KNN searching for each gene. Like for
clustering cells, we performed Leiden community detection on
the KNN graph of genes. The clustering resolution was set as 0.8
by default. The expression information of HVGs and top DEGs
for each cell type were used, and thus the gene modules mainly
cover cell-type-specific ones. We can compute the z-scores of the
gene-to-cell-type using the function “came.ana.module_enrich-
ment_for_classes” in CAME to determine that. If some non-cell-
type-specific genes are included in the scRNA-seq data, these genes
will be assigned relatively low gene-to-cell-type z-scores. However,
they will be assigned to a certain gene module anyway.

Calculating weights between gene modules

The weight Sij between homologous gene modules Modi and Modj
on the abstracted graph was calculated as follows:

Sij =

∑
(g1[Modi)^(g2[Modj)

sim(hg1 , hg2 )

max (|Modi|, |Modj|) ,

where hg is the embedding vector of gene g, and sim( · , · ) is the sim-
ilarity function, cosine similarity by default. |Mod| represents the
number of genes in this module.

Benchmarking cell-type assignment

For benchmarking cell-type assignment, we collected 54 scRNA-
seq data sets from five tissues across seven different species
(Supplemental Fig. 3A; Supplemental Table S1), paired data sets
of different species within the same tissue, and filtered those pairs
where >50% of query cells is unresolved in the reference cell types,
resulting in 649 cross-species data set pairs. For each data set, we
removed the cell types of fewer than 10 cells as in the method of
Abdelaal et al. (2019). CAME was compared with five state-of-
the-art methods including SAMap (Tarashansky et al. 2021),
Seurat V3 (Stuart et al. 2019), scmap (Kiselev et al. 2018), SciBet
(Li et al. 2020), and Cell BLAST (Cao et al. 2020). For SAMap, we
preprocessed the raw data with the SAM() function and used the
same homologous gene mappings as CAME. For Seurat V3, we
input the raw data; used the default normalize process by
NormalizeData() function; extracted the top 2000 HVGs by its
FindVariableFeatures() function for reference and query, respec-
tively; and performed further annotation process as described in
its documentation. For scmap, we log-transformed the raw counts
with pseudocount 1 added and used its inherited function
selectFeaures() to select the top 2000 HVGs with a threshold=
0.1 in function scmapCluster() (which works better for the cross-
species scenario than its default value). For SciBet, we used R to per-
form all the operations. We first input the library-size-normalized
data calculated by the cpm() function of the package edgeR
(Robinson et al. 2010), used the SelectGene_R() function from
the SciBet package to select 2000 HVGs, and used SciBet_R() func-
tion to annotate the query data. For Cell BLAST, we used the raw
data as input and used find_variable_genes() to select HVGs with
default parameters and took the union of the HVGs between refer-
ence and query data sets. After that, the data sets were combined
together to remove their batch effects by using function
fit_DIRECTi() with lambad_reg = 0.001 as suggested by the original
investigators to stabilize the training process. Cell BLAST also pro-
vides a supervised training process that leverages the cell-type la-
bels of reference data sets to perform label transfer. However, it
led to a 4% decrease in the average accuracy compared with their
previous batch effect correction process. All hyperparameters not
mentioned were set with default values in these four packages.

To evaluate the performance of the cell-type assignment, we
adopted three metrics: Accuracy, MacroF1, and WeightedF1.
Accuracy is the most common criterion, and it directly measures
how many of the predictions are the same as the actual ones:

Acc = # {Y ′ == Ytrue}
# {Ytrue}

,

where # is the sign of cardinality. Specifically, # {Ytrue} means the
number of the total cells, and # {Y ′ == Ytrue} means the number
of correctly predicted ones.

We also used MacroF1 and WeightedF1 which consider the
F1-score for each cell type. For a binary classification task, precision
and recall are calculated as

precision = TP
TP + FP

,

and

recall = TP
TP + FN

,

respectively, where TP, FP, and FN represent the number of true
positives, false positives, and false negatives, respectively.
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The F1-score is the harmonic mean of precision and recall:

F1 = 2× precision× recall
precision+ recall

,

and the MacroF1 is defined as the average of class-wise F1-scores,

MacroF1 = 1
T

∑t

c=1

F(t)
1 ,

where F(t)
1 represents the F1-score for cell type t. The WeightedF1

considers the proportion of each class,

WeightedF1 =
∑T

t=1

Nt

N
× F(t)

1 ,

where Nt/N represents the proportion of type t in all cells.
We also used the graph connectivity (GC) metric (Luecken

et al. 2022) to assess whether the kNN graph representation, G,
of the integrated data directly connects all the cells with the
same cell identity label. For each cell identity label c, we created
the subset kNN graph G(NC;Ec) to contain only cells from a given
label. The GC is calculated as

GC = 1
|C|

∑

c[C

|LCC(G(Nc; Ec))|
|NC| .

Here, C denotes the set of cell identity labels, |LCC()| means the
number of nodes in the largest connected component of the
graph, and |Nc| is the number of nodes with cell identity c. The
GChas a range of (0, 1], where the bigger theGC score is, the better
connection of the integration is. Here, k is set as 15.

Benchmarking data integration

Seurat-v3 (Stuart et al. 2019) was performed using the correspond-
ing R package (R Core Team 2013) through SeuratWrapper, follow-
ing the online documents with default settings. Seurat adopts
normalization and the top 2000 HVGs by Seurat function
NormalizeData and FindVariableFeatures, respectively. Harmony
was performed on the PCA-reduced embeddings. The number of
reduced dimensions for it was set as 50 for all pairs of data sets.
LIGER (Welch et al. 2019) was input with the raw count data
and run with the default pipeline (http://htmlpreview.github.io/
?https://github.com/welch-lab/liger/blob/master/vignettes/
Integrating_multi_scRNA_data.html). Cell BLAST (Cao et al. 2020)
was performed using its Python package, following the standard
pipeline with the default settings (https://cblast.gao-lab.org/doc-
latest/start.html). SAMap (Tarashansky et al. 2021) was input
with the results preprocessed by SAM (Tarashansky et al. 2019;
https://github.com/atarashansky/self-assembling-manifold) and
the same homologous gene mappings used by CAME. The cell-
type annotations were transferred by using a diffusion process
with the default pipeline of SAMap (https://github.com/
atarashansky/SAMap/blob/main/SAMap_vignette.ipynb).

Software availability

The CAME algorithm is implemented in Python and is available
on GitHub (https://github.com/zhanglabtools/CAME). CAME
analysis scripts from this work are provided as Supplemental Code.
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