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Speech production relies on the interplay of different brain regions. Healthy aging leads to complex changes in speech processing and
production. Here, we investigated how the whole-brain functional connectivity of healthy elderly individuals differs from that of young
individuals. In total, 23 young (aged 24.6 ± 2.2 years) and 23 elderly (aged 64.1 ± 6.5 years) individuals performed a picture naming
task during functional magnetic resonance imaging. We determined whole-brain functional connectivity matrices and used them to
compute group averaged speech production networks. By including an emotionally neutral and an emotionally charged condition in
the task, we characterized the speech production network during normal and emotionally challenged processing. Our data suggest
that the speech production network of elderly healthy individuals is as efficient as that of young participants, but that it is more
functionally segregated and more modularized. By determining key network regions, we showed that although complex network
changes take place during healthy aging, the most important network regions remain stable. Furthermore, emotional distraction had
a larger influence on the young group’s network than on the elderly’s. We demonstrated that, from the neural network perspective,
elderly individuals have a higher capacity for emotion regulation based on their age-related network re-organization.

Key words: healthy aging; speech production network; functional magnetic resonance imaging; network analysis; emotional distrac-
tion.

Introduction
Studies have shown that speech processing and speech
production change in healthy aging (Mortensen et al.
2006; Abrams and Farrell 2011; Sörös et al. 2011).
Although there are different theories to explain the
emergence of these alterations (MacKay and Burke 1990;
MacDonald and Christiansen 2002; Dagerman et al. 2006;
Lustig et al. 2007), the brain changes underlying altered
speech in healthy aging are not fully understood.

It is well known that speech production requires the
interplay of different brain regions (Blank et al. 2002;
Heim 2005; Sörös et al. 2006; Hickok and Poeppel 2007;
Price 2012; Fuertinger et al. 2015). Graph-theoretical
network analysis (Bullmore and Sporns 2009) provides
a comprehensive framework for the investigation of
how different brain regions build large-scale functional
networks. Two aspects of network function, namely
network segregation and integration, are commonly used
to characterize a network and to highlight differences
between networks. Network segregation describes how
functionally clustered information processing is within
the network, whereas network integration refers to
how well information from segregated areas can be
integrated, that is, jointly processed (Friston 2011).

Studies on RSNs have shown network integration to
remain stable even in later life stages (Song et al. 2014;
Geerligs et al. 2015; Varangis et al. 2019). Network
segregation has been somewhat controversial, with
some studies reporting an increase during healthy aging
(Sala-Llonch et al. 2014; Shah et al. 2018), whereas others
found a decrease (Chan et al. 2014; Song et al. 2014).
Furthermore, Meunier et al. (2009) have shown that
although network modularity does not differ between
age groups, network communication patterns change
with age.

Although there is an abundance of network studies on
resting state brain function, network literature on speech
processing is scarce. A study by Simonyan and Fuertinger
(2015) on whole-brain connectivity illustrated that the
speech production network (SPN) differs from the whole-
brain resting state network (RSN), in that it recruits more
regions (i.e. the IPL and the cerebellum) than the whole-
brain RSN, is characterized by a functionally more domi-
nant left hemisphere and is more integrated as well as
more segregated. However, this study did not compare
age groups, so that it remains unclear whether aging
effects found in the whole-brain RSN are also present in
the SPN.
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Therefore, we aim to compare the whole-brain speech
production network between healthy agers and young
individuals. We employ different graph-theoretical
analysis methods, looking at network metrics and net-
work communication patterns using a picture naming
paradigm to assess active network metrics. We expect
changes in metrics and hub distribution similar to those
reported in the RSN mentioned previously (Meunier et al.
2009; Sala-Llonch et al. 2014; Song et al. 2014; Geerligs
et al. 2015; Shah et al. 2018; Varangis et al. 2019). However,
as healthy elderly individuals are commonly able to
communicate in a sufficient way, we hypothesize that
there might be key areas in the brain, namely those
that play a key role in the SPN, whose communicative
contributions to the network are robust against aging
effects. To investigate this, we introduce the notion of
network pillars, which carry the communicative load
of the network. We then assess how aging affects the
presence and distribution of these network pillars.

In addition, we included emotional primes into our
study paradigm. Similar to its influence on speech
processing, healthy aging has been shown to affect
emotional processing. The positivity effect proposed by
Carstensen and Mikels (2005) describes the phenomenon
that elderly individuals are more sensitive to positive
information and tend to neglect negative information.
Furthermore, the elderly seem to have an increased
capacity for emotion regulation (Eldesouky and English
2018). In young adults, emotional priming has been
shown to interfere with cognitive functions (Dolcos and
McCarthy 2006; Gupta and Raymond 2012; Hur et al.
2017). We hypothesize that healthy elderly individuals
might be more robust against emotional priming in terms
of behavioral outcome as well as concerning changes in
brain activity.

It has been suggested that resting state connectivity
shapes task-based connectivity (Di et al. 2013; Cole et al.
2014, 2016). We therefore expect aging-related changes in
the whole-brain SPN to reflect those reported for resting
state connectivity. Based on RSN research, we hypoth-
esize that network integration of the SPN will remain
stable during healthy aging, but network segregation
will increase (Sala-Llonch et al. 2014; Song et al. 2014;
Geerligs et al. 2015; Shah et al. 2018; Varangis et al.
2019). Furthermore, we expect that emotional priming
will increase network segregation and decrease network
integration in the young group, as has been shown previ-
ously by Zhang et al. (2015). However, due to changes in
emotional processing described previously, we hypothe-
size the influence of affective priming on the elderly’s
network to be less pronounced. Lastly, we hypothesize
that regions, which play a key role in the SPN will remain
stable during aging and after emotional distraction.

Methods
Participants
Twenty-five young healthy volunteers and 25 elderly
healthy volunteers were recruited for this study. All

participants were right-handed native German speakers.
Exclusion criteria were neurological and/or psychiatric
diseases, articulation disorders, and regular intake of
psychoactive drugs (medical or recreational). Hand-
edness was determined with help of the Edinburgh
Handedness Inventory (Veale 2014). To rule out the
presence of depressive symptoms, the Beck Depression
Inventory II (Beck et al. 1996) was used.

Four participants had to be excluded from the study.
One named the primes in addition to the objects and
therefore solved a different task, 1 participant exhibited
too much head movement during scanning and 2 partic-
ipants presented with an abnormal mean connectivity
strength in both conditions as determined by an outlier
analysis using Tukey’s fences (Tukey 1977). Therefore,
23 young healthy volunteers and 23 old healthy vol-
unteers were included in the analysis (Table 1). Groups
were matched in gender and years of education. As was
to be expected, elderly individuals exhibited more head
motion (average as well as maximum displacement) than
younger individuals. However, head movement was cen-
sored during preprocessing to account for this (see Func-
tional network construction).

All participants gave their written informed consent.
This study was approved by the local ethics committee
and was conducted in accordance with the Declaration
of Helsinki.

Experimental paradigm
During the functional magnetic resonance imaging
(fMRI) scans, participants underwent an overt picture
naming task. In 2 runs, participants were shown a total
of 60 every-day inanimate objects taken from the Bank
of Standardized Stimuli (Brodeur et al. 2014), which they
were supposed to name correctly (30 per run, Fig. 1).
Preceding each picture was a presentation of a facial
prime showing either a neutral (neutral condition) or a
disgusted (disgusted condition) expression. Primes were
obtained from the Radboud Faces Database (Langner
et al. 2010). Fifteen male and 15 female faces were
chosen. Faces were pseudo-randomly matched with
objects such that each object was once preceded by
the neutral and once by the disgusted version of the
same face. Each face appeared once per run (but with
2 different expressions). Each object appeared twice,
either in the first or in the second run. Primes were
shown for 300 ms, immediately followed by 1,000 ms
of stimulus presentation. During the inter-stimulus
interval of 8,700 ms a white background was shown.
Overt naming task can cause movement artefacts in
MRI scans. This was accounted for in later processing
steps (see Functional network construction). After the
fMRI scans, participants solved the same task in an
acoustic chamber, where their answers were recorded
for further analysis. The number of correct responses
was obtained in both settings (magnetic resonance
imaging, MRI and acoustic chamber). Performance in
the scanner was 99.1% in the young group and 98.9%
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Table 1. Participant characteristics.

Young Elderly P

Age 24.6 ± 2.2 64.1 ± 6.5 < 0.001
Gender (f/m) 13/10 12/ 11 0.77
Years of education 17.6 ± 2.2 17.7 ± 4.0 0.98
Montreal Cognitive Assessment 29.0 ± 1.2 28.4 ± 1.3 0.11
Average head motion (relative) 0.078 ± 0.018 0.144 ± 0.039 < 0.001

Note: Statistical significance was determined using unpaired t-tests, except for gender, for which significance was determined with a Qui2 test.

Fig. 1. Experimental paradigm: facial primes were presented for 300 ms, immediately followed by a 1,000-ms presentation of the object to be named.
Then a white background image was shown for 8,700 ms. Each object appeared twice, once preceded by a neutral and once by a disgusted expression
of the same face.

in the elderly group. As performance in the acoustic
chamber was 99.4% for the young group and 98.3% in
the elderly group, the tasks were deemed comparable.
Only correct answers were included in the MRI analysis.
Participants were asked to score all facial primes on
a scale from 1 (negative emotional expression) to 9
(positive emotional expression). These emotional scores
were used to assess whether there were age differences
in perceived emotional valence of the facial stimuli.

Behavioral analysis
Audio recordings were analyzed to assess differences
in speech onset due to emotional distraction. Chronset
(Roux et al. 2017) was used to automatically determine
latencies for all recordings. The recordings of 3 partici-
pants had to be manually noise corrected before being
fed into Chronset, as noise levels were too high to allow
for the algorithm to successfully detect speech onset.
Emotional scores of the facial primes were averaged for
each condition (neutral and disgusted) and then com-
pared between groups. Both speech onset and emotional
scores analysis was done by a mixed analysis of variance
(ANOVA), where group served as a between subject factor
and emotion (neutral and disgusted) served as a within
subject factor (P < 0.5).

Image acquisition
A 3T whole-body MRI scanner (Siemens Magnetom
Prisma, Siemens Healthineers, Erlangen, Germany) with
a 64-channel head coil was used to acquire structural
and functional scans. Stimuli were presented using

Cogent 2000 developed by the Cogent 2000 team at the
Leopold Muller Functional Imaging Laboratory and the
Institute of Cognitive Neuroscience and Cogent Graphics
developed by John Romaya at the LON at the Wellcome
Department of Imaging Neuroscience.

A whole-brain echo planar imaging (EPI) sequence
with the following parameters was used to obtain the
functional scans: 310 volumes, 36 slices, time repetition
(TR) = 2 s, time echo (TE) = 30 ms, slice thickness = 3 mm,
field of view (FOV) = 192 mm × 192 mm, flip angle = 75◦,
and voxel size = 3 × 3 × 3 mm3.

Structural images were obtained as 3D T1-weighted
scans using a magnetization prepared rapid gradient-
echo (MPRAGE) sequence with the following parameters:
1 volume, 224 slices, TR = 2 s, TE = 2.07 ms, TI = 952 ms,
slice thickness = 0.75 mm, FOV = 240 mm × 240 mm, flip
angle = 9◦, and voxel size = 0.75 × 0.75 × 0.75 mm3.

Task activation analysis
In order to better understand what kind of brain activa-
tion was elicited during our paradigm, we ran a general
linear model (GLM) task activation analysis. This can be
found in the Supplementary Material.

Functional network construction
After skull stripping the structural images with ANTs
software (Avants et al. 2011) preprocessing for the graph-
theoretical analysis was done using in-house AFNI (Cox
1996) code created by running afni_proc.py. First, the
first 4 volumes of the functional scans were removed to
assure signal stability. All EPI images were despiked using
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default settings, temporally aligned to the beginning of
the TR using a Fourier interpolation, spatially aligned
to the first volume and normalized to the Talairach–
Tournoux space (nonlinear transformation). In addition,
scans were spatially smoothed using a 4-mm full width
at half maximum Gaussian kernel. Finally, the voxel time
series were normalized to their percent signal change,
meaning that they were scaled such that their mean was
set to 100. This allows for better comparison between
scans. TRs with motion artefacts above 0.5 mm were
censored during the following analysis by removing them
from the data set without interpolation. This affected a
maximum of 6% of TRs per participant. One participant
presenting with extensive head motion, leading to the
exclusion of >20% of TRs, was excluded from the anal-
ysis. The final preprocessed images were then used for
network construction.

Brain regions of interest (ROIs) were defined using
masks obtained from the cytoarchitectonic probabil-
ity maps and macrolabel atlas (Eickhoff et al. 2005;
Fuertinger et al. 2015). A total of 212 ROIs (142 cortical,
36 subcortical, and 34 cerebellar) were included in the
analysis.

For every ROI in every participant a time series was
computed by averaging the signals of the fMRI task of
every voxel within the ROI. Separate time series were
obtained for each condition, by only including trials of
that condition. For each trial (consisting of 300-ms facial
prime, 1,000-ms object presentation, and 8,700-ms blank
screen), we included 4 TRs in the time series, starting
with the first TR after object presentation. With the such
constructed time series, each participant’s condition-
specific connection matrix was constructed by calculat-
ing normalized mutual information (NMI) coefficients as
a measure of pairwise regional interactions. NMI coef-
ficients were chosen over Pearson’s correlation because
they come with the inherent advantage of being non-
negative, while preserving the nonzero structure of the
Pearson’s correlation (Fuertinger and Simonyan 2017). To
calculate NMI coefficients, the classical mutual informa-
tion (Cover and Thomas 2012) was divided by the geomet-
ric mean of the associated Shannon entropies (Shannon
1948). Therefore, the NMI is a statistical dependence
measure taking values from 0 (statistical independence)
to 1 (mutual statistical dependence).

For both conditions separately, participants’ connec-
tivity matrices were group-averaged. The groups’ con-
nectivity matrices were then used to create weighted
undirected graphs in which the ROIs were nodes and the
NMI coefficients were edge weights. Participants whose
connectivity matrices had an abnormal mean connec-
tivity strength according to Tukey’s fences (Tukey 1977)
were excluded from the respective group matrices.

Network density was calculated by dividing the num-
ber of edges present in the graph (i.e. the number of
nonzero NMI coefficients) by the number of possible
connections. As densely connected networks can show
random graph characteristics (Humphries et al. 2006;

Lynall et al. 2010), percolation thresholding was applied
to the group-averaged networks to ensure that connec-
tions included in the further analysis were meaningful
to the task and not resulting from noise and artefacts.
Percolation thresholding was performed as described by
Bordier et al. (2017). Their approach was shown to be
an appropriate thresholding method for settings where
differences in network density might be data inherent
(Bordier et al. 2017).

Network construction scripts were written in Python
3.7 (using open source libraries NumPy (Oliphant 2015),
SciPy (Virtanen et al. 2020), and Matplotlib (Hunter 2007)).

Graph-theoretical network analysis
The 2 groups were compared separately for each condi-
tion (neutral and disgusted) and for each group a com-
parison was made between conditions.

A total of 5 network metrics (network density, mean
nodal degree, mean nodal strength, mean clustering
coefficient, and global efficiency) were computed in
order to statistically compare network characteristics.
Two-tailed non-parametric permutation t-tests with
20,000 randomizations (P < 0.05 Bonferroni-corrected for
multiple comparisons yielding a significance threshold
of P < 0.002) were applied to assess statistical differences.
Permutation tests were chosen because they do not rely
on assumptions about the underlying distribution of the
measure under investigation, as this is often not known
for network metrics.

The mean nodal degree is calculated as the average of
each node’s number of nonzero connections. Mean nodal
strength describes the sum of weights of each node’s
connections averaged over all nodes. Both measures were
normalized by division through the number of network
nodes. They are measures of network integration, assess-
ing how well the network is connected. Global efficiency,
also a measure of network integration, was calculated
as the average inverse shortest path length. Path length
was defined as the sum of the inverse edge weights
of all edges belonging to the path. Thereby, global effi-
ciency assesses how well information can be propagated
throughout the network. The mean clustering coefficient is
calculated as the geometric mean of weights in triangles
around a node averaged across all nodes. It can reveal
the presence of functional cliques within the node’s
neighborhood, serving as a measure of nodal segregation.

Furthermore, the optimal modular decomposition of
each network was determined by assigning nodes to
modules such that the number of intra-module edges
was maximized and the number of inter-module edges
was minimized. This was achieved by maximizing the
Newman modularity (Newman 2006) with a heuristic
optimization strategy that employed the Kernighan–
Lin algorithm (Sun et al. 2009). Each node was first
assigned to an individual module. Then, the modularity
maximization algorithm was run 100 times. Repeating
the algorithm and then averaging the results reduced
instability due to randomness (Fuertinger et al. 2015). As
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module numbers were randomly assigned, they were
then changed by means of a permutation approach
to ensure maximal overlap of module assignment
between groups and conditions. The partition distance—a
measure of normalized variation of information between
2 module affiliation vectors (Meilă 2007)—was used to
compare the optimal modular decompositions between
groups and conditions.

In a last step of the analysis, hub formation was
assessed: Any node whose nodal degree or nodal strength
was >1 standard deviation (SD) above the mean was
considered a hub. Highly connected nodes (nodes within
top 30% of nodal degree and nodal strength) that did
not meet the hub criterium were considered as high
influence nodes. For further differentiation, hubs were
divided into connector hubs (facilitating communica-
tion between different modules) and provincial hubs
(facilitating communication within a module). For this
purpose, the nodal participation coefficient (sometimes
also called participation index; van den Heuvel and
Sporns 2011)—a measure of the distribution of inter-
vs. intra-module connections—was used, with a cut-
off value of 10% of the maximum nodal participation
coefficient. Hubs above the cutoff were termed connector
hubs, all other hubs were classified as provincial hubs.
Hubs were assessed concerning their type and spatial
distribution. We then determined network pillars, that
is, hubs which play an outstanding role in carrying the
information propagation within the network. Although
the concept of hubs as key network nodes is commonly
used in the literature, there is no consistent definition of
which nodes should be considered hubs (van den Heuvel
and Sporns 2013; Oldham and Fornito 2019). We therefore
decided to analyze hubs in a more detailed way. Here, we
will refer to hubs whose nodal degree or nodal strength
was 1.5 SD above the mean of all nodes as network pillars.
The cutoff of 1.5 SD was determined in a data-driven way:
all hubs were >1 SD above the mean of nodal degree or
nodal strength for the respective group in the respective
condition. However, no hub was >2 SD above the mean.
We therefore decided to look at the hubs that where
1.5 SD above the mean in 1 of the 2 metrics. We argue
that due to their exceptional number of edges and/or
their exceptionally strong connections with other nodes,
these hubs are especially vital for network functioning.
We assessed whether pillar distribution was robust
against aging and emotional distraction. The entire hub
analysis is of qualitative character and reported in a
descriptive manner, as it does not allow for statistical
testing.

Analysis scripts were written in Python 3.7 using
the aforementioned libraries. For the computation of
the optimal modular decomposition and the network
metrics, MATLAB (The MathWorks, Inc.) with the Brain
Connectivity Toolbox (Rubinov and Sporns 2010) was
employed. Furthermore, the BrainNet Viewer (Xia et al.
2013) was used for creating 3D network images within
reference brain models.

Data and code availability
The data used in this study will be made available
upon request under the conditions of a formal data
sharing agreement. The code used for this analysis is
publicly available at https://github.com/k-simonyan/
NetworkAnalysis_Speech_HealthyAging.

Results
Behavioral results
There was no significant difference in speech onset
between groups (F1,44 = 3.02, P = 0.09) nor between
conditions (F1,44 = 1.32, P = 0.26) and there was no
significant interaction effect (F1,44 = 0.87, P = 0.36).
Participants perceived disgusted facial primes (M = 2.49,
SD = 0.66) as more negative than neutral facial primes
(M = 4.96, SD = 0.48; F1,44 = 867.16, P < 0.0001). Although
elderly participants rated both neutral and disgusted
pictures slightly higher than young participants, there
was no significant group difference (F1,44 = 1.60, P = 0.21)
and no significant interaction effect (F1,44 = 0.51, P = 0.82).

Network metrics
Using a percolation thresholding approach, the final
group networks had different densities (see Table 2).
However, only in the disgusted condition the young
group’s network was significantly denser than that of
the elderly group. There was no significant condition
effect on densities. Mean nodal degree and mean nodal
strength differed significantly between groups. Both
measures were smaller in the elderly group in both
conditions. Mean nodal strength significantly differed
between conditions in the young group. The mean
clustering coefficient differed significantly between
groups in the neutral but not in the disgusted condition.
A significant condition effect was found in the young
group, but not in the elderly. Global efficiency did not
differ significantly between groups, but for the young
group, there was a significant increase in the disgusted
condition.

Communication patterns
Although the optimal modular decomposition, as mea-
sured by the partition distance, differed significantly
between groups in the disgusted condition, there was no
such effect in the neutral condition (see Table 3). Further-
more, there was no significant condition effect in either
group. The young group had an optimal modular decom-
position of 5 modules (Fig. 2): a parieto-occipital one that
extended into the cerebellum (purple), a subcortical one,
which extended into the cerebellum in the disgusted
condition (brown), a primarily peri-central one (green), a
very small module comprised of only 2 cerebellar nodes
(blue), and a distributed module with nodes in frontal,
parietal, and cerebellar regions (red). The elderly group
had 6 modules in the neutral condition and 5 in the dis-
gusted condition (Fig. 2). In both conditions there was an

https://github.com/k-simonyan/NetworkAnalysis_Speech_HealthyAging
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Table 2. Network metrics for all groups and conditions.

Group Young Elderly P

Network density Neutral 81.04% 49.08% 0.032
Disgusted 86.21% 49.61% 0.0004
P 0.435 0.967

Mean nodal degree Neutral 0.81 ± 0.19 0.49 ± 0.23 ∗∗
Disgusted 0.86 ± 0.18 0.49 ± 0.12 ∗∗
P 0.003 0.818

Mean nodal strength Neutral 0.10 ± 0.03 0.07 ± 0.04 ∗∗
Disgusted 0.11 ± 0.03 0.07 ± 0.12 ∗∗
P ∗∗ 0.487

Mean clustering coefficient Neutral 0.10 ± 0.01 0.12 ± 0.02 ∗∗
Disgusted 0.12 ± 0.02 0.12 ± 0.02 0.889
P ∗∗ 0.044

Global efficiency Neutral 0.109 0.110 0.831
Disgusted 0.125 0.113 0.046
P ∗∗ 0.616

∗∗P<0.0001. Note: Mean values are given ± 1 SD. P-values were determined by a permutation t-test with 20000 repetitions. Bold font indicates statistical
significance.

Table 3. Partition distances of module affiliations.

Comparison Partition
distance

P

Young neutral Elderly neutral 0.252 0.057
Young disgusted Elderly disgusted 0.307 0.001
Young neutral Young disgusted 0.227 0.367
Elderly neutral Elderly disgusted 0.132 0.497

occipital-cerebellar module (purple), a subcortical mod-
ule (brown), a very small cerebellar module (blue), and
a frontal module (red). In the disgusted condition, the
fifth module was a parietal one (green). In the neutral
condition, the parietal module was split in 2 (green and
yellow).

Communication patterns differed between groups and
conditions (Figs. 3 and 4). Young participants showed
connector hubs in 4 different modules (2 red, 10 green,
5 purple, and 6 brown) in the neutral condition, but no
connector hubs in the disgusted condition. A similar pat-
tern was observed in the elderly group, where a smaller
number of connector hubs were found in 3 modules (1
green, 5 purple, and 3 brown) in the neutral condition, but
none in the disgusted condition. Young participants had
fewer provincial hubs than elderly participants in both
conditions. Both groups showed an increase in provincial
hubs in the disgusted condition, but this increase was
more pronounced in the young (young: 8 vs. 28 and
elderly: 31 vs. 38). In both conditions, young participants
had a higher number of high influence nodes (neutral: 61
and disgusted: 72) than elderly participants (neutral: 30
and disgusted: 23).

When looking at the network pillars (Fig. 5), nearly all
pillars of the young groups’ network were also pillars
in the elderly groups’ network. However, in the elderly
groups’ network, additional hubs reached pillar status.
This was the case for both the neutral and the disgusted

condition. In the young group, pillars were very robust
against an emotional challenge. Of the 5 pillars found
in the neutral condition, 4 remained in the disgusted
condition (bilateral MCC and bilateral cerebellar lobule
VI). Only right area 3b lost pillar status after an emotional
prime. In contrast, the right temporal region of the tha-
lamus gained pillar status.

The elderly groups’ network exhibited similar pillar
robustness. As with the younger group, pillars in the
neutral condition remained in the disgusted condition
with the sole exception of right area 3b. In addition, the
right lingual gyrus and right cerebellar lobule VI gained
hub status in the disgusted condition.

Discussion
In this study, we determined whole-brain functional
group networks of young and elderly healthy individuals
during a picture naming task and examined how healthy
aging changes the SPN. We were specifically interested
in the robustness of network pillars, referring to key
communicative nodes in the network. By including an
emotional component in our paradigm, we were also
able to determine the influence of emotional priming
on network characteristics in both age groups, further
elucidating which network aspects remain stable after
an emotional challenge.

Our analysis revealed that the SPN changes during
healthy aging. We found that although the network’s
ability to propagate information remains stable, as deter-
mined by the fact that there is no difference in global
efficiency, network segregation is indeed affected by age.
In the absence of confounding factors such as emotional
distraction, the clustering coefficient was increased in
the elderly group, suggesting that healthy aging leads
to functionally more segregated network processing. We
hypothesized that our findings would reflect research
on age-related effects in RSNs, which was indeed the
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Fig. 2. Optimal modular decomposition and hub localization for each group and condition. Module affiliation is indicated by color: purple—parietal-
occipital-cerebellar module; brown—subcortical module; blue—cerebellar module; red—frontal module; green and yellow—parietal modules. Hub
characteristics are denoted by size: Largest nodes indicate connector hubs, followed by provincial hubs, high influence nodes and other nodes. Although
the optimal modular decomposition does not differ much between groups or conditions, hub characteristics and localization vary.

case. The RSN has been shown to exhibit stable net-
work integration (Song et al. 2014; Geerligs et al. 2015;
Varangis et al. 2019) and increasing network segregation
as measured by the clustering coefficient (Sala-Llonch
et al. 2014; Shah et al. 2018) during aging. However, con-
tradicting studies on network segregation have reported
a decrease in measures of segregation other than the
clustering coefficient (Chan et al. 2014; Song et al. 2014).

We also hypothesized that age influences SPN commu-
nication patterns. Our qualitative hub analysis showed
that healthy aging was associated with the presence of
fewer connector hubs and more provincial hubs, indicat-
ing that speech processing was achieved in a more modu-
larized manner than in young individuals. This fits with
our finding that the older network was more function-
ally segregated. Although the optimal modular decom-
position did not differ significantly between groups in
the neutral condition, which has previously also been
shown for resting state data (Meunier et al. 2009), the
interplay of the modules changed with age. Meunier et al.
(2009) report a shift in communication patterns similar
to what we found. The number of network modules they
determined for each group (5 for young individuals and
6 for older individuals) are the same that we observed,
and their spatial distribution is very similar as well. This
underlines our idea that aging effects on the SPN reflect
those on the RSN.

Our analysis of network pillars, that is, nodes carrying
the communicative load of the network, revealed that
areas, which are especially strong communicators within

the young network are robust against aging and do not
lose their pillar status. On the contrary, aging leads to
an increase in the number of such pillars. In the young
group, the MCC and the cerebellum, both bilaterally, and
reached pillar status. The MCC has been reported to play
a pivotal role in social cognition and the integration of
emotional processing and motor signals (Pereira et al.
2010; Apps et al. 2013). Furthermore, it is known to be
functionally connected to premotor, frontal, parietal, and
subcortical areas (Hoffstaedter et al. 2014), supporting
its status as a network pillar. The cerebellum has been
implicated to play a role in emotion perception and word
retrieval (De Smet et al. 2013; Adamaszek et al. 2017),
both of which were crucial aspects in the task at hand.

In the elderly individuals’ network, more regions
reached pillar status. Bilateral MCC and cerebellum
were again found to be network pillars, underlining
their importance for the speech production network.
In addition to these regions, which retained their pillar
status during healthy aging, the left fusiform gyrus, the
left lingual gyrus, and the left medial temporal gyrus
were new network pillars. Although the fusiform gyrus
is widely known for its role in face perception, it is also
implicated in object recognition (Weiner and Zilles 2016).
The lingual gyrus has been found to play a role in the
processing of facial expressions (Kesler-West et al. 2001;
Kitada et al. 2010). Although the function of the medial
temporal gyrus is very diverse, it seems to be active
during facial and language processing (Xu et al. 2015).
We conclude that the elderly’s network distributed the
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Fig. 3. Hub characteristics of the young group’s networks. Only nodes
that are hubs or high influence nodes are being displayed. Nodes are
arranged in 3 circles. Connector hubs are placed on the inner circle,
provincial hubs on the intermediate circle and high influence nodes
on the outer circle. Colors indicate module affiliation: purple—parietal-
occipital-cerebellar module; brown—subcortical module; red—frontal
module; green—parietal module (see Fig. 2). Young participants exhibit
connector hubs in the neutral condition but not in the disgusted condi-
tion. However, in the disgusted condition the number of provincial hubs
is greater than in the neutral condition.

communicative load between more task-relevant regions
than the young group’s network. This might be one
processing strategy to ensure successful functioning
in the presence of the reported age-related network
changes.

Fig. 4. Hub characteristics of the elderly group’s networks. Only nodes
that are hubs or high influence nodes are being displayed. Nodes are
arranged in 3 circles. Connector hubs are placed on the inner circle,
provincial hubs on the intermediate circle and high influence nodes
on the outer circle. Colors indicate module affiliation: purple—occipital-
cerebellar module; brown—subcortical module; red—frontal module;
green and yellow—parietal modules (see Fig. 2). Elderly participants
exhibit connector hubs in the neutral condition but not in the disgusted
condition. In the disgusted condition the number of provincial hubs
is greater than in the neutral condition. Furthermore, in the neutral
condition hubs are distributed over 5 modules, whereas in the disgusted
condition they only appear in 3 modules.

The secondary aim of our study was to investigate how
emotional priming influences the SPN and whether these
influences change during healthy aging. Our behavioral
analysis revealed that disgusted facial primes were



Jana Schill et al. | 9

Fig. 5. Network pillars. Bars depict nodal degree (light gray) and nodal strength (dark gray) for all hub nodes. Large circles denote connector hubs, smaller
circles denote provincial hub. The absence of a circle means that this node was not a hub in the respective network. Color indicates module affiliation.
Colored bars depict network pillars. Abbreviations: R, right; L, left; 2/3a/3b/6/17/18/44, Brodmann areas (BA) 2/3a/3b/6/17/18/44; 4a/4p, anterior/posterior
part of BA 4; 5M, subdivision of BA 5; Cbl-V/VI/VIv, cerebellar lobules V/VI/VI vermis; FG, fusiform gyrus; hOC4v, ventral part of area hOC4; IL, insula;
LG, lingual gyrus; MCC, middle cingulate cortex; MFG, middle frontal gyrus; MOG, middle occipital gyrus; MTG, middle temporal gyrus; OP1, operculum;
PCu, precuneus; PF/PFcm, area PF/PFcm in the inferior parietal cortex; TE3.0, area TE3.0 in the auditory cortex; Tp/Tpf/Tt, parietal/prefrontal/temporal
subdivisions of the thalamus; and TP, temporal pole.

indeed perceived as being more negative than neutral
facial primes, solidifying our paradigm. We were able
to show that priming the picture naming task with a
negative emotional stimulus (a disgusted face) lead to
distinct network changes in the young group. Mean nodal
strength and mean clustering coefficient, as well as
global efficiency increased during emotional processing.
There also was a trend for mean nodal degree, but this
did not remain after Bonferroni correction. We further
found that network communication patterns shifted
from primarily intermodular connections (many con-
nector hubs and few provincial hubs) to predominantly
intramodular communication, where no connector hubs
were present at all. This indicates more segregated
network function. To our knowledge, there is no literature
on neutral vs. disgusted priming effects on whole-
brain functional connectivity, but a study on affective
processing by Zhang et al. (2015) found that affective
functional networks are more segregated than neutral
networks, supporting our findings (note that Zhang
et al. (2015) report less integrated affective networks,
whereas we found an increase in 2 measures of network

integration). One possible explanation for increased
segregation could be that when faced with potentially
dangerous stimuli, communication between network
modules is downregulated to prioritize fast intramodular
processing. However, the design of the current study does
not allow verification of this assumption.

We were able to show that emotional priming effects
are less pronounced in the elderly group’s network,
as hypothesized. The only network metric affected by
priming was the clustering coefficient, and the observed
increase in this metric was much smaller than in the
young group. In terms of communication patterns, we
found the same qualitative changes as seen in the
young group (loss of connector hubs and increase of
provincial hubs), but also in this case the changes were
less pronounced than in the young group. We suggest
that our findings illustrate neural correlates of an
increased robustness against emotional distraction in
healthy aging. Our study therefore provides a network
explanation for the positivity effect (Carstensen and
Mikels 2005; Nashiro et al. 2012; Kehoe et al. 2013; Ge
et al. 2014) and the finding that emotional regulation
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improves over the life span (Mather and Carstensen 2005;
Mather and Knight 2005; Eldesouky and English 2018).

When looking at network pillars, we found that they
remain stable after emotional distraction. In the young
group, the number of network pillars was the same in
both conditions. The elderly’s network exhibited one pil-
lar more in the disgusted condition than in the neutral
one. We argue that network pillars represent key com-
municative players within networks, which are stable
against aging and emotional challenge.

It should be noted that the current analysis does not
provide information as to when the reported network
changes occur. As the study was cross-sectional and did
not include groups of intermediate age steps, it remains
unclear whether these network changes occur progres-
sively during adult life or whether there is a certain point
at which changes start to manifest. The mean age of the
young group was ∼24 years. Studies on synaptic circuitry
have reported that the period for developmental changes
extends into the third decade of life, and that these
changes underlie dynamic reorganization of the synaptic
circuitry (Petanjek et al. 2011). It is therefore possible
that the network changes observed here reflect these
developmental changes to some extent. Further analyses
stratifying different periods of life would be necessary to
discern when network alterations occur.

Applying both GLM (Supplementary Figs. S1 and S2,
Table S1) and graph-theoretical analysis methods to the
same data set enabled us to highlight that these meth-
ods can show complementary results. The GLM analysis
showed that the regions involved in solving the task were
very similar between groups and conditions. Especially
the condition contrasts revealed no difference in acti-
vation patterns. GLM analysis is therefore not sufficient
to illustrate how the conditions differ concerning brain
activity. Only by also looking at the graph-theoretical
results one can see a difference between the process-
ing of neutral vs. emotionally loaded tasks. The graph-
theoretical analysis revealed profound differences in the
processing of the 2 conditions.

Although our study provides new insight into network
changes underlying age-related speech production alter-
ations, one should consider its limitations. First, there is
no literature yet on appropriate sample sizes for fMRI
network analyses. Our sample size of 23 participants per
group might therefore not be sufficient to reflect real
population effects. However, our sample size is similar to
that of many studies in this field (Meunier et al. 2009;
Song et al. 2014; Fuertinger et al. 2015; Simonyan and
Fuertinger 2015; Fuertinger and Simonyan 2017). Fur-
thermore, our results are in line with studies reporting
much larger sample sizes (Geerligs et al. 2015; Shah
et al. 2018; Varangis et al. 2019). A second limitation is
the rather complex task design combining visual and
speech-related motor elements. Picture naming was cho-
sen as a well-established paradigm involving all levels
of language production. However, it does not only yield
language-related activation, but also visual activation.

Furthermore, by adding an emotional aspect into the
paradigm, it became even more complex. We believe that
the benefits of using this paradigm outweigh the diffi-
culties arising regarding its interpretability, as it yielded
results comparable with those of other studies and gave
new insight into network function, especially concerning
the location and stability of network pillars.

Conclusion
We investigated the effects of healthy aging and emo-
tional priming on the speech production network. We
were able to show aging effects on the SPN reflect those
on the RSN, and that SPN in the elderly is more robust
against emotional priming than that in the young. Our
study provides a network perspective on the positivity
effect (Carstensen and Mikels 2005) and the elderly’s
increased capacity for emotional regulation (Eldesouky
and English 2018). Furthermore, we identified pillars
mostly localized in tertiary associative areas of the
cortex representing key communicative players within
networks, which are stable against aging and emotional
challenges.
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