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Structural and functional magnetic resonance imaging (MRI) studies have suggested a neuroanatomical basis that may underly
attention-deficit–hyperactivity disorder (ADHD), but the anatomical ground truth remains unknown. In addition, the role of the white
matter (WM) microstructure related to attention and impulsivity in a general pediatric population is still not well understood. Using a
state-of-the-art structural connectivity pipeline based on the Brainnetome atlas extracting WM connections and its subsections, we
applied dimensionality reduction techniques to obtain biologically interpretable WM measures. We selected the top 10 connections-
of-interests (located in frontal, parietal, occipital, and basal ganglia regions) with robust anatomical and statistical criteria. We
correlated WM measures with psychometric test metrics (Conner’s Continuous Performance Test 3) in 171 children (27 Dx ADHD, 3Dx
ASD, 9–13 years old) from the population-based GESTation and Environment cohort. We found that children with lower microstructural
complexity and lower axonal density show a higher impulsive behavior on these connections. When segmenting each connection in
subsections, we report WM alterations localized in one or both endpoints reflecting a specific localization of WM alterations along
each connection. These results provide new insight in understanding the neurophysiology of attention and impulsivity in a general
population.
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Introduction
Inhibition capabilities are essential in human develop-
ment and are strong predictors of social and educational
life outcomes (Mischel and Ebbesen 1970; Shoda et al.
1990). Although many other factors can impact one’s
ability to delay gratification, it remains an important
contributor to attentional skills as well as impulsive
behaviors (Bari and Robbins 2013). Over the years,
inhibition capabilities have mostly been associated with
the right inferior cortex, the pre-motor supplementary
area and the subthalamic nucleus (Aron and Poldrack
2006; Aron et al. 2007). Functional magnetic resonance
imaging (MRI) studies have reported numerous times
the prefrontal cortex as the main activated regions
during response inhibition in adults (Rubia et al. 2003;
Aron and Poldrack 2006; Aron et al. 2007; Chevrier
et al. 2007). The WM fascicles comprise in the right
inferior frontal gyrus and pre-motor supplementary

area have also been associated with response inhibition
in a diffusion MRI (dMRI) study (Madsen et al. 2010).
Inhibition capabilities are also known to be part of
multiple complex cognitive construct such as impulsive
behavior and attentional skills (Bari and Robbins 2013).
Attention-deficit and impulsive behavior are major
limitations in an individual’s everyday life and activities,
mostly in school-aged children. As an example, adults
with attention-deficit–hyperactivity disorder (ADHD) are
less likely to have graduated from college compared with
controls, reflecting a major impact of these deficits on
educational performance (Biederman et al. 2012). The
impact of attentional deficits and impulsive behaviors
on everyday activities are mostly evaluated using clinical
diagnoses such as ADHD, borderline personality disorder
and Tourette syndrome (Puiu et al. 2018). Recently, the
National Institute of Mental Health urged researchers to
evaluate cognitive functions outside of criteria-defined
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diagnostic syndromes as part of their Research Domain
Criteria initiative. This article is a part of this new
initiative as it aims to uncover and understand the
structural neuroanatomy underlying attention deficit
and impulsive behaviors in a general population of
school-aged children while ignoring possible diagnosis.

Several previous studies in this field have evaluated
the attentional and impulsive performance in ADHD
patients, a very common disorder, affecting 3–8% of
school-aged children and persisting into adulthood in
65% of cases (Rubia et al. 2014; Polanczyk et al. 2015).
As with other psychiatric disorders, ADHD diagnosis
is based solely on subjective evaluations from either
parents, teachers, and/or clinicians as described in the
DSM-5 manual, an approach that does not describe
underlying neuroanatomical and physiological mech-
anisms that give rise to the cognitive and behavioral
manifestations (Rubia et al. 2014; Posner et al. 2020).
In response to the variability and heterogeneity of
this “syndromic” approach, there is potential for neu-
roimaging techniques such as MRI to elucidate the
functional and structural neuroanatomy behind ADHD
(Rubia et al. 2014). Many studies have addressed the
structural differences between ADHD patients and
controls reporting a volumetric reduction in total brain
volume and total gray matter (GM) volume including
differences in the prefrontal, frontal, occipital, and
parietal areas while divergent results have been reported
concerning total white matter (WM) volume (Valera et al.
2007; Hutchinson et al. 2008; Narr et al. 2009; Nakao
et al. 2011; Greven et al. 2015; Norman et al. 2016;
Silk et al. 2016; Ambrosino et al. 2017; Hoogman et al.
2017). Volumetric reductions have also been reported
in the basal ganglia region, mostly in the putamen,
globus pallidum, and caudate nucleus (Valera et al. 2007;
Ellison-Wright et al. 2008; Nakao et al. 2011; Frodl and
Skokauskas 2012; Norman et al. 2016). Differences and
delays in development of cortical thickness and surface
area have been reported from structural studies, mostly
in the prefrontal, frontal, parietal, temporal, and left
occipital lobes (Shaw et al. 2007; Narr et al. 2009; Almeida
et al. 2010; Shaw et al. 2012; Silk et al. 2016). Consistent
with the findings from structural studies, researchers
using task-based or resting state functional MRI have
frequently reported the implication of the inferior frontal
and superior frontal gyri, the supplementary motor
area, and the basal ganglia in the neurophysiology of
ADHD (Cortese et al. 2012; Hart et al. 2013; McCarthy
et al. 2014; Lei et al. 2015). An increase in the activation
of the default mode network has also been claimed
in the neurophysiology of ADHD in various studies
(Sonuga-Barke and Castellanos 2007; Cortese et al. 2012;
Lei et al. 2015).

With the advent and refinement of dMRI in the last
decades, researchers have turned their focus from the
functional activity of GM to networks of WM fibers
connecting these various regions implicated in the
neurophysiology of ADHD. In a review oriented to

clinicians, authors have listed many bundles thought
to be implicated in the neurophysiology of ADHD. These
bundles comprise the superior longitudinal fasciculus,
corticospinal bundle, fornix, and bundles connecting the
striatum, cerebellar, corpus callosum, corona radiata,
internal capsule, occipital, and frontal lobe (Cortese
et al. 2012). When evaluating the relationship between
WM microstructure and attention and impulsivity/hy-
peractivity performance in children, researchers have
identified bundles such as the thalamic radiation, corti-
cospinal tracts, forceps minor, and bundles connecting
regions of the parietal, occipital, orbitofrontal, and
prefrontal lobe (Qiu et al. 2012; Cao et al. 2013; Hong et al.
2014; Y.-H. Wu et al. 2014b; Cha et al. 2015; Ameis et al.
2016; Zhan et al. 2017; Lin et al. 2020; Sudre et al. 2020).
Although many bundles present strong associations,
results are still heterogeneous and are highly dependent
on the assessment method of attention and impulsivity
in children. In addition, the use of diffusion tensor
imaging (DTI)-derived measures in these studies does
not allow for direct interpretation of the physiological
context in the brain since they are not specific to any
biological properties and are not robust to crossing
populations that represents 90% of the brain’s WM
voxels (Jones 2010; Jeurissen et al. 2013; Jones et al. 2013).
Better understanding of WM connectivity will provide
information on the large-scale neuronal networks linking
relevant regions of the cortex. In addition, extracting the
local association fibers, which are underrepresented in
dMRI studies due to extreme methodological challenge
(Movahedian Attar et al. 2020) and evaluate how changes
in this microstructure could underly attention and
impulsive behavior in children.

This article goes beyond these limitations by (i) using
validated psychometric tests to measure attention and
impulsive behavior in a population-based cohort of
school-aged children instead of a syndromic diagnostic
approach and (ii) by using a state-of-the-art connectivity
pipeline based on the Brainnetome atlas allowing the
extraction of specific WM connections and (iii) by using
dimensionality reduction techniques to obtain biolog-
ically interpretable WM measures. The Brainnetome
parcellation is based on functionally driven criteria,
allowing for better interpretation of the connection’s
function. The use of the whole-brain approach combined
with the atlas allows for an inclusive approach rather
than a limited predefined region of interest. We aim
to elucidate, on a structural level, not only which
connections are associated with attention and impulsive
behavior but how alterations in the WM microstructure
are related to these cognitive functions. In addition, we
aim to uncover the localization of the WM alterations
along each identified connection. We hypothesize that
WM connections connecting the frontal lobe to the basal
ganglia nuclei will be more represented considering the
previous consistent association with response inhibition,
a strong influencer of attention and impulsivity. In
addition, we hypothesize that changes in microstructure
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Fig. 1. Flowchart of total population with exclusion reasons.

reducing the capacity of information transmission in
these WM fibers will be linked with a reduced attentional
performance or control of impulsive behavior.

Methods
Study population
Participants are from the population-based cohort GES-
Tation and Environment (GESTE) in Sherbrooke, Quebec,
Canada. Recruitment was done between 2007 and 2009
and women during the first trimester of pregnancy or at
delivery were enrolled (n = 800). Initial inclusion criteria
were women aged ≥18 years, no known thyroid disease
and no use of medication affecting thyroid hormone
level. Data were collected over 4 waves, with the fourth
currently in progress. In the fourth follow-up, children,
aged 9–13 years old, are undergoing complete psycho-
metric tests, including the Conners Continuous Perfor-
mance test 3 (CPT3) to measure attention and impul-
sive behavior, and dMRI acquisition. Total sample size
consisted of 309 children who participated in the fourth
wave of the GESTE cohort. From these participants, 198
had high-quality dMRI acquisition and 171 had complete

CPT3 results combined with high-quality dMRI (Fig. 1). Of
these participants, 27 children had a clinical diagnosis of
ADHD and 3 had a diagnosis of autism spectrum disorder
(ASD). At the time of visit, 5 children were under ADHD
medication and 23 children had taken ADHD or other
psychotropic medications during the year prior to the
visit. Study protocols were approved by both the Institu-
tional Ethics Boards of the University of Sherbrooke and
Columbia University.

Image acquisition
A 3-T whole-body scanner using a 32-channel head
coil (Ingenia, Phillips Healthcare) was used to provide
T1-weighted and single-shell high-angular resolution
diffusion imaging (HARDI) acquisitions. Parameters for
the T1-weighted structural acquisitions were: T1 3D
TFE (Turbo Field Echo) pulse sequence, 8◦ flip angle,
field of view (FOV) 240 mm, matrix size 240 × 240, slice
thickness 1 mm. For the single-shell HARDI acquisition,
the parameters were: b = 1500 mm/s2, 68 volumes (64:
b = 1500 mm/s2, 4: b = 0 mm/s2), FOV 230 mm, and voxel
size of 1.8 mm isotropic.
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Fig. 2. Overview of the preprocessing and processing steps.

Diffusion-weighted image processing
Full processing steps can be seen in Fig. 2. To evaluate
quality of acquisitions, visual quality control (QC)
of raw images was performed on all participants,
removing acquisitions with artifacts, slice dropping, or
strong head motion. Diffusion-weighted images were
processed using the Tractoflow pipeline (Jenkinson et al.
2012; Garyfallidis et al. 2014; Di Tommaso et al. 2017;
Kurtzer et al. 2017; Tournier et al. 2019; Theaud et al.
2020; Avants et al. 2009) (https://github.com/scilus/
tractoflow), an automated and reproducible pipeline
allowing the computation of all the diffusion-related
measures. Denoising, correction for eddy current and
motion correction, correction for diffusion distortion, N4
correction, and intensity normalization were applied to
raw images as part of this pipeline before computing the
diffusion models. Measures such as fractional anisotropy
(FA), mean diffusivity (MD), radial diffusivity (RD), and
axial diffusivity (AD) were computed from the diffusion
tensor model (Basser and Pierpaoli 1996). Measures such
as the apparent fiber density (AFDtot), number of fiber
orientation (NuFO), and apparent fiber density specific
to one population of fibers (AFDfixel) were computed

using the fiber-oriented distribution function (fODF),
which were estimated from the constrained spherical
deconvolution (Descoteaux et al. 2007; Tournier et al.
2007). Probabilistic tractography was then performed
using 10 seeds per voxel to generate the full-brain
tractogram based on the WM/GM maps (Descoteaux
et al. 2009). Following the tractography, visual QC was
performed on all subjects to ensure the quality of the
resulting maps, metrics, and tractograms.

T1-weighted image processing
T1 images are visually examined to prevent acquisitions
with artifacts or head motion before the beginning of
the processing steps. To perform tractography, denois-
ing, N4 correction, brain extraction, registration in diffu-
sion space, and segmentation have been applied to raw
images before computing the tracking maps as part of
the TractoFlow pipeline.

To generate brain parcellations, the T1 volumes have
been processed using the FreeSurfer pipeline (version
6.0, run with 3 T data option) on the CBRAIN web-
based computing platform allowing segmentation of the
cortical and subcortical areas, as well as volume and

https://github.com/scilus/tractoflow
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surface statistics per parcellation (Fischl 2012; Sherif
et al. 2014). Using a custom pipeline (https://github.com/
scilus/freesurfer_flow), we further divided brain regions
according to the Brainnetome atlas resulting in 249 brain
parcellations (Fischl 2012; Fan et al. 2016; Di Tommaso
et al. 2017; Kurtzer et al. 2017).

Segmentation of the tractogram
Combining the Brainnetome atlas with the full-brain
tractogram, we performed WM connection extrac-
tion using the state-of-the-art Connectoflow pipeline
(https://github.com/scilus/connectoflow) (Di Tommaso
et al. 2017; Kurtzer et al. 2017). Connectoflow is a con-
nectomic pipeline that automatically extracts streamline
connecting 2 different parcels of interest (ROIs). This
pipeline extracts connection-specific FA, MD, RD, AD,
AFDtot, NuFO, and AFDfixel metrics from the whole-
brain tractogram based on the atlas’ parcels. Resulting
connections are filtered for outliers, length, and looping
angles in the same manner that classical bundles are
filtered after their extraction and are registered in MNI
space to compute a similarity metric for each connec-
tion across all subjects. Using this whole-connectome
approach allows us to identify connections that rely
on functionally driven sub-cortical and cortical parcels
rather than known well-defined classical WM bundles.

Tractometry
To perform connection-profiling, we used the
Tractometry-flow pipeline (https://github.com/scilus/
tractometry_flow) to further divide significant con-
nections into 100 sub-sections (Yeatman et al. 2012;
Cousineau et al. 2017; Di Tommaso et al. 2017; Kurtzer
et al. 2017). Diffusion measures such as AD, MD, FA, RD,
AFDtot, NUFO, and AFDfixel were computed individually
for each subsection further concatenated in a single
dataset to apply dimensionality reduction. Graphical
representation of each component presents the evolution
the WM microstructure along the connection allowing
the localization of the main difference between 2
conditions. One cluster of connection’s subsections were
considered as significantly different if 5 or more closely
localized subsections presented P-value < 0.05. Using
this number as a threshold allows us to reduce the
false positive bias as 5 sub-sections represent 5% of
the connection sub-sections. This ensures robustness
of our findings without using too conservative multiple
comparisons methods.

Dimensionality reduction
Classic diffusion measures such as DTI metrics are com-
mon in the literature but are highly correlated with
one another and difficult to interpret in relation to the
true biological situation. To overcome this limitation,
it has been proposed by Chamberland et al. to reduce
dimension of diffusion measures to improve tractome-
try of the WM connections (Chamberland et al. 2019).
We performed standardization of all diffusion measures
to a common scale and validation of suitability of our

sample (Kaiser–Meyer–Olkin, KMO > 0.6 and sphericity
P < 0.05). We performed principal component analysis
(PCA), using scikit-learn python library (Pedregosa et al.
2011), on all complete connection diffusion measures (FA,
RD, MD, AD, AFDtot, NuFO, and AFDfixel) for all connections
detected in every subjects to extract significant com-
ponents. Only components with eigenvalues superior to
1 were conserved as true component for multivariate
regression analysis. In addition to this first PCA anal-
ysis, we performed a second dimensionality reduction
approach using the same steps and criteria on only the
sections-specific metrics resulting from the tractometry
processing steps. Connections incorporated in this anal-
ysis were the connections-of-interest resulting from the
group comparison analysis.

Statistical analysis
All statistical analysis has been performed in Python.
We performed factorial analysis with oblimin rotation
and minimal residual method using the Factor_analyzer
python library (https://github.com/EducationalTesting
Service/factor_analyzer) on raw CPT3 variables to extract
factors corresponding to attention and impulsivity. We
validated the suitability of our sample by performing
the KMO test and the Bartlett’s test by using threshold
values of >0.60 for the KMO test and a P-value < 0.05 for
the Bartlett’s test. Factors yielding eigenvalues superior
to 1 were identified as true factors. Transforming data
according to the factors, we extracted 2 groups per
factor corresponding to poor performer (20% lower
attention/impulsivity) and good performer (20% high
attention/impulsivity). We then compared each diffusion
measures between the 2 groups of subjects at each
end of the spectrum for both impulsivity and attention
using a 2-tailed unpaired t-test. Connections were first
identified as significant if P-value < 0.05. To replace the
use of too conservative multiple comparison corrections,
we then filtered significant connections by conserving
only the ones that were significant across 1 or more
DTI measures (FA, MD, RD, and AD) and that were
significant for the NuFO, AFDtot, and AFDfixel while being
present in every subject from our population. These
filtering criteria ensure the robustness of the identified
connections by considerably reducing their numbers
(∼2000 to 10 connections). Following the tractometry
processing, using the same groups, connection profiling
was performed by computing the mean and standard
deviation (SD) of each subsection from both groups. In
order to evaluate significant difference, we performed a
2-tailed t-test between the mean of both groups on each
subsection. Subsections were considered significantly
different if P-value < 0.05.

Following the connectome-wide and connection pro-
filing analysis, for each connections meeting the previous
conditions, we performed multiple linear regression
(MLR) analysis between the extracted principal compo-
nents (PCs) from dimensionality reduction and atten-
tion/impulsivity score using the Statsmodels python
library (Seabold and Perktold 2010). Two separate MLR

https://github.com/scilus/freesurfer_flow
https://github.com/scilus/freesurfer_flow
https://github.com/scilus/connectoflow
https://github.com/scilus/tractometry_flow
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Table 1. Study population characteristics.

N (%) SD Age range
(years)

Sex
Male 104 (60.8) (9.12–13.27)
Female 67 (39.2) (9.45–13.33)
Total 171

Age 11.33 ± 1.31 (9.12–13.33)
IQ 103.25 ± 11.12
Handedness

Right 152 (88.9) (9.30–13.33)
Left 19 (11.1) (9.12–13.00)

Diagnosis
ADHD 27 (15.8) (9.47–12.61)
Male 18 (66.7) (9.47–12.61)
Female 9 (33.3) (10.58–12.36)
ASD 3 (1.8) (10.76–12.21)

Gestational age (weeks) 39.02 ± 1.52
Birth weight (g) 3362.37 ± 506.51
Moderate to late preterm
(32–37 weeks)

6 (3.51)

Maternal alcohol in pregnancy a 44 (25.7)
Smoking in pregnancy 12 (7.0)
Family income (CAD$) 110,399 ± 70,926
Parental ADHD 34 (19.9)

No diagnosis (144) ADHD (27) ASD (3)
CPT3 scores (±SD)

Detectability 57.61 ± 7.29 58.44 ± 7.81 58 ± 6.08
Omission 63.15 ± 13.65 64.85 ± 14.38 62.33 ± 15.04
Commission 52.42 ± 7.43 52.67 ± 6.72 53.67 ± 7.51
Perseverations 56.47 ± 12.91 60.3 ± 14.35 56.67 ± 9.61
HRT 50.75 ± 8.35 52.56 ± 10.15 50.67 ± 3.06
HRT SD 58.54 ± 12.28 62.44 ± 11.93 58.67 ± 3.06
Variability 56.28 ± 13.59 58.33 ± 11.95 51.33 ± 5.13
HRT block change 52.05 ± 10.65 51.19 ± 10.96 62 ± 23.07
HRT inter-stimulus interval (ISI)

change
55.28 ± 10.35 57.85 ± 12.87 57.33 ± 11.59

aNo heavy consumers.

analyses were conducted, the first time with and second
time without children presenting a diagnosis to validate
if the variability in cognition was explained solely by the
presence of diagnose children. The covariates used in
the MLR analysis were subject’s age, biological gender,
IQ (obtained from the WISC-IV global component), and
handedness (define as self-reported dominant hand).
Associations were significant if P-value was <0.05.

Results
Study population
From the initial 309 eligible participants, 171 participants
have been included in this analysis (Fig. 1).

Summary table of the population characteristics can
be seen in Table 1. Average age is 11.34 (±1.50) years
old for the male participants and 11.31 (±0.95) years
old for the female participants. Mean IQ of the study
population is 103.25 (±11.12) and 88.9% of the partici-
pants are right-handed. Of the 27 participants diagnosed
with ADHD, 18 are male and 9 are female. As shown
in Table 1, no significant differences between the raw

CPT-3 scores of each group have been observed in our
population. This suggests that children with a diagnosis
can present the same performance score as neurotypical
children.

CPT3 factorial analysis
First and second factor yielded eigenvalues of 4.23 and
1.92, respectively. Hit reaction time (HRT) SD, variability,
omission, and HRT interstimulus interval change were
the variables with the highest loadings for the first fac-
tor (0.99, 0.84, 0.71, and 0.58, respectively). Commission,
HRT, detectability, and perseverations were the variables
with the highest loadings for the second factor (0.76,
−0.69, 0.67, and 0.41, respectively). Detailed loadings and
eigenvalues can be seen in Table 2. Observing the con-
tributions of each score to the factors, we identified the
first factor as the attentional skills score and the second
factor as the impulsive behavior score.

Connection identification
The initial group comparison analysis yielded nearly
2000 significant connections between groups with higher
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Table 2. Eigenvalues and loadings for the 2 factors resulting
from the factorial analysis of the CPT3.

Factor 1 Factor 2

Eigenvalues 4.23 1.92
Loadings

Detectability 0.551 0.671
Omission 0.712 0.068
Commission 0.165 0.757
Perseverations 0.514 0.410
HRT 0.570 -0.691
HRT SD 0.998 0.003
Variability 0.841 0.084
HRT block change 0.397 -0.269
HRT ISI change 0.576 -0.139

and lower performance score. Following filtering steps,
the analysis yielded 2 significant connections for the
attentional score and 8 significant connections for the
impulsivity score. Connections between the right area
41/42 and right rostroventral area 40 (A41/42–RA40) and
right middle occipital gyrus and right inferior occipital
gyrus (MOG–IOG) were associated with attention score
(Fig. 3). Connections between the right medial area 6 and
right caudal dorsolateral area 6 (M6–CD6), right medial
area 6 and right posterior parietal thalamus (M6–PPT),
right area 46 and right lateral area 10(A46–LA10), left
fusiform gyrus medioventral area 37 and left inferior
occipital gyrus (FG37–IOG), left caudal lingual gyrus and
left occipital polar cortex (CLG–OPC), left caudal cuneus
gyrus to left medial superior occipital gyrus (CCG–
MSOG), right nucleus accumbens and right occipital
thalamus (NA–OT), and right dorsal caudate and right
lateral pre-frontal thalamus (DC–PFT) were associated
with impulsivity score (Fig. 3). Each connection was very
closely spatially located in-between each subject when
registered in a common space reducing the risk for false
positive connection extraction (Table 3).

Dimensionality reduction
Dimensionality reduction of connection metrics yielded
2 PCs with eigenvalues superior to 1. The first PC
explained 77.7% (eigenvalue = 5.44) of the variance con-
tained in all diffusion metrics and the second component
explained 18.6% (eigenvalue = 1.30) of total variance
(Fig. 4A). MD, AD, and RD had the 3 highest loadings
for the first PC (0.425, 0.422, and 0.416, respectively)
and AFDfixel, FA, and NuFo had the 3 highest loadings
for the second PC (0.866, 0.334, and −0.276, respectively)
(Fig. 4A). Based on metrics contribution, we interpreted
the first PC as a metric of microstructural complexity
and the second PC as a metric for axonal density.
Dimensionality reduction of sub-sections metrics yielded
similar PCs in the reverse order such as PC1 showed a
high contribution of FA, AFDfixel, and RD metrics (−0.496,
−0.442, and 0.442, respectively) as opposed to PC2 with
contribution of mostly MD, AD, and AFDtotal metrics
(0.645, 0.521, and −0.431, respectively) (Fig. 4B). PC1 was

interpreted as axonal density and PC2 as microstructural
complexity.

Relationship between WM microstructure
and cognitive functions
When keeping children with diagnosis, multivariate
regression analysis, using the complete connection
PCs, showed that increased microstructural complexity
was associated with a less impulsive behavior during
the CPT3 on connections connecting the left area 46
and left lateral area 10 (A46–LA10), left fusiform gyrus
medioventral area 37 and left inferior occipital gyrus
(FG37–IOG), left caudal cuneus gyrus and left medial
superior occipital gyrus (CCG–MSOG), and right dorsal
caudate nucleus and right lateral pre-frontal thalamus
(DC–PFT) while controlling for age, sex, handedness, and
IQ (β = −0.339, P = 0.0004, R2 = 0.09; β = −0.230, P = 0.003,
R2 = 0.07; β = −0.166, P = 0.011, R2 = 0.06; β = −0.182,
P = 0.041, R2 = 0.05; respectively) (Table 3). In addition,
increased axonal density was associated with a less
impulsive behavior on connections between the right
medial area 6 and right posterior parietal thalamus (M6–
PPT), and right dorsal caudate nucleus and right lateral
pre-frontal thalamus (DC–PFT) (β = −0.392, P = 0.027,
R2 = 0.05; β = −0.359, P = 0.028, R2 = 0.05; respectively)
(Table 3). No associations were found to be significant
with attentional skills. The addition of an interaction
between sex and WM microstructure was not significant
and, therefore, not kept in the model.

When removing children with a diagnosis (ADHD or
ASD), A46–LA10, FG37–IOG, and CCG–MSOG remained
significant regarding the association between microstruc-
tural complexity and impulsive behaviors (β = −0.287,
P = 0.007, R2 = 0.05; β = −0.178, P = 0.039, R2 = 0.03; β = −0.241,
P = 0.0006, R2 = 0.09, respectively) (Table 3). On the other
hand, the association between microstructural complex-
ity and impulsive behaviors did not remain significant
on connection DC–PFT (β = −0.095, P = 0.328, R2 = 0.01)
(Table 3). Connection M6–PPT remained significant and
connection M6–CD6 showed an association between
higher axonal density et less impulsive behavior during
the CPT3 (β = −0.576, P = 0.004, R2 = 0.06; β = −0.345,
P = 0.018, R2 = 0.04, respectively) (Table 3). DC–PFT did
not remain significant when removing children with
diagnosis while examining the axonal density and
impulsive behaviors (β = −0.328, P = 0.055, R2 = 0.03,
respectively) (Table 3). As for the attentional skills, no
connections were found to be significant when removing
children with a diagnosis.

Connection profiling
When evaluating only the endpoints of each connec-
tion, the group showing a more impulsive behavior
during CTP3 had a significantly higher microstructural
complexity in the endpoint of connection M6–CD6 (6
subsections, located between segment 1 and 11), whereas
the group showing a less impulsive behavior had a
significantly higher axonal density in the endpoint of
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Fig. 3. Top-10 connections-of-interest that survived the filtering steps from the group comparison analysis (20% higher score vs 20% lower scores).
These connections present significant difference on at least 1 DTI metrics (FA, MD, RD, AD) and AFDfixel, AFDtotal, and NuFo as well as being present in
every subject from our population. Orange box identifies connections significant for impulsivity and brown box for attention. A) CLG–OPC, B) DC–PFT,
C) M6–CD6, D) M6–PPT, E) A46–LA10, F) A41/42–RA40, G) MOG–IOG, H) CCG–MSOG, I) FG37–IOG, J) NA–OT. Color represents connections’ sub-sections.

Table 3. Results controlled for age, sex, handedness, and IQ from the multivariate regression analysis across all subjects (n = 171).

Connections Microstructural complexity Axonal density Similarityω (mm)

N β (95% CI) P R2 N β (95% CI) P R2

With diagnosis
Attention
A41/42–RA40 171 −0.08 (−0.19 to 0.04) 0.215 0.03 171 0.29 (−0.01 to 0.58) 0.056 0.04 1.99
MOG–IOG 171 −0.14 (−0.28 to 0.001) 0.051 0.04 171 0.23 (−0.12 to 0.58) 0.200 0.03 3.00
Impulsivity
M6–CD6 171 0.03 (−0.02 to 0.07) 0.261 0.03 171 −0.25 (−0.52 to 0.02) 0.070 0.04 3.03
M6–PPT 171 −0.08 (−0.17–0.02) 0.111 0.04 171 −0.39 (−0.74 to −0.04) 0.027 0.05 1.99
A46–LA10 171 −0.34 (−0.52 to −0.15) 0.0004 0.09 171 −0.15 (−0.56 to 0.26) 0.463 0.03 1.59
FG37–IOG 171 −0.23 (−0.38 to −0.08) 0.003 0.07 171 −0.37 (−0.74 to 0.001) 0.051 0.05 2.32
CLG–OPC 171 −0.06 (−0.12 to 0.01) 0.099 0.04 171 −0.15 (−0.42 to 0.12) 0.263 0.03 2.41
CCG–MSOG 171 −0.17 (−0.29 to −0.04) 0.011 0.06 171 −0.20 (−0.55–0.15) 0.266 0.03 2.01
NA–OT 171 −0.12 (−0.27 to 0.03) 0.114 0.04 171 −0.16 (−0.43 to 0.10) 0.227 0.03 2.87
DC–PFT 171 −0.18 (−0.36 to −0.01) 0.041 0.05 171 −0.36 (−0.68 to −0.04) 0.028 0.05 1.07
Without diagnosis
Attention
A41/42–RA40 142 −0.05 (−0.18 to 0.08) 0.427 0.03 142 0.29 (−0.04to 0.62) 0.082 0.04 1.99
MOG–IOG 142 −0.11 (−0.25 to 0.04) 0.151 0.04 142 0.17 (−0.27to 0.60) 0.449 0.03 3.00
Impulsivity
M6–CD6 142 0.02 (−0.03 to 0.07) 0.410 0.01 142 −0.35 (−0.63 to −0.06) 0.018 0.04 3.03
M6–PPT 142 −0.08 (−0.18 to 0.01) 0.092 0.02 142 −0.58 (−0.96 to −0.19) 0.004 0.06 1.99
A46–LA10 142 −0.29 (−0.49 to −0.08) 0.008 0.05 142 −0.26 (−0.70 to 0.18) 0.248 0.01 1.59
FG37–IOG 142 −0.17 (−0.34 to −0.004) 0.044 0.03 142 −0.28 (−0.69 to 0.12) 0.171 0.02 2.32
CLG–OPC 142 −0.07 (−0.14 to −0.001) 0.047 0.03 142 −0.09 (−0.38 to 0.19) 0.525 0.006 2.41
CCG–MSOG 142 −0.24 (−0.38 to −0.11) 0.0006 0.09 142 −0.33 (−0.73 to 0.08) 0.110 0.02 2.01
NA–OT 142 −0.12 (−0.28 to 0.04) 0.151 0.02 142 −0.16 (−0.44 to 0.12) 0.268 0.01 2.87
DC–PFT 142 −0.09 (−0.28 to 0.10) 0.328 0.01 142 −0.33 (−0.66 to 0.007) 0.055 0.03 1.07

ω: Mean space localization across subjects (mm), 0–4 mm: very close, 4–8 mm: similar, 8–12 mm: very different. Bold: Significant association

connection A46–LA10, FG37–IOG, and DC–PFT (6 sub-
sections (1–8), 10 subsections (1–15), and 7 subsections
(94–100), respectively) (Fig. 5). When focusing on clusters
located in the connection core, children showing a more

impulsive behavior had significantly higher microstruc-
tural complexity on connection FG37–IOG, CCG–MSOG,
NA–OT, and DC–PFT (11 subsections (30–43), 24 subsec-
tions (46–75), 15 subsections (71–86), and 9 subsections
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Fig. 4. Results from dimensionality reduction analysis using in A) complete connection PCs (whole connection metrics) and B) sub-section PCs (based
on the sub-sections specific metrics). Connections are colored from anatomy-based metric.

(59–72), respectively). Children with a less impulsive
behavior had a significantly higher axonal density on
cluster located in the core of connection CLG–OPC and
DC–PFT (7 subsections (15–27) and 7 subsections (42–52),
respectively). No statistically significant differences were
found between groups showing good or poor attentional
skills for axonal density or microstructural complexity.

Discussion
Localization of reported connections
This study identified multiple WM connections asso-
ciated with attentional skills and impulsive behaviors
as well as the impact of the WM microstructure on
these cognitive functions in a population of school-aged
children. We previously hypothesized that most identi-
fied connections would be between the frontal lobe and
basal ganglia. The use of a connectome-wide approach
allowed us to consider the entirety of the WM tracts
connecting all cortical and subcortical parcellations of
the Brainnetome atlas. This approach allows the evalu-
ation of WM connections that are not often seen in dMRI
studies, since they are not comprise within main WM

bundles. For impulsive behaviors, our analysis identified
8 connections located in the prefrontal, parietal, occip-
ital, temporal lobes, and basal ganglia. For attentional
skills, we identified 2 connections between the MOG–
IOG and the right area 41/42 and right rostroventral
area 40. Connections in the occipital, temporal, and pari-
etal lobe did not fully converge with our initial hypoth-
esis, which could be explained by various factors: (i)
attentional skills and impulsive behaviors are measured
via visual response to a stimulus as part of the CPT3,
which could explain why our analysis yielded connec-
tions implicated in the visual processing of the brain,
mostly in the occipital lobe but also located in the tem-
poral lobe (Goodale and Milner 1992); (ii) similar to the
previous point, connections located in the parietal lobe
are part of the somatosensory network that is essential
when performing a response to a stimulus during the
CPT3 (Smith 2021). As attentional skills and impulsive
behavior are complex cognitive functions requiring path-
ways such as the visual and the somatosensory network,
it is possible that both attention and impulsivity can
be affected by the visual or somatosensitive process-
ing. Although the connections in parietal, occipital, and
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Fig. 5. Connection profiles comparison between the 20% higher performance and 20% lowest performance group. ∗: represent sub-sections were both
groups are significantly different. Black rectangles represent clusters of significantly different sub-sections (defined as 5 or more closely localize
significantly different sub-sections). Analysis was performed using the component extracted from the sub-sections specific metrics (results from
tractometry). Axonal density is inverse scored, lower values = higher axonal density while higher values = lower axonal density. A) M6–CD6, B) A46–
LA10, C) DC–PFT, D) FG37–IOG. Connection are colored based on P-values for each sub-sections.

temporal lobe have already been associated with various
cognitive functions deficits, impulsivity is a complex cog-
nitive construct that encompass many sub-dimensions.
Having one connection associated with a unique cog-
nitive function is highly unlikely when considering the
complex interactions between the neuroanatomy and
the cognitive functions. Therefore, a single WM fiber
can be found implicated in various deficits due to the
complex construct that impulsivity represents. As for
the remaining connections, mostly located in the pre-
frontal, nucleus accumbens, dorsal caudate, and thala-
mus did converge with our initial hypothesis, reinforcing

previously reported findings in the literature (Qiu et al.
2012; Cao et al. 2013; Hong et al. 2014; Y.-H. Wu et al.
2014b; Cha et al. 2015).

Strength and limitations
This study evaluates the WM microstructure distribution
within a socially advantaged population of children
from virtually healthy pregnancies with no or few risk
factor for neurodevelopmental disorder allowing for
extrapolation to general population. This is one of the
major aspects that distinguish this approach compared
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to a classical case–control approach. Due to the small
number of studies assessing the validity of extracted
“virtual” connections versus biological “post-mortem”
tracts, it is difficult to validate the true existence of
our computed connections in post-mortem studies.
In an effort to assess the anatomical validity of our
connections-of-interest and to add strength to our
results, we (i) kept only connections present in 100%
of our subjects and (ii) registered each connection
in a common MNI space, allowing the measurement
of the spatial localization of each connection in-
between subjects symbolized as the similarity metric
(Table 3). Every extracted connection yielded a similarity
distance ranging from 0 to 4 mm. Thus, each extracted
connections are anatomically valid WM tracts. On the
other end, the scale from which we are measuring WM
microstructure (imaging voxel is 1.8 mm2 isotropic)
does not allow for precise examination of more specific
regions within the WM itself and therefore represent
an important limitation to consider. Other strengths of
this study include the use of dimensionality reduction
technique allowing the extraction of more biologically
interpretable components. In addition, the use of
validated psychometric test combined with factorial
analysis allowed us to better take into consideration the
cognitive variability and create a more representative
model of attention and impulsivity in our population-
based children population. Although we accounted
for major limitations, microstructural complexity and
axonal density as components haven’t been validated in
carefully dissected WM tracts. In addition, the unavail-
ability of previous follow-up MRI data removed the
ability to evaluate WM developmental trajectories in our
population.

Overlapping with “classical” WM bundles
When evaluating the location of our connections and
due to their small size, it is interesting to evaluate if
these connections can be comprised within “classical”
WM bundles. The connection M6–CD6 overlapped with
the right pyramidal bundle (PYT_R), the right fronto-
pontine bundle (FPT_R), the right frontal aslant bun-
dle (FAT_R), and the corpus callosum (pre/post central
gyri (CC_Pr_Po) and posterior part of the frontal lobe
(CC_Fr_2)) (Fig. 6A). The connection M6–PPT presented
overlap with the PYT_R, FPT_R, and the right parieto-
occipital pontine bundle (POPT_R) (Fig. 6B). The connec-
tion A46–LA10 showed overlap with the right uncinate
fasciculus (UF_R), the right superior longitudinal fascicu-
lus (SLF_R), the right inferior fronto-occipital fasciculus
(IFOF_R), FPT_R, the right cingulum (CG_R), the corpus
callosum (anterior part of the frontal lobe (CC_Fr_1)),
and the right arcuate fasciculus (AF_R) (Fig. 6C). The
connection A41/42–RA40 was overlap by only the AF_R
(Fig. 6D). All connections located in the occipital lobe
(FG37–IOG, CLG–OPC, CCG–MSOG, and MOG–IOG) were
overlap by the optic radiation and Meyer’s loop (OR_ML),
the inferior longitudinal fasciculus, the IFOF and the

corpus callosum (occipital lobe (CC_Oc)) (Fig. 6E–H). The
connection NA–OT was overlap by the optic radiation
and Meyer’s loop (OR_ML), whereas the connection DC–
PFT was overlap by the right superior cerebellar peduncle
(SCP_R), the PYT_R, and the FPT_R (Fig. 6I–J). Considering
the variety of overlap with “classical” WM bundles, it is
possible that they are normally extracted as part of these
bundles and therefore hidden within these main WM
pathways.

Psychometric assessment
One strength of this study is the assessment method of
attentional skills and impulsive behavior. When looking
at the raw score in the CPT3, we can observe that there
are no significant differences between each group (e.g.
ADHD, ASD, no diagnosis) reinforcing the need of eval-
uating cognitive function outside the diagnosis criteria.
This observation also brings confidence to our previ-
ous reported connections, as one could argue that the
difference between the 2 groups is generated by the
children with a diagnosis. As stated in the literature,
most studies use exclusively questionnaires adminis-
tered to the parents, teacher, or clinicians, perpetuating
the clinical heterogeneity of this syndromic approach of
the current ADHD diagnosis method (Rubia et al. 2014;
Posner et al. 2020). While some studies use psychometric
test such as the CPT3, they often use only one test
metric as the attention score or the impulsivity score,
which also introduces a bias since attentional deficit
and impulsive behavior can be expressed in multiple
different ways. It has been suggested by some research
group that combining CPT3 scores would significantly
improve classification accuracy (Ord et al. 2021); mean-
while others have claimed that composite scores did not
improve the classification accuracy when comparing to
individual measure (Scimeca et al. 2021). Even though
there is no clear answer currently, factorial analysis,
when interpreted with caution, can allow us to better
evaluate attention and impulsivity deficits by consid-
ering every score obtained from the CPT3 according to
their respective weight. The first factor was identified
as the attentional skills based on the high contribution
of the omission and HRT SD score, whereas the second
factor was identified as the impulsive behaviors based
on the high contribution of the commission score, which
are often use individually as attention or impulsivity
metric in various studies, thus adding an objective perfor-
mance analysis for these cognitive functions in our study
(Epstein et al. 2003; Hong et al. 2014).

Beyond DTI metrics and PCA
As mentioned above, the use of DTI metrics to assess
WM integrity introduces an important limitation as it
cannot discriminate voxel containing crossing, merging,
or kissing fibers (Jones 2010; Jeurissen et al. 2013; Jones
et al. 2013). To overcome this limitation, the use of a novel
metric, AFDfixel, was used in order to provide information
specific to only one fiber population (Raffelt et al. 2017).
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Fig. 6. Visual representation of connections overlapping with “classical” WM bundles. A) M6–CD6, B) M6–PPT, C) A46–LA10, D) A41/42–RA40, E) FG37–IOG,
F) CLG-OPC, G) CCG–MSOG, H) MOG–IOG, I) NA–OT, J) DC–PFT.

In addition, a novel approach of dimensionality reduction
of diffusion data was applied, allowing the extraction of
more biologically relevant and interpretable measures
(Chamberland et al. 2019). As a result, the first PC
from the connection PCA analysis explained 77.7% of
the total variance and was identified as representing

the microstructural complexity since mostly non-fiber-
specific metrics, such as DTI metrics, were equally
contributing to this component while AFDfixel did not
(Fig. 4A). On the other hand, the second PC, explain-
ing 18.6% of the total variance, showed contribution
of mostly exclusively the AFDfixel metric, therefore



Anthony Gagnon et al. | 1907

identified as axonal density (Fig. 4A). Both PCs converge
with previously reported results from a pediatric popu-
lation using the same diffusion metrics but diverge from
results reported in 2 other studies using a more extended
panel of diffusion measures in a typically developing
pediatric population (Chamberland et al. 2019; Geeraert
et al. 2020; Guberman et al. 2021). Interestingly, con-
nection sub-sections dimensionality reduction extracted
similar PCs, but in a reverse order (Fig. 4B). Although
counter-intuitive, creating a connection profile based
on a high number of sub-sections (100 sub-sections per
connection here), as opposed to a measure reflecting
the mean of an entire connection, should reflect
measure influenced more by the connection itself. When
segmenting a connection, the probability of obtaining a
segment encompassing only the connection fibers and
not crossing fibers is higher than on a whole connection
level. Therefore, more sub-sections reflect measures
specific to the connection than sub-sections reflecting
an intersection of crossing fibers influencing the results
from the PCA analysis. Therefore, it is not surprising
that the microstructural complexity was extracted as
the second PC explaining 27.2% of the total variance
compared with 55.1% for the axonal density as a larger
proportion of the evaluated sub-sections represents
connection-specific metrics (Fig. 4B).

Microstructural complexity implication in
impulsive behavior
Due to the various contributions of diffusion measures
in each PCs, interpretation of the multivariate linear
regression analysis is not easily comparable with other
studies as this is, to our knowledge, the first time this
technical approach has been used in a pediatric popu-
lation to understand the relationship between WM and
attention/impulsivity. However, our results show consis-
tent associations between higher microstructural com-
plexity and less impulsive behavior, which could be seen
as an increase in the presence of glial cells, myelin, and
crossing fibers. Glial cells being implicated in multiple
functions such as myelin production, neurotransmitters
recycling, neuronal repair, and nutrients sourcing and
storage (Mayorga-Weber et al. 2022), it is likely that a
well-supported connection of axons present a higher
capacity of transmitting information between regions of
the cortex. Therefore, efficient connections can translate
to better inhibitory capabilities thus reducing the impul-
sive behaviors that can be seen in children presenting
lower microstructural complexity. However, microstruc-
tural complexity, as a component, is still for the most
part a model representation based on classical diffu-
sion metrics and has not yet been validated in careful
WM dissection post-mortem studies. To add support to
this hypothesis, studies reported negative associations
between RD or/and AD metrics, which are contribut-
ing greatly to the microstructural complexity compo-
nent, and hyperactivity/impulsivity symptoms severity
in ADHD children (Sudre et al. 2020). Previous study

showed associations often between symptom severity
and FA values, which is thought to reflect mostly a
high myelin density and a tight orientation profile of
WM fibers but with the caveat, as previously stated, of
limited capacity for discerning crossing, kissing, or merg-
ing fibers (Jeurissen et al. 2013; Seehaus et al. 2015).

Our results converge with the previously reported
decrease in FA values on the callosal tracts in ADHD
girls compared with controls (Lin et al. 2020) and
the connection connecting the left superior occipital
gyrus and the left precuneus in ADHD children when
evaluating the association with the CPT3 commission
score, probably reflecting the visual components of
this test (Hong et al. 2014). In a voxel-based study, FA
reduction in the sagittal striatum, posterior thalamic
radiation, and body and splenium of the corpus callosum
was associated with a higher hyperactive/impulsive
rating, which converges with our present results (Qiu
et al. 2012). Even though these studies have differences
in term of symptom assessment, ROIs, and processing
techniques, they provide confidence in our result by
reporting the same directionality in their association
between impulsive behavior and diffusion metrics.

Axonal density implication in impulsive behavior
The interpretation of the second PC, axonal density, is
easier than the microstructural complexity, as it reflects
mostly the AFDfixel, an indicator of axon density specific
to 1 fiber population (Raffelt et al. 2017). Our results
still show consistent association between higher axonal
density and less impulsive behavior as it can be simply
interpreted as a higher axonal density translate to better
information transmission. Axon capacity of transmit-
ting neuronal influx could highly affect one’s inhibitory
capacities thus creating a more impulsive behavior if
not correctly controlled. Since AFDfixel is a novel metric
being recently used in tractography studies, to our knowl-
edge, no studies reported associations between AFDfixel

and impulsive behaviors in a general pediatric popu-
lation. However, one study reported a negative associ-
ation between the fibers density and ADHD symptom
severity in ADHD children in some fixels from common
WM fascicles such as the corticospinal bundle (Fuelscher
et al. 2021). While not entirely comparable, this result
converges with the ones reported in the present study.

Impulsivity as multidimensional construct
When considering impulsivity as a complex cognitive
function encompassing attentional, motor, and nonplan-
ning impulsiveness, whole-brain FA values have been
negatively associated with motor impulsiveness and pos-
itively correlated with nonplanning impulsiveness (Gold-
waser et al. 2022). In addition, nonplanning impulsive-
ness were positively correlated with FA values on the
superior fronto-occipital fasciculus and motor impul-
siveness were negatively correlated with FA values on the
corticospinal bundle (Goldwaser et al. 2022). When eval-
uating connecting regions of these connections, these
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results converge with the present study by highlight-
ing connections localized in the frontal, occipital, and
parietal regions. On the other hand, results do not fully
converge when comparing associations between impul-
sivity sub-dimensions and WM microstructure. These
differences are likely to be due to the complexity of the
impulsivity cognitive construct that encompass many
other sub-dimensions that our present method is inca-
pable to distinguish. Although reductionist, the use of the
CPT-3 as the impulsivity assessment method allows for
an objective evaluation as compared with the question-
naire used in this study. Although we reported the same
regions, more accuracy in the measurement of these sub-
dimensions would be necessary in order to fully compare
our results.

In-connection localization of WM alterations
As a further step in uncovering the relationship between
WM microstructure and attentional and impulsive
behaviors in a pediatric population, we performed
connection profiling of our connections of interest to
localize the « altered » regions along each connection.
Performing this analysis on all connections allowed us to
identified small differences that could be present but not
sufficient to drive a significant result in the multivariate
analysis. One of the many advantages of connection
profiling is the ability to follow the progression of WM
microstructure along a specific connection and therefore
being able to identify specific regions inside a single
connection that presents WM alterations. As mentioned
above, dimensionality reduction based on sub-sections
metrics yielded slightly different PCs but represented the
same biologically interpretable metrics: axonal density
and microstructural complexity. Our results showed
differences localized closer to the endpoints of connec-
tions M6–CD6, A46–LA10, FG37–IOG, and DC–PFT when
evaluating both axonal density and microstructural
complexity. These endpoints represent the connections
with the cortex parcel or the subcortical structure to
which each connection is connected. In light of our
results, we hypothesize that a difference in either axonal
density or microstructural complexity at both or one end
of the connection could result in a reduce recruitment
capabilities of the functional units localized in the
cortex or subcortical structure. Since functional units
are recruited to perform a certain cognitive function, it
would be logical to expect a reduce recruitment to modify
the response capacity of a specific individual. Evidently,
this conclusion needs to be taken with precaution, as
connections’ endpoints can be influencing by multiple
factors such as partial volume and fanning of the
connections. In addition, M6–CD6, A46–LA10, and FG37–
IOG are local association fibers (U-fibers) defined as
connecting adjacent gyri (Schmahmann et al. 2008) and
are playing a role in brain function (e.g. sensory–motor
integration) (Catani et al. 2012; Catani et al. 2017) and
in aging and brain development (Phillips et al. 2013;
M. Wu et al. 2014a; Nazeri et al. 2015; Wu et al. 2016).

Due to methodological challenge, these U-fibers are
underrepresented in dMRI studies since high-resolution
and specific tractography model such as ours are needed
to correctly map these connections (Movahedian Attar
et al. 2020), being able to identify these fibers provides
new insights in our understanding of attentional skills
and impulsive behavior. DC–PFT is part of the thalamic
peduncles (Schmahmann et al. 2008) connecting the
right dorsal caudate nucleus to the right lateral pre-
frontal thalamus. An alteration toward the end of the
connection can be seen as a reduce innervation in the
thalamic nucleus, resulting in a less effective relay center
to other regions of the cortex as it is the principal role of
the lateral thalamus (Herrero et al. 2002). In addition,
this connection is part of the frontal cortex–basal
ganglia system that has been reported to be implicated
in attention, working memory, and socioemotional
behavior (Wise et al. 1996). All these hypotheses converge
toward one specific concept: WM alterations reduce the
capability of recruiting functional unit in the cortex or in
relaying the information toward the cortex.

WM alterations’ origins
Although the main goal of this study is to evaluate
the relationship between attention/impulsivity and
WM microstructure in a population-based children
population, one can be wondering how and when
these changes happen during the neurodevelopmental
trajectories. Multiple factors have been suggested to
impact the WM development such as environmental
interactions, learning, or intense activities (Fields 2008;
Zatorre et al. 2012). While the mechanism underneath
these changes are unclear, it has been suggested that
activity-dependent myelination could be a strong con-
tributing factor to the differential neurodevelopmental
trajectories (Fields 2015). Evidently, uncovering the
mechanism underneath these changes would provide
a more complete answer to explain the results found in
this study. During the 3 decades of neurodevelopmental
steps, the human brain goes through many processes
such as the myelination of cortical pathways during
the late infancy or the overproduction, pruning and
stabilization of cortical synapses during the second year
of life that have been documented to be essential in
cognitive development (Kostović et al. 2019). One review
paper by Norbom and colleagues clearly mapped the
overall morphological changes that occurs during the
development of the more basic and sensory function
and also the more high-end cognitive function and how
interactions could impact this typical neurodevelopment
(Norbom et al. 2021). It is therefore important to consider
that the WM alterations reported in this paper could be
a result of multiple impacting factors that happened
during a child’s neurodevelopment.

Summary of findings
Finally, to our knowledge, this is the first study using
new state-of-the-art statistical and diffusion approaches
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to evaluate attentional skills and impulsive behavior
in children from a general population. As a result, we
reported the implication of small local associations WM
fibers located in the frontal, parietal, basal ganglia, occip-
ital, and temporal regions. We also report an association
between higher microstructural complexity or axonal
density and a lower impulsive behavior in a general
children population. On a within-connection level, we
reported implications of WM alterations localized in one
or both endpoints of the connection were associated
with the variability of attentional skills and impulsive
behavior. Evidently, converging studies using these new
processing and statistical methods are needed to con-
firm our hypotheses, but this study brings us closer to
a biologically sustained model of attentional skills and
impulsive behavior.
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