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The adult human brain is organized into functional brain networks, groups of functionally connected segregated brain regions. A key
feature of adult functional networks is long-range selectivity, the property that spatially distant regions from the same network have
higher functional connectivity than spatially distant regions from different networks. Although it is critical to establish the status of
functional networks and long-range selectivity during the neonatal period as a foundation for typical and atypical brain development,
prior work in this area has been mixed. Although some studies report distributed adult-like networks, other studies suggest that
neonatal networks are immature and consist primarily of spatially isolated regions. Using a large sample of neonates (n = 262),
we demonstrate that neonates have long-range selective functional connections for the default mode, fronto-parietal, and dorsal
attention networks. An adult-like pattern of functional brain networks is evident in neonates when network-detection algorithms are
tuned to these long-range connections, when using surface-based registration (versus volume-based registration), and as per-subject
data quantity increases. These results help clarify factors that have led to prior mixed results, establish that key adult-like functional
network features are evident in neonates, and provide a foundation for studies of typical and atypical brain development.
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Introduction
An important organizing principle of the adult human
brain is that it can be divided into functional brain
networks, distributed sets of brain regions that work
together to perform specific types of processing (Raichle
2011). Prior work describing functional networks in
neonates has been mixed (Fransson et al. 2007, 2009;
Gao et al. 2009; Doria et al. 2010; Smyser et al. 2010; Gao
et al. 2013; De Asis-Cruz et al. 2015; Gao et al. 2015; van
den Heuvel et al. 2015; Gao et al. 2016; Smyser et al. 2016;
Keunen et al. 2017). Although some studies report adult-
like functional networks during the neonatal period,
other studies have reported that functional networks
during the neonatal period are immature and consist
primarily of spatially isolated rather than distributed
regions. The status of functional brain networks near
birth is important for characterizing typical and atypical
brain development and understanding which features
of human brain organization might be impacted by
the ex-utero environment. The current study utilizes a

novel dataset of n = 262 neonates to identify sources
contributing to the mixed findings in prior work and to
comprehensively characterize neonatal functional brain
networks.

Functional brain network organization is commonly
measured with resting-state functional connectivity, cor-
relations in activity measured with fMRI (Biswal et al.
1995). A defining feature of adult network organization
is selectivity in long-range functional connections: spa-
tially distant regions within the same network are more
strongly functionally connected than spatially distant
regions from different networks. For example, in adults,
the portion of the lateral parietal cortex that is within
the default mode network (DMN) is more strongly func-
tionally connected to spatially distant regions in the
superior frontal gyrus that are also within the DMN than
to nearby regions in the frontal lobe from the dorsal
attention network (DAN). Although a few prior stud-
ies provide evidence for long-range selective functional
connections that may represent the DMN in neonates
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(Doria et al. 2010; Smyser et al. 2010; Smyser et al. 2016;
Keunen et al. 2017; Molloy and Saygin 2022), there is
less evidence supporting long-range selective neonatal
functional connections for other networks such as the
DAN or the fronto-parietal network (FPN). Thus, some
current models hypothesize that functional networks are
relatively immature during the neonatal period and that
adult-like networks emerge over the first years of life as
short-range functional connections become weaker and
long-range functional connections become stronger and
more selective (Gao et al. 2016; Grayson and Fair 2017;
Zhang et al. 2019).

Technical and methodological challenges may have
contributed to the apparent immaturity of the neonatal
brain. First, the standard practice of aligning infants to a
common volume-based atlas may result in heterogeneity
in the functional identity of individual voxels due to vari-
ation in gyral patterns across neonates (Hill et al. 2010).
This challenge can be addressed with surface-based reg-
istration (Fischl et al. 1999), which permits nonlinear
alignment of gyral patterns across participants. A second
challenge is that infant blood-oxygen-level dependent
(BOLD) images have unique sources of noise relative to
older samples (Smyser and Neil 2015), which can be
partly overcome by acquiring higher amounts of imaging
data per subject. A final challenge is that short-range
functional connectivity is high in neonates (Shi et al.
2017). As a result, studies that use nonlinear techniques
to highlight the strongest functional connections in the
neonatal brain (such as seed-based functional connectiv-
ity maps set to a particular threshold) are not designed to
illustrate the weaker long-range functional connections.
Similarly, network-detection techniques such as inde-
pendent component analysis (ICA) may be dominated
by the strong short-range functional connections and
thus not designed to specifically test whether the long-
range functional connections in neonates are network-
selective. This challenge can be addressed by directly
testing whether long-range selective functional connec-
tions exist in neonates (without using network-detection
algorithms).

The goal of this study was to characterize the
functional network organization of the neonatal brain
and test the hypothesis that neonates exhibit long-
range network-specific functional connections. To
achieve these goals, we utilized a novel dataset (eLABE,
n = 262) that included high amounts of data per
participant (10–30 min of low-motion data) with surface-
based registration of subjects. We first characterized
whole-brain and seed-based functional connectivity
in neonates in comparison with samples of children
(n = 61, mean 10.5 years) and adults (n = 120, mean
25 years). Next, we quantified the specificity of both
long- and short-range neonatal functional connections
for same versus different functional networks. We
then used 2 different network-detection algorithms to
empirically define neonatal functional networks. Finally,
we tested the extent to which surface-based registration
(versus volume-based) and per-subject data quantity

impact the apparent maturity of neonatal network
organization. Results provide novel insights into the
functional organization of the neonatal brain.

Materials and methods
Sample
This study was approved by the Human Studies Commit-
tees at Washington University in St. Louis and informed
consent was obtained from mothers of neonatal par-
ticipants. Mothers were recruited during the 2nd or
3rd trimester from 2 obstetrics clinics at Washington
University as part of the Early Life Adversity, Biological
Embedding, and Risk for Developmental Precursors
of Mental Disorders (eLABE) study. The current study
focused on imaging of offspring performed shortly after
birth in full-term, healthy neonates (average PMA of
included subjects 41.4 weeks, range 38–45). Neuroimag-
ing data were collected between September 2017 and
March 2020.

Inclusion criteria for the current study included speak-
ing English, maternal age 18 years or older, and full-term
singleton birth (37 weeks GA or older). Excluded were
women with alcohol or other substance abuse (mari-
juana use was not excluded; see Supplement Material for
details on prevalence of reported marijuana use and rela-
tion to primary outcome metrics). Anatomic MR images
were reviewed by a neuroradiologist (J.S.S.) and pedi-
atric neurologist (C.D.S.). Subjects were excluded from
the current study if they had any evidence of brain
injury. Additional exclusion criteria included pregnancy
complications and known fetal abnormalities, including
intrauterine growth restriction. Of the 385 participants
who were scanned for eLABE, 262 were included in the
current analyses. Subjects were excluded for the follow-
ing reasons: no fMRI data collected (n = 3), no usable T2
for registration (n = 28), <37 weeks GA at birth (n = 52),
brain injury (n = 17), required intubation or chest tube
(n = 4), in the neonatal intensive care unit for >7 days
(n = 30), and birthweight < 2,000 g (n = 1). There were
279 neonates who did not meet any of these exclusion
criteria (note that some met multiple exclusion criteria).
An additional 8 neonates were excluded because they
did not have ≥10 min of usable fMRI data after motion
censoring (see below), and 9 were excluded based on
visible artifacts in functional connectivity data, resulting
in 262 subjects in the current study.

In the eLABE dataset, maternal depression was
assessed using the Edinburgh Postnatal Depression Scale
(Cox et al. 1987) at each trimester and averaging over all
available assessments. Total maternal perceived stress
was measured with the Perceived Stress Scale (Cohen
and Williamson 1988) at each trimester and averaging
over all available assessments. SES was assessed with
the area deprivation index (ADI) as determined by home
address at the time of birth (Kind and Buckingham 2018).
Demographics of the current sample are listed in Table 1
and zero-order relations among variables are listed in
Supplementary Table 1.
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Table 1. Sample characteristics.

Neonatal characteristics (n = 262) n Mean SD

Sex
Male
Female

141
121

Gestational age at birth in weeks 38.5 1.0
Postmenstrual age at scan in weeks 41.4 1.3
Birthweight in grams 3,272.6 489.5
Area deprivation index 68.0 24.9
Child’s race

African American
White
Chinese
Other Pacific Islander
Other
Mixed African American/White
Mixed Chinese/White

157
98
2
1
1
2
1

Ethnicity
Hispanic
Non-Hispanic

6
256

Neonatal fMRI characteristics n Mean SD

Amount of fMRI data in minutes
Percent of frames retained

16.6
88.0

4.4
10.3

Maternal characteristics n Mean SD

STAI trait anxiety 31.5 8.0
STAI state anxiety 28.1 7.7
Edinburgh Postnatal Depression scale 4.6 3.9
Perceived Stress scale 13.1 6.3

Child participants were from a study of attention-
related disturbances in pediatric anxiety disorders con-
ducted at Washington University of which details have
previously been reported (Gilbert et al. 2020; Perino et al.
2021a, 2021b). The scanned sample included 61 children,
average age 10.5 years (range 8.1–13.0). Thirty-one had
an anxiety disorder (generalized anxiety disorder, social
phobia, and separation anxiety), 29 had no psychiatric
history, and 1 had prior history of adjustment disorder
with anxious mood but no current psychiatric diagnosis.
Exclusion criteria included current use of psychotropic
medication, intellectual disability, autism, and learning
disabilities.

Adult participants were derived from a sample of
120 adults (60 females; average age 25 years, range 19–
32 years) that were collected at Washington University
and have been previously extensively described (Power
et al. 2011; Gordon et al. 2016). Exclusion criteria included
a reported history of a psychiatric or neurological
disorder.

fMRI data collection and acquisition parameters:
neonates
After feeding, the infant was swaddled and positioned in
a head-stabilizing vacuum fix wrap (Mathur et al. 2008). A
nurse familiar with neonate transport and resuscitation
was present at all MRI scans. Heart rate and blood
oxygenation were measured continuously throughout
all scans, and infants were monitored visually via video.

Based on visual monitoring through a camera, infants
slept through scans as indicated by eye closure and
minimal movements. Imaging was performed without
sedating medications using a Siemens 3T PRISMA
scanner and 64-channel head coil. A T2-weighted image
(sagittal, 208 slices, 0.8-mm isotropic resolution, echo
time [TE] = 563 ms, tissue T2 = 160 ms, repetition time
[TR] = 3,200 ms, or 4,500 ms) was collected. For the
resting-state fMRI, functional imaging was performed
using a BOLD gradient-recalled echo-planar multiband
(MB) sequence (72 slices, 2.0-mm isotropic resolution,
TE = 37 ms, TR = 800 ms, and MB factor = 8). Spin-echo
field maps were obtained (at least 1 anterior–posterior
and 1 posterior–anterior) during each session with the
same parameters. We acquired between 2 and 9 fMRI
BOLD scans, depending on how the infant tolerated the
scan (mean 3.75 runs). Scans were collected in both
the anterior-to-posterior (AP) and posterior-to-anterior
(PA) direction; a typical scan session included 2 AP runs
and 2 PA runs. AP and PA scans were concatenated
following fMRI preprocessing but prior to computation
of functional connectivity values (i.e. immediately prior
to computing correlations). The scans were 420 frames,
which is 5.6 min in length. Framewise integrated real-
time MRI monitoring (FIRMM) (Dosenbach et al. 2017) was
used during scanning to monitor real-time participant
movement.

fMRI data collection and acquisition parameters:
children
Imaging was performed on a Siemens PRISMA 3T MRI
scanner with a 32-channel head coil. Structural images
included a T1-weighted image (sagittal, 208 slices, 0.8-
mm isotropic resolution, TE = 2.22 ms, TR = 2,400 ms,
TI = 1,000 ms, and flip angle = 8◦), and a T2-weighted
image (sagittal, 208 slices, 0.8-mm isotropic resolution,
TE = 563 ms, tissue T2 = 160 ms, and TR = 3,200 ms).
Functional imaging was performed, including 4 resting-
state runs (420 frames each), using a blood-oxygen-
level dependent multi-band echo-planar sequence
(TR = 720 ms, TE = 33 ms, flip angle = 52◦, 2.4-mm
isotropic resolution, MB factor = 7). Two spin-echo field
maps were obtained (1 AP and 1 PA) during each
session with the same parameters. FIRMM (Dosenbach
et al. 2017) was used during scanning to monitor real-
time participant movement. Sessions were terminated
if/when participants showed an inability to stay still
during the scan, as determined by experienced clinical
research assistants, which resulted in 10 children
being excluded for either excessive head motion or
because they could not tolerate scanning, leaving a final
neuroimaging sample of 61 children.

fMRI data collection and acquisition parameters:
adults
MRI data in the adult group-average dataset were
obtained with a Siemens MAGNETOM Trio Tim 3.0T
Scanner (Erlangen, Germany) and a Siemens 12 channel
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Head Matrix Coil. Structural images obtained included a
T1-weighted sagittal MP-RAGE (magnetization-prepared
rapid acquisition gradient echo; TE = 3.08 ms, TR(partition)
= 2.4 s, TI = 1,000 ms, flip angle = 8◦, and 176 slices with
1 isotropic resolution), as well as a T2-weighted turbo
spin-echo structural image (TE = 84 ms, TR = 6.8 s, 32
slices with 1 × 1 × 4-mm voxels). Functional imaging
was performed using a BOLD contrast sensitive gradient
echo echo-planar sequence (TR = 2.5 s, TE = 27 ms,
flip angle = 90◦, 4-mm isotropic resolution, and 32
axial slices). Across subjects, the number of collected
volumes ranged from 184 to 729 (mean = 336 frames and
14.0 min).

fMRI preprocessing
fMRI preprocessing was done with minor variations in
each dataset in order to optimize data quality metrics
(e.g. registration errors and signal-to-noise, SNR) for each
dataset. Because of large differences in head size, differ-
ent locations and causes of artifacts inherent to imaging
different ages (Kaplan et al. 2022), different magnetic
properties of tissues at different ages (Thornton et al.
1999; Smyser and Neil 2015; Liu et al. 2016; Goksan
et al. 2017; Neil and Smyser 2018), and the size of voxels
relative to the thickness of gray matter, we chose to opti-
mize each processing pipeline specific to each dataset
rather than choose a “one-size-fits-all” approach. In our
opinion, using a one-size-fits-all approach would com-
pound the inherent methodological problems because
measurements of BOLD activity would be suboptimal
(noisier) in one of the groups. In the text below, methods
were identical across the 3 datasets unless otherwise
noted. Flowcharts of the processing pipelines are also
provided in Supplementary Figs. 1 and 2 and facilitate
comparisons across age groups.

fMRI preprocessing included correction of intensity
differences attributable to interleaved acquisition, linear
realignment within and across runs to compensate for
rigid body motion, bias field correction (neonates and
children only), intensity normalization of each run to a
whole-brain mode value of 1,000, readout distortion cor-
rection (neonates and children only), and linear registra-
tion of BOLD images to the adult Talairach isotropic atlas
(Talairach and Tournoux 1988). Neonates were registered:
BOLD → individual T2 → cohort-specific T2 atlas → 711-
2N Talairach atlas. The cohort-specific T2 atlas used as
an intermediate step in the registration was created from
a subset of 50 neonates from this study. The children and
adults were registered: BOLD → individual T2 → individ-
ual T1 → 711-2B Talairach atlas. Linear registrations were
performed in a single step (Smith et al. 2004). Field (read-
out) distortion correction was performed in neonates and
children only, using the FSL TOPUP toolbox (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/TOPUP).

The volumetric registrations of BOLD data described
previously for all 3 datasets were linear, included 12
degrees of freedom, had no nonlinear components,
and used in-house software (ftp://imaging.wustl.edu/
pub/raichlab/4dfp_tools/). The final product of this

preprocessing was the subject’s own BOLD data linearly
registered to adult Talairach space. In subsequent steps,
described below, these volumetric BOLD data were
mapped to the subject’s own surface. Each subject’s
surface was created from an anatomical image (T1 for
children and adults, T2 for neonates) that had also
been linearly transformed to adult Talairach space;
thus the 3D coordinate systems for the preprocessed
volumetric BOLD data and the anatomical surface were
the same. As described below, subject-specific surfaces
are aligned to a common surface space (fsLR_32k), a
process that is inherently nonlinear. All registrations (vol-
umetric and surface) were visually inspected to ensure
accuracy.

Following the initial preprocessing, the resting-state
BOLD timeseries underwent functional connectivity pro-
cessing (Power et al. 2014; Gordon et al. 2016). In the chil-
dren and adults, functional connectivity (fc) processing
was done in volume-space (note, however, that for chil-
dren and adults, functional connectivity processed data
were mapped to subject-specific surfaces prior to further
functional connectivity analyses and subject averaging,
so the child and adult analyses are surface-aligned). In
the neonates, data were first mapped to the surface (see
below), minimally smoothed with a small geodesic 2D
Gaussian kernel (σ = 1 mm), and functional connectivity
processing was done in surface space. First, temporal
masks were created, which censored high-motion frames
based on study-specific protocols described below. Then
the censored frames were ignored as the data were func-
tional connectivity processed with the following steps:
(i) demean and detrend within run, (ii) multiple regres-
sion with nuisance timeseries including white matter,
ventricles, and whole brain, as well as 24 parameters
derived from head motion (x, y, z, roll, pitch, yaw on the
current and previous frames; and the squares of these
12 parameters). For neonates, the whole-brain signal was
the average gray matter signal; in the other datasets
the whole-brain signal was from a whole-brain mask.
The neonates also included an additional extra-axial
space regressor. Finally, retained data were interpolated
into censored timepoints to allow band-pass filtering
(0.005 Hz < f < 0.1 Hz for neonates; 0.009 Hz < f < 0.08
for children and adults).

Neonatal fMRI data were censored at framewise dis-
placement (FD) > 0.25 mm, with the additional restriction
that only epochs of at least 3 consecutive frames with
FD < 0.25 mm were included. To be included in the study,
a minimum of 10 min of data were required. In children, a
first-order low-pass Butterworth filter (cutoff 0.1 Hz) was
applied to each of the 6 head realignment parameters,
which were then summed to create a filtered FD trace
(Fair et al. 2020). Frames with filtered FD > 0.08 mm
were censored, and functional runs with fewer than 130
frames were excluded. Only the 61 subjects with at least
670 remaining frames (8.04 min) were included in fur-
ther analyses. For adults, volumes with FD > 0.2 mm or
DVARS > 5.36 were censored; a minimum of 6-min total
data were required.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP
ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/
ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/
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In each dataset, MCRIB (neonates; Alexander et al.
2017; Adamson et al. 2020) or Freesurfer (children and
adults; Dale et al. 1999; Fischl et al. 1999) was used to
generate surfaces for each subject. For surface-based
analyses, the volumetric fMRI data (in children and
adults, after fc-processing; in neonates, after standard
pre-processing but before fc-processing) were mapped to
subject-specific surfaces using established procedures
adapted from the Human Connectome Project as imple-
mented in Connectome Workbench 1.2.3 (Marcus et al.
2011, 2013). fMRI data were aligned across subjects into
the “fs_LR32k” surface space using spherical registration
(Glasser et al. 2013). Timecourses for surface data were
smoothed with geodesic 2D Gaussian kernels after fc-
processing (σ = 2.25 mm for neonates and σ = 2.55 mm for
children and adults). rs–fc was computed as the Fisher z-
transformed Pearson correlation between timecourses
from pairs of surface vertices or surface parcels, as
detailed below.

In addition to these surface-based analyses, the neona-
tal dataset was also analyzed in volume space. In this
case, the volumetric preprocessed data (as described pre-
viously) were spatially smoothed in volume space with
a 3-mm FWHM Gaussian kernel and functional connec-
tivity processing was completed in volume space. These
data were then mapped to a group-average neonatal
surface in fs-LR32k space. Because the data were not
each mapped to their own individual surface, there was
no surface-based alignment. Functional connectivity was
then computed in the group-average surface-space as
the Fisher z-transformed Pearson correlation between
timecourses from pairs of vertices.

Functional connectivity matrices
Initial analyses computed parcelwise functional connec-
tomes from each individual in each dataset. Resting-state
functional connectivity was computed in each subject
between pairs of parcels from (Gordon et al. 2016), a
validated set of surface parcels that were constructed
on the basis of the adult dataset that was used in the
current study. Pairwise functional connectivity among
parcels defined individual parcelwise functional con-
nectivity matrices. Group-average parcelwise functional
connectivity matrices were also created for each of the
3 datasets (neonatal, child, and adult), and similarity
among the 3 datasets was computed as the correlations
between pairs of group-average parcelwise functional
connectivity matrices.

To visualize seed-based functional connectivity of
posterior clusters for each adult-defined network, we
defined seeds based on the centers of network clusters
(contiguous portions of cortex from the same functional
network) from (Power et al. 2011; see Supplementary
Fig. 5). Functional connectivity was computed for each
seed to every other vertex for each individual, and then
these network-specific seed-maps were averaged across
each of the 3 datasets. To compare pairs of datasets (e.g.
the DMN seed maps in neonates versus adults), spatial

Pearson correlations were computed across the 2 group-
average seed maps. To characterize the overall functional
connectivity strength for each individual’s seed map,
the root sum of squares deviation from zero (RSSE)
was computed by taking the square root of the sum of
squares for all values in a seed map. The RSSE was then
compared between groups for a specific seed map (e.g.
comparing the overall functional connectivity strength
of the DMN seed-map in neonates versus adults) with
2-sample t-tests. Relations between RSSE and neonatal
cortical thickness are provided in the Supplementary
Results.

A next set of analyses compared the topography of
positive and negative functional connectivity for each
seed map. Seed maps were first masked to only include
vertices in the same hemisphere and at least 30 mm away
from the seed. We then created binarized maps for the
top 20% of positive functional connections and the top
20% of negative functional connections, by magnitude,
for each group-average seed map (additional thresholds
are in Supplementary Table 2). The Dice coefficient was
then computed between pairs of group-average binarized
maps (e.g. the overlap in negative functional connections
for the DMN seed map in neonates versus adults). To
compare whether the overlap in positive functional con-
nectivity was significantly different than the overlap in
negative functional connectivity for a specific seed map,
we permuted the identity of subjects within each group
10,000 times and computed the difference in overlap for
each permutation. For example, for comparing neonates
versus adults, we permuted whether an individual was
an adult versus neonate, maintaining the sample sizes
from the original datasets. The P-value was determined
by comparing the true difference in overlap for positive
versus negative functional connections with the values
from the permutations.

Long- and short-range selectivity
For the long-range selectivity analyses, we computed
functional connectivity among adult-derived network
clusters from (Power et al. 2011). For the analyses in
the main text, functional connectivity between activity
from a posterior network cluster from 1 of 5 networks
(DMN, DAN, FPN, cingulo-opercular network [CON], and
ventral attention network [VAN]) was computed with
activity from an anterior network cluster for each of the
5 networks. We tested for selectivity for each dataset
(neonate, child, and adult) with a series of paired t-
tests in which functional connectivity to same-networks
(e.g. posterior DMN to anterior DMN) was compared
with functional connectivity between-networks (e.g.
posterior DMN to anterior DAN). We next defined a single
selectivity value for each posterior network cluster as
the difference in functional connectivity to the anterior
network cluster from the same network minus the
average functional connectivity to the other 4 anterior
network clusters. These selectivity values were compared
across datasets using 2-sample t-tests. A parallel set

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
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of analyses examined selectivity of anterior network
clusters for posterior network clusters.

To compare between-network functional connectiv-
ity within the frontal lobe among the 3 datasets, we
computed the average functional connectivity of each
network cluster in the frontal lobe to clusters for other
networks. The networks included were the DMN, FPN,
DAN, VAN, and CON. We used a series of 2-sample t-tests
to compare this average functional connectivity value
across the 3 groups. A parallel analysis was computed for
the posterior cortex. Relations of long- and short-range
selectivity to neonatal cortical thickness are provided in
the Supplementary Results.

Neonatal functional brain networks
We used the community detection algorithm Infomap
(Rosvall and Bergstrom 2008; Power et al. 2011) to
empirically derive functional brain network assignments
in neonates. A first set of analyses were performed on
the vertexwise functional connectivity data. The group-
average vertexwise neonatal functional connectivity
matrix was first masked to set any functional connec-
tions < 49 mm in adult Talairach atlas space to zero
(∼30 mm in native neonatal space), so that network
solutions were not driven by local spatial smoothing.
Next, the top X% of positive functional connections
(X ranging from 0.25 to 10 in separate analyses) were
set to one and all other functional connections were
set to zero. This thresholded, binarized functional
connectivity matrix was then subjected to Infomap.
Colors at each edge density were manually selected to
maintain consistency across edge densities.

In a second analysis, we ran Infomap on contiguous
network pieces derived from the empirical network solu-
tion described above at edge density 1.25%. In this case,
we first zeroed out any functional connections between
pieces in which any portion of the pieces were within
30 mm of each other. Next, Infomap was run as described
previously.

Maturity index in relation to registration
technique and data quantity
A maturity index (MI) was computed for each individual
neonate as the correlation between the individual’s
vertexwise functional connectivity matrix and the adult
group-average vertexwise matrix. The MI is expected
to index apparent neonatal brain maturity because
it directly measures similarity to adult data. We first
tested whether MI varied depending on whether the
data were aligned across subjects in surface-space
versus exclusively volume-space. For this analysis, the
MI values of the vertexwise functional connectivity
matrices for surface- versus volume-based registration
were compared using a paired t-test. We next tested
the degree to which per-participant data quantity was
related to apparent neonatal maturity. For this analysis,
we computed the correlation between retained data
and MI across subjects. Additional analyses computed

correlations between MI and socio-demographic vari-
ables (Supplementary Table 1). Next, regressions were
performed in which MI was related to data quantity
while controlling for socio-demographic variables that
were significantly related to MI. Finally, for subjects with
at least 20 min of low-motion data (n = 71), we also
computed the MI for the first 10 and for the first 20 min of
data collected, and then we performed a paired t-test to
examine within-subject relations between data quantity
and MI.

Because of the large effect sizes in most of the group
comparisons and the large number of subjects, most of
the statistical tests described in the results were highly
statistically significant. For ease of reporting, we use the
notation “P << 0.001” for results in which P < 1 × 10−5.
We report uncorrected P-values but note that all primary
analyses survive Bonferroni correction.

Results
Whole-brain and seed-based neonatal functional
connectivity
Sample characteristics of the n = 262 neonates are listed
in Table 1 and zero-order relations among demographic
variables are provided in Supplementary Table 1. Resting-
state functional connectivity data from each dataset
(neonate, child, and adult) were scaled and aligned to a
common surface space with vertex-to-vertex correspon-
dence (Van Essen et al. 2012) to facilitate comparisons
across groups. The whole-brain functional connectiv-
ity pattern of neonates was moderately correlated with
both children (r = 0.65, P << 0.001) and adults (r = 0.64,
P << 0.001), whereas adult and child whole-brain func-
tional connectivity patterns were highly correlated with
each other (r = 0.91, P << 0.001). Group-average whole-
brain functional connectivity matrices from each dataset
are depicted in Supplementary Fig. 3.

We visually compared whole-brain functional connec-
tivity patterns of individual vertices across neonates,
children, and adults (Fig. 1 and Supplementary Fig.
4). Seed vertices were the centers of brain regions
from adult-defined networks (“network chunks,” see
Supplementary Fig. 5). For the adults, these seed maps
generated typical patterns of positive and negative
correlations associated with established functional brain
networks. Seed-maps for children largely resembled
maps for adults (r values from 0.86 to 0.95, all P << 0.001).
However, the similarity of seed-maps between neonates
and adults differed by functional network, with most
correlations around 0.75 (FPN: 0.75; DAN: 0.74; Ventral
attention network, VAN: 0.73; Salience Network, SN: 0.76;
and DMN: 0.73); a lower correlation for the cingulo-
opercular network (CON) seed (0.56); and relatively
high correlations for the auditory (AN, 0.89), visual (VN,
0.83), and somatomotor-hand (SMN-h, 0.87) seeds (all
P << 0.001). Similarity of seed-maps between neonates
and children ranged between 0.58 and 0.84 and largely
resembled neonate/adult comparisons.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
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https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
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Fig. 1. Seed-based functional connectivity patterns of posterior seeds (white arrows) in neonates and adults. Seeds are derived from centers of network
clusters based on adult assignments (Power et al. 2011). Note that the topography of positive connectivity is similar across the datasets, though the
magnitude is weaker in neonates. This figure depicts neonates in the top quartile of MI, which indexes both brain maturity and data quality (see
Results). Seed maps for the full neonatal dataset, in children, and in additional functional networks are in Supplementary Fig. 4. DMN: default mode
network; DAN: dorsal attention network; CON: cingulo-opercular network; SMN-h: hand somatomotor network; FPN: fronto-parietal network; VAN:
ventral attention network; SN: salience network; VN: visual network.

The data above indicate that neonatal functional con-
nectivity patterns of individual seeds are moderately to
highly correlated with adult and child patterns. Addi-
tional analyses revealed, however, that neonatal seed
maps differed in several aspects from adult seed maps.
First, the magnitudes of functional connectivity values
(including both positive and negative functional con-
nectivity) were generally lower in neonates compared
with adults. As detailed in the Supplementary Results,
the root sum of squares deviation from zero (RSSE) was
lower for neonates compared with adults (all P < 0.001)
for seeds from the DMN, FPN, DAN, VAN, SN, CON, and
VN; but not the SMN-h. A second difference between
neonates and adults was the topography of negative
correlations. Based on visual inspection (Fig. 1), although
the locations of positive functional connectivity values
were similar in neonates and adults, the locations of neg-
ative functional connectivity values appeared different in
neonates and adults. As detailed in the Supplementary
Results, quantitative tests supported this observation,
as neonatal-adult overlap of positive functional connec-
tivity was significantly greater than the neonatal-adult
overlap for negative functional connectivity for the DMN,
FPN, DAN, CON, and SMN (but not the VAN or SN) seeds.
Comparisons for neonates versus children and for chil-
dren versus adults are provided in the Supplementary
Results.

Network-selectivity of long- and short-range
neonatal functional connectivity
The analyses above indicate that, overall, the positive
functional connectivity patterns of individual seeds in

the neonate are similar to older children and adults.
However, the analyses above do not specifically test
whether seeds have higher functional connectivity to
spatially distant brain regions from the same versus
different adult-defined functional networks. Thus,
we next tested for network selectivity of long-range
functional connections in the neonates.

Results indicated that for DMN, FPN, and DAN
posterior network clusters, functional connectivity was
highest with the corresponding adult-defined anterior
cluster region relative to clusters from other networks
(see Fig. 2A and Supplementary Fig. 6, all pairwise
paired t-tests P < 0.001). For example, in neonates, the
posterior FPN cluster had highest functional connectivity
to the anterior FPN cluster compared with its functional
connectivity to anterior clusters from the DMN, DAN,
CON, or VAN. The same pattern of results was obtained
when examining selectivity of anterior network cluster
seeds for posterior network clusters as delineated in
Supplementary Fig. 7.

We next compared the degree of this long-range
selectivity across age groups. Selectivity of long-range
functional connections from clusters in the posterior
DMN, FPN, and DAN to anterior clusters from the
same network was lower in neonates relative to adults
and children (see Fig. 2A and Supplementary Fig. 6,
all P values << 0.001). This result remained consistent
when functional connectomes from all 3 datasets were
rescaled to have the same mean and variance (all P
values << 0.001) and when examining selectivity of long-
range functional connections from anterior clusters
to posterior clusters (Supplementary Fig. 7). When

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
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https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
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Fig. 2. Neonates have present but reduced network-specificity of long-range functional connectivity and increased short-range functional connectivity
relative to older children and adults. Panel A provides bar graphs plotting PA functional connectivity at 3 different ages. For each network, functional
connectivity is plotted between a single posterior network cluster and 5 different anterior network clusters from 5 different networks. Network
assignments are based on work in adults (Power et al. 2011). For the DMN, FPN, and DAN posterior seeds, functional connectivity was highest to the
anterior cluster corresponding to the same network at all 3 ages, including neonates (astericks indicate bars with significantly higher values relative
to all other bars in pairwise comparisons). Thus, there is network-specific selectivity of long-range functional connectivity in the neonatal brain. Note,
however, that the selectivity for same- versus different- network functional connectivity is not as great in neonates as in the other ages. Panel B illustrates
the average functional connectivity of frontal lobe network clusters to 4 other clusters (DMN, FPN, DAN, CON, and VAN minus whichever network is
the seed) in the frontal lobe, each from different networks. Note that the average (short-range) functional connectivity to other functional networks is
highest in neonates, intermediate in children, and lowest in adults. ∗∗∗ (P << 0.001); ∗∗ (P = 0.01).

comparing adults and children, adults had higher long-
range selectivity for DMN (P << 0.001) and FPN (P = 0.03)
seeds, whereas children had higher long-range selectivity
for the DAN seed (P = 0.008).

We next compared short-range functional connectiv-
ity across neonates, children, and adults. First, we mea-
sured between-network functional connectivity within
the frontal lobe (Fig. 2B and Supplementary Fig. 8). The
average functional connectivity of each network clus-
ter in the frontal lobe to clusters for other networks
in the frontal lobe was highest in neonates (indicat-
ing lower network specificity of functional connectiv-
ity), intermediate in children, and lowest in adults (all
pairwise P < 0.001). The same pattern of results was
obtained when examining functional connectivity within
the posterior cortex (Supplementary Fig. 9).

Empirically defined neonatal functional
networks
We next empirically defined neonatal functional brain
networks and explored the extent to which the features
described above (present but decreased selectivity of
long-range functional connections; increased short-
range functional connectivity) impacted results of
different network-detection algorithms. We first used a
standard implementation of the community detection
algorithm Infomap to empirically derive functional
brain networks in neonates over a range of edge
densities (Fig. 3). This approach permits characterization
of network organization when considering relatively
weak functional connections (“dense edge densities”)
versus when considering only the strongest functional
connections (“sparse edge densities”). At dense edge

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
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Fig. 3. A latent adult-like functional network organization exists in the neonatal brain. Panel A depicts empirically derived functional brain networks
using a standard vertexwise community detection algorithm (Infomap) across a range of edge densities. Numbers above each brain indicate the top X%
of functional connections used the derive the functional network solution. Note that as progressively weaker functional connections are considered
(e.g. at dense edge densities such as 9–10%), some distributed networks emerge (in red and green). Panel B depicts functional network identities derived
using a modified Infomap algorithm that favors long-range functional connections, when restricting analyses to neonates in the top quartile of MI. Note
that when long-range functional connections are favored, many adult-like patterns emerge.

densities (10%), a 6-network solution emerged including
networks that resembled the adult VN (dark blue),
SMN (light blue), posterior VAN (teal), and anterior
CON (purple). In addition, there were 2 networks (green
and red) with regions distributed across the brain. The
green network resembled the DAN in adults and the red
network included most of the frontal lobe and resembles
the combined DMN and FPN in adults. The DMN and
FPN did not segregate at any edge density using this
standard algorithm. For network solutions at sparser
edge densities, the networks described above break into
progressively smaller pieces.

To examine for latent adult-like organization that
might not be evident when using the standard algorithm,
we next used an algorithm that employed neonatal-
defined regions and emphasized long-range functional
connections over short-range functional connections
(see Methods). By using this procedure, we derived a
network solution resembling adult-like assignments

(Fig. 3B). More specifically, segregated networks with
some elements similar to the adult-defined DMN, DAN,
FPN, CON, and SN could be identified in the neonates.
The DMN and FPN were segregated in this scheme,
indicating that some differentiation between these
functional networks is present during the neonatal
period. The functional connectivity matrices based on
these network assignments exhibited a typical block
structure (Supplementary Fig. 10). It is important to
note that the algorithm in no way imposed an adult-
like structure (i.e. there were no adult “priors”). Were
it not for selectivity in the long-range functional
connections described above, another more arbitrary
network solution would have emerged. Taken together
with the results above, these results indicate that there
is a latent adult-like organization of neonatal functional
connections; but that this organization is obscured by
high short-range functional connectivity and decreased
long-range selectivity.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
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Apparent maturity of neonatal functional
networks depends on registration and data
quantity
Results from the current study suggest that the neonatal
brain has adult-like organizational features. We next
examined the extent to which 2 specific design elements
of the current study, surface-based registration and
high per-subject data quantity (10–30 min after frame
censoring), contributed to the measured maturity of the
neonatal brain. For each neonate, we computed a MI,
as the similarity (correlation) in whole-brain functional
connectivity between that neonate and an adult average.
The MI is expected to index apparent neonatal brain
maturity because it directly measures similarity to adult
data. Consistent with our hypothesis, MI was higher
when using surface-based registration compared with
using exclusively volume-based registration (Fig. 4A; 0.45
versus 0.42, t(261) = 38.5, P << 0.001). Out of the 262
neonates, 259 had a higher MI value with surface-based
compared with volume-based registration. Second, as
predicted, MI was strongly correlated with the amount
of available low-motion fMRI data (r = 0.61, P << 0.001),
with no clear plateau in this relation even with 30 min
of data (Fig. 4B). After controlling for the amount of
retained data, there was a significant relation between
neonatal MI and postmenstrual age (PMA) at scan (partial
r = 0.30, P < 0.001, Fig. 4C), consistent with the MI also
indexing maturity. We also computed the MI in the
subset of neonates with at least 20 min of low-motion
data (n = 71), restricting the MI calculation to the first 10
or 20 min of imaging data collected. Using this within-
subject approach, MI was significantly higher with 20
versus 10 min of data (0.48 vs. 0.42, t = 26.1, P << 0.001).
Thus, there was support for the hypothesis that apparent
functional brain maturity (as measured with MI) is
dependent on data quantity. Supplementary Fig. 3B
depicts functional connectivity matrices from individual
neonates across a range of MI values.

Discussion
The goals of this study were to characterize the func-
tional network organization of the neonatal brain and
to test whether long-range functional connections in
neonates exhibit network-selectivity similar to school-
age children and adults. Results indicated that long-
range selective functional connectivity is identifiable in
neonates for several adult-defined networks, including
the DMN, DAN, and FPN. This selectivity is weaker
relative to school-age children and adults, and neonates
additionally have stronger local functional connectivity
compared with older samples. This weak long-range
selectivity combined with increased local functional
connectivity results in a standard community detection
algorithm primarily segregating the neonatal brain into
networks consisting of isolated anatomical pieces of
cortex. However, when the algorithm is tuned to favor
long-range functional connections, an adult-like pattern

of functional brain networks emerges. Functional con-
nectivity overall is weaker in neonates relative to older
samples, and the pattern of positive functional con-
nectivity is more similar between neonates and adults
compared with the pattern of negative functional
connectivity. Finally, neonatal functional brain networks
appear more adult-like when using surface-based
registration as opposed to volume-based registration;
and when using greater amounts of imaging data per
participant.

This study reveals that long-range functional connec-
tions characteristic of adult functional brain networks,
including the DMN, DAN, and FPN, also exhibit network-
selectivity near the time of birth. In other words, contigu-
ous portions of cortex in the neonate that share a com-
mon adult-defined network assignment show greater
functional connectivity to spatially distant cortex from
the same adult-defined network than to spatially dis-
tant cortex from different adult-defined networks. These
results discount an alternative developmental model in
which long-range functional connections are nonspecific
near the time of birth and selectivity emerges over the
first years of life. These results extend prior work that
has reported functional connectivity between anterior
and posterior regions that become the DMN in adults
(Doria et al. 2010; Smyser et al. 2010, 2016; Keunen et al.
2017; Molloy and Saygin 2022); the current study demon-
strates that this long-range functional connectivity is
network-selective and also provides evidence for long-
range selectivity of functional connections in the nascent
DAN and FPN.

We demonstrate that selective, network-specific, long-
range functional connections for the DMN, DAN, and
FPN are present near the time of birth. The detection of
purely localized versus segregated functional networks
when using whole-brain network-detection algorithms
depends on the algorithm used and is a consequence
of neonatal functional connectivity properties. Because
local functional connectivity is higher in neonates, and
the degree of long-range selectivity is modest, a stan-
dard algorithm detects localized networks because of the
high local functional connectivity. An algorithm tuned
to emphasize long-range functional connectivity, in con-
trast, derives more adult-like networks because selective
long-range functional connections are present near birth
but weaker compared with older samples. These obser-
vations reconcile seemingly inconsistent findings from
prior studies, some of which report anterior–posterior
segregated neonatal networks, whereas others character-
ize neonatal functional networks as consisting primar-
ily of bilateral segregated anatomical pieces of cortex
(Fransson et al. 2007, 2009; Gao et al. 2009; Doria et al.
2010; Smyser et al. 2010; Gao et al. 2013; De Asis-Cruz
et al. 2015; Gao et al. 2015; van den Heuvel et al. 2015; Gao
et al. 2016; Smyser et al. 2016; Keunen et al. 2017). That is,
prior work using nonlinear methods such as thresholding
of seed-based functional connectivity maps or ICA-based
network-detection algorithms likely highlighted the high

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac202#supplementary-data
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Fig. 4. Neonatal functional brain networks appear more adult-like when using surface-based alignment and as per-participant data quantity increases.
Panel A illustrates the apparent maturity of neonatal functional connectivity depending on whether surface-based or volume-based alignment
strategies were used. Lines connect MI values for individual neonates using volume-based versus surface-based alignment. Out of 262 neonates, the
MI value was higher in 259 with surface-based registration (red lines); just 3 had higher MI values with volume-based registration (blue lines). The top
section of Panel B provides a scatterplot of the significant relation between the MI (computed in surface-space) and amount of retained imaging data in
the neonatal dataset. The red circle indicates a participant who was an outlier for minutes of retained data (42 min), and so their value was Winsorized
(to 28 min). The bottom section demonstrates the significant relation between PMA at scan and MI, when accounting for amount of retained data.

magnitude short-range neonatal functional connections
rather than the weaker long-range functional connec-
tions.

The current study is consistent with a model in which
basic overall functional brain network organization,
including selective long-range functional connections
of the DMN, FPN, and DAN, are established in-utero (Turk
et al. 2019; Thomason 2020) rather than over the first
years of life. These results highlight the role of maternal-
placental-fetal biology in establishing the foundational
functional network architecture of the human brain
and underscore the importance of understanding how
maternal factors such as health, nutrition, and stress
impact in-utero brain development (Entringer et al. 2015;
Norr et al. 2021; Thomason et al. 2021; van den Heuvel
et al. 2021). This basic organization may be flexibly
honed over the first few years of life through decreases
in short-range functional connectivity and increases in
the selectivity of long-range functional connections (Gao
et al. 2011; Cao et al. 2017; Shi et al. 2017) in order to
develop experience-dependent topographies, permitting
the environment to influence the more fine-grained
details of functional connectivity. Although the specific
structural correlates of this refinement in functional
connectivity are not known, the first 2 years of life
are a period of increasing myelination, axonal pruning,
synaptogenesis, and synaptic pruning (Brody et al.
1987; Stiles and Jernigan 2010; Tau and Peterson 2010;

Collin and van den Heuvel 2013; Keunen et al. 2017; Neil
and Smyser 2018). The presence of emerging adult-like
networks is also consistent with prior work indicating
that spatially separated brain regions that process
specific types of information (i.e. language and faces)
are selectively functionally connected to each other in
neonates (Kamps et al. 2020; Li et al. 2020) as they are in
adults.

The current study also highlighted that one of the
most striking differences between the neonatal and
adult functional connectomes is the topography of
negative functional connectivity, which exhibited greater
age-related differences compared with the topography
of positive functional connectivity. This observation
is consistent with prior work arguing that negative
functional connectivity between the DMN and DAN, the 2
networks with the strongest negative correlations, do not
have significant negative correlations until the first year
or two of life (Gao et al. 2013, 2015). Although the nature
of negative correlations is incompletely understood, they
are generally viewed as reflecting inhibition (Greicius
et al. 2003; Fox et al. 2005). An important direction for
future work is to clarify when negative correlations
become more adult-like and how the maturation of
negative correlations corresponds to developmental
changes in information processing.

One prospect is that estimates of the maturity of the
neonatal brain will continue to increase with advances
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in data acquisition and processing. The decreased appar-
ent long-range and short-range selectivity measured in
neonates relative to older samples likely represents a
combination of biological differences and methodologi-
cal challenges that effectively blur the location of neona-
tal functional areas at the group-level. Further work is
needed to continue to elucidate to what extent measured
differences are related to biology versus methodological
challenges. The improvement in apparent maturity from
volume-based to surface-based alignment suggests it
may be more difficult to align homologous functional
brain areas across neonates. This assertion is supported
by recent work revealing heterogeneity in the layout of
functional networks across neonates (Molloy and Saygin
2022). Importantly, the effect of mis-aligning subjects
and then averaging data across heterogeneous subjects
would result in exactly the pattern of functional connec-
tivity noted in neonates: higher apparent local functional
connectivity and less selectivity of long-distance func-
tional connectivity. Thus, methods that further account
for heterogeneity may also result in additional increases
in the apparent maturity of the neonatal brain. “Precision
neuroimaging” is an approach in which large amounts
(i.e. hours) of data are collected in individual participants
over multiple days, significantly improving the reliabil-
ity of measured signals (Laumann et al. 2015; Gordon
et al. 2017; Sylvester et al. 2020). Analyses are performed
within-subject and do not involve group-averaging. Such
precision neuroimaging techniques could test whether
functional networks appear more immature in group-
average datasets because of averaging across heteroge-
nous neonates. In addition, the increase in apparent
maturity of the neonatal brain with increasing amounts
of data suggests that lower SNR may make it more diffi-
cult to detect adult-like functional networks in neonates.
One possibility that could be tested in the future is
that techniques that increase SNR, including multi-echo
sequences (Posse et al. 1999; Lynch et al. 2020), infant-
specific head coils, and precision neuroimaging, may
uncover further increases in the apparent maturity of the
neonatal brain. Because neonatal functional connectivity
appeared progressively more adult-like with increasing
amounts of data, with no plateau in this relation even
with 30 min of data, we also highlight the importance for
future work to consider extended fMRI data acquisitions.

The current study should be viewed in light of its
limitations. As noted throughout, comparisons across
neonates, children, and adults are complicated by inher-
ent methodological differences. These differences are
unavoidable due to differences in head size (especially
differences in the ratio of gray matter thickness to voxel
size), differences in magnetic properties of tissues, and
different sources of noise (Thornton et al. 1999; Smyser
and Neil 2015; Liu et al. 2016; Goksan et al. 2017; Neil and
Smyser 2018; Kaplan et al. 2022). As a result of these fac-
tors, the optimal sequences and processing streams for
neonates versus older samples are different. In this study,
we chose to optimize methods for each group rather than

use a one-size-fits all approach; in our opinion this lat-
ter approach would exacerbate methodological problems
because it would result in lower quality data from one of
the groups. As a result of the above considerations, com-
parisons of functional connectivity between neonates
and older samples likely reflect a combination of bio-
logical and methodological differences. Nevertheless, it
is instructive to compare functional connectivity across
groups as a means of providing an empirical explanation
for why, e.g. neonates appear to have less well-connected
networks, even as we work to identify which of these
differences are methodological versus biological. In addi-
tion, variation in neonatal functional connectivity has
been linked to factors such as preterm birth (Smyser
et al. 2016; Rogers et al. 2017), socio-economic status
(Ramphal et al. 2020), and drug and alcohol use in-utero
(Roos et al. 2021); and functional properties at birth have
been associated with outcomes in the first 2 years of life
including symptoms related to anxiety (Graham et al.
2016; Rogers et al. 2017; Sylvester et al. 2017; Graham
et al. 2019; Sylvester et al. 2021) and attention problems
(Ramphal et al. 2020). To address these issues, in the
current study children were full-term and had no known
drug or alcohol exposures (maternal marijuana use was
not excluded), and so future studies are required to deter-
mine, which aspects of neonatal brain organization are
influenced by these factors.

In summary, the current study supports the hypothesis
that adult-like functional relationships are detectable
near birth. Key long-range anterior–posterior functional
connections that typify the DMN, DAN, and FPN are
exhibit network-selectivity in term-born neonates. These
observations provide a foundation for studies of human
brain development and for studies that seek to relate
variation in brain development to variation in outcome.
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