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A B S T R A C T   

Predicting the evolutionary dynamics of the COVID-19 pandemic is a complex challenge. The complexity in-
creases when the vaccination process dynamic is also considered. In addition, when applying a voluntary 
vaccination policy, the simultaneous behavioral evolution of individuals who decide whether and when to 
vaccinate must be included. In this paper, a coupled disease-vaccination behavior dynamic model is introduced 
to study the coevolution of individual vaccination strategies and infection spreading. We study disease trans-
mission by a mean-field compartment model and introduce a non-linear infection rate that takes into account the 
simultaneity of interactions. Besides, the evolutionary game theory is used to investigate the contemporary 
evolution of vaccination strategies. Our findings suggest that sharing information with the entire population 
about the negative and positive consequences of infection and vaccination is beneficial as it boosts behaviors that 
can reduce the final epidemic size. Finally, we validate our transmission mechanism on real data from the 
COVID-19 pandemic in France.   

1. Introduction 

Over the years, prevention and control of the spread of infectious 
diseases have been key research topics for scientists. Currently, quar-
antine and vaccination are two effective ways to control the spread of 
infectious diseases in the short and long term, respectively [1–4]. 
Regarding vaccination measures, previous studies have mainly focused 
on mandatory vaccination. In this paper, our goal is to analyze the dy-
namics of vaccination behavior when vaccination is voluntary and its 
impact on the disease spreading. 

Traditional models for the spread of infectious diseases are the so- 
called compartment models, including the SIS (susceptible-infected- 
susceptible) and the SIR (susceptible-infected-recovered) models [5–8], 
or the more sophisticated SIRS (susceptible-infected-recovered-suscep-
tible) and SEIR (susceptible-exposed-infected-recovered) models 
[9–12], among many others. In these models, individuals in the popu-
lation are divided into different compartments that describe their status 
(susceptible or infected, for example). One can derive the differential 

equations describing the dynamics of these systems. Analyzing the 
equilibrium point of these differential equations, one can find the final 
epidemic size (FES), i.e., the total number of people experiencing 
infection during the outbreak [13]. In general, the equilibrium points of 
such dynamic systems include the disease-free equilibrium point (DFE) 
and the endemic equilibrium point (EE) [14,15]. In addition, a key 
parameter is the basic reproduction number, i.e., an index that describes 
the infection rate and gives information on the epidemic's potential 
[3,16]. 

Although the traditional spreading models describe the spreading 
behavior of many diseases, they have important limitations, as they 
ignore the heterogeneity of the infectious capacity of different in-
dividuals in different places and times [12,17,18]. To overcome these 
limitations, the impact of disease spreading (and its prevention) has also 
been studied on different social network structures. Here, the in-
teractions between individuals are modeled as the links in a social 
network whose nodes are the individuals themselves [19,20]. Whether 
diseases, computer viruses or rumors, their spread is inevitably 

* Corresponding authors at: Department of Industrial Engineering, Northwestern Polytechnical University, Xi'an 710072, China. 
E-mail addresses: caizhiqiang@nwpu.edu.cn (Z. Cai), sisb@nwpu.edu.cn (S. Si).  

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

journal homepage: www.elsevier.com/locate/chaos 

https://doi.org/10.1016/j.chaos.2023.113294 
Received 7 November 2022; Received in revised form 20 January 2023; Accepted 19 February 2023   

mailto:caizhiqiang@nwpu.edu.cn
mailto:sisb@nwpu.edu.cn
www.sciencedirect.com/science/journal/09600779
https://www.elsevier.com/locate/chaos
https://doi.org/10.1016/j.chaos.2023.113294
https://doi.org/10.1016/j.chaos.2023.113294
https://doi.org/10.1016/j.chaos.2023.113294
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2023.113294&domain=pdf


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 169 (2023) 113294

2

influenced by the topology and structure of the social network [21–23]. 
In 1998, Watts and Strogatz proposed the small world network [24]. In 
1999, Barabasi and Albert proposed the preferential attachment mech-
anism for generating scale-free networks [25]. Since then, the theory of 
complex networks has developed rapidly. The proposal and derivation 
of many network models provide a new direction for the study of in-
fectious diseases, of which three are the most pioneering. The first is the 
mean-field model proposed by Pastor-Satorras and Vespignani in 2001 
[26,27]. The second is the infiltration model proposed by Newman in 
2002 [28]. The third is the discrete probability model proposed by Wang 
in 2003 [29]. Models of disease spreading on more advanced networks, 
such as multilayer networks and adaptive networks, have also been 
investigated [30,31]. For example, Zhu et al. proposed a two-layer 
network model to study the spreading properties of lethal diseases 
[32]. Gao et al. introduced a model on multiplex networks with the 
presence of self-diffusion and cross-diffusion [33]. 

On the other hand, to study the populations behavior with respect to 
vaccination, evolutionary game theory has been implemented [34,35]. 
When a policy of voluntary vaccination is adopted, the individual de-
cision to vaccinate depends on multiple factors, such as individual 
infection risk, vaccination cost, vaccine safety, etc. [36,37]. Using game 
theory, one can quantify individuals' decision-making based on these 
factors [38,39] (note that also evolving vaccination games depend on 
the structure of the social networks). When individuals in the population 
are continuously vaccinated, the spread of disease is limited and the risk 
of infection of unvaccinated people is reduced. As a result, some un-
vaccinated individuals, called "free riders", are indirectly protected 
[40–42]. However, infectious diseases spread more effectively among 
the unvaccinated population. These two contrasting effects generate the 
so-called "vaccination dilemma" [43–46]. Evolutionary game theory can 
well describe the decision-making behavior when individuals are faced 
with this dilemma [47–49]. 

In general, when an individual's perceived risk of infection increases, 
she will choose a specific vaccination strategy (i.e., to vaccinate or not) 
with a probability that depends on a risk-benefit analysis [50–53]. 
Hence, individuals constantly update their strategies to maximize their 
interests. The individual strategy learning process includes two aspects: 
one is the mechanism of self-learning, such as learning by reinforcement 
[54]; the other is the imitation mechanism, based, for example, on 
Fermi's updating rules [55–58] (as we shall explain in more detail 
below). According to some scholars, without the intervention of incen-
tive measures, the population cannot inhibit the spread of diseases with 
a voluntary vaccination policy [38,59]. Within the framework of 
evolutionary game theory, however, it has been found that imitating the 
vaccination strategy of hub nodes can effectively inhibit the trans-
mission of infectious diseases [41,42,60]. Today, understanding how 
control measures and people's behavior affect the spread of the disease is 
an urgent issue given the rapid spread of COVID-19 [61,62]. 

The literature that investigates the interplay between disease dy-
namics and vaccination behavior is constantly growing [34,63,64]. So 
far, the evolution of epidemic and vaccination behavior are treated as 
two distinct processes: at a given time, individuals decide whether to 
vaccinate based on the epidemiological outcomes of the previous period; 
at this point, the vaccination rate is observed and then the scale of 
infection transmission of subsequent times is analyzed, until the next 
temporal instant when individuals update again their strategies. This 
approach is suitable for modeling seasonal viruses such as influenza in 
which people, before the season of the diffusion peak, adjust their 
vaccination behavior based on the results of the previous season. 
However, the pandemic experience of the past two years and the 
properties of the COVID-19 virus suggest that we are facing a scenario in 
which disease dynamics and vaccination behaviors co-evolve in a single 
process. 

In light of this, our goal in this paper is to investigate the trans-
mission of infectious diseases and the simultaneous vaccination process 
from an evolutionary point of view. As mentioned above, individuals 

decide their vaccination strategy by performing a cost-benefit analysis 
that can be different in different stages of the epidemic. Thus, also 
vaccination strategies evolve together with the disease transmission 
process. In the following, these mechanisms are integrated into a new 
dynamic coupled behavior model of vaccination to study the coevolu-
tion of vaccination strategies and disease spreading as a unique process. 
Note, however, that vaccination is not the only defense against conta-
gion and infection: there are other protective measures such as wearing 
masks and hand washing, among many others. For simplicity, we only 
address vaccination in this paper, but the effects of other protective 
measures on our modeling approach can be studied in the future. 

Our main contribution is threefold. First, we introduce a new 
coupled disease- vaccination behavior dynamic which extends and 
complements the work of Kabir and Tanimoto in [34]. In our model, the 
population is abstracted as a social network where nodes are individuals 
and edges represent their interactions. The mechanism of disease 
transmission is studied by a compartmental model based on the mean- 
field theory. Here, we introduce an infection rate of susceptible in-
dividuals that is non-linear in the number of infected neighbors. Unlike 
the standard (linear and nonlinear) infection rates studied in the above- 
cited literature, which assume that at each time step an individual's 
infection probability depends on a single interaction, our infection rate 
takes into account the possible individual's simultaneous interaction 
with her neighbors. This describes a more realistic scenario where 
people have multiple contacts in the same time window. 

Instead, the evolution of individual vaccination strategies is based on 
the evolutionary game theory. As in [34], we study two strategy 
updating rules: A local rule that considers only the individual benefit, 
and a global rule that considers the benefit of the whole population. In 
addition, since in the real world there is a lag time between the spread of 
the virus and the adoption of a given vaccine strategy, we analyze 
numerically how the observables in our model vary by varying this lag 
time. 

Second, we analyze the main parameters of the model. The next- 
generation matrix method is used to obtain the basic reproduction 
number and identify the parameters' critical values for the evolution of 
vaccination and non-vaccination strategies. 

Finally, we analyze real transmission data of COVID-19 in France to 
validate our infection transmission model. Our results suggest an early 
warning method for infectious disease outbreaks and can guide policy-
makers in their decisions. 

The rest of this paper is organized as follows. Section 2 describes the 
new dynamic model of coupled disease-vaccination behavior. The 
reproduction number is studied in Section 3. Numerical simulations are 
shown in Section 4. Here, the dependence of disease spreading on model 
parameters is analyzed in detail with the phase diagrams of the evolu-
tion. In Section 5, we show the empirical analysis of COVID-19 data in 
France. Section 6 concludes the paper and discuss potential future re-
searches and perspectives. 

2. Coupled disease-vaccination behavior dynamic model 

In this section, the new coupled disease-vaccination behavior dy-
namic model is introduced. We first describe the disease transmission 
process based on the mean-field approximation (MFA). Then, we show 
how the evolutionary game theory (EG) under two different updating 
rules is implemented for the vaccination strategies evolution. 

2.1. Dynamic model of disease transmission based on mean-field theory 

The population is divided into compartments according to the in-
dividuals' strategies and epidemic states. And there are two strategies, C 
and D, that represent the proportion of susceptible individuals adopting 
the vaccination strategy (cooperation strategy) and the susceptible 
proportion of individuals adopting the non-vaccination strategy 
(deception strategy), respectively. Furthermore, it is assumed that there 
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exist six epidemic states {VE, SV , IV , SN, IN,R} with the following mean-
ings: VE is the proportion of individuals effectively vaccinated; SV is the 
proportion of individuals ineffectively vaccinated (because of, for 
example, vaccine imperfection), and thus still susceptible; IV is the 
proportion of individuals ineffectively vaccinated who has been infec-
ted; SN is the proportion of non-vaccinated susceptible individuals; IN is 
the proportion of individuals non-vaccinated and infected; R is the 
proportion of recovered individuals (after the infection). It is assumed 
that individuals in the state R have permanent immunity. A graphical 
representation of the interaction between compartments in our coupled 
disease-vaccination behavior dynamic model is shown in Fig. 1. 

In the figure, e is the vaccination efficacy, meaning that the vaccine 
protects against infection with probability e, but is ineffective with 
probability 1-e. This stochastic approach to modeling vaccine imper-
fection is called the effectiveness model [65]. This is complementary to 
the efficiency model, which, however, describes other protective mea-
sures, such as wearing a face mask, that are not considered in this paper 
[65]. Then λ is the probability that a susceptible individual is infected by 
her infected neighbors, i.e. it is the infection rate. Considering a ho-
mogeneous social network, we assume that an individual interacts at 
each time-step with all her neighbors. In this way, λ is equal to 
1–(1–β)〈k〉(IV+IN), where β is the probability of disease transmission after 
contact with an infected person, and 〈k〉 is the average degree of the 
network, i.e., the average number of neighbors of each individual. Of 
course, this infection rate is nonlinear with the number of neighbors. 
Moreover, μ is the probability of an individual changing from an infected 
state to the R state. Table 1 provides a list of all parameters in our model 
with their corresponding meanings. 

According to the described dynamic compartmental model, the sys-
tem is described by the following differential equations: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSV

dt
= − SV

[
1 − (1 − β)〈k〉(IV+IN )

]
+ (1 − e)Δ1 − Δ2

dSN

dt
= − SN

[
1 − (1 − β)〈k〉(IV+IN )

]
− Δ1 + Δ2

dIV

dt
= SV

[
1 − (1 − β)〈k〉(IV+IN )

]
− μIV

dIN

dt
= SN

[
1 − (1 − β)〈k〉(IV+IN )

]
− μIN

dVE

dt
= eΔ1

dR
dt

= μ(IV + IN)

(1) 

Here, the interaction terms Δ1 is the proportion of the SN individuals 
who switch from strategy D (non-vaccination) to strategy C (vaccina-
tion); on the contrary, the interaction term Δ2 is the proportion of the SV 

individuals who switch from strategy C to strategy D. The values of Δ1 

and Δ2 are determined by the behavioral dynamic, as explained in de-
tails in Section 2.2.1. The solution set of the dynamic system (1) is 

D =
{
(SV , SN , IV , IN ,VE,R) ∈ R6

+

: SV(t)+ SN(t)+ IV(t)+ IN(t) +VE(t) +R(t) = 1
}
.

2.2. Imitation dynamic model of vaccination behavior based on the 
evolutionary game theory 

The vaccination strategy evolution is described based on the EG in 
this section. As rules for updating the strategy, two risk assessment 

Fig. 1. Schematic representation of our coupled disease-vaccination behavior dynamic model.  

Table 1 
Parameters of the coupled disease-vaccination behavior model.  

Parameters Description 

β The per-contact transmission probability 
μ The probability from infected state to recovered state 
λ The probability that a susceptible individual will be infected by the 

infected neighbors 
κ The degree of rationality of an individual 
e The vaccination efficacy 
〈k〉 The average number of contacts in the population 
c The relative cost  
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methods are considered to characterize individual behavior in the 
imitation dynamics: an individual-based method and a society-based 
method. In the first case, the strategy update rule is described as fol-
lows. Each individual evaluates both the risk of maintaining her own 
strategy and that of imitating her neighbor's strategy. Then she selects 
the one with the lowest individual risk and the highest individual payoff. 
However, if the information about the consequences of adopting a 
certain strategy is public, individuals would no longer rely on the payoff 
of a single neighbor to evaluate risks. Instead, they would assess risk 
based on the average payoff of the society resulting from the choice of a 
certain strategy. To study this scenario, a society-based risk assessment 
rule is introduced to our model. Henceforth, we use the same termi-
nology as in [34] and abbreviate the individual-based risk assessment as 
IB-RA and the society-based risk assessment as SB-RA. 

2.2.1. Individual-based risk assessment (IB-RA) 
Depending on the strategy choice, a susceptible individual (either in 

the SV or in the SN compartment) must consider five possible outcomes, 
as shown in the payoff matrix in Table 2. 

Specifically, if the individual chooses to vaccinate (V), the vaccine 
may be effective (Se) or ineffective (Sie). In the former case, the cost 
corresponds only to the cost of vaccination CV (in terms of money, time, 
or side effects) and we refer to this outcome as vaccination-effective- 
strategy (VES). In the second case, in addition to the cost of vaccina-
tion, one must add the cost of potential infection. This must be inter-
preted, for example, as a psychological cost due to the fear of becoming 
infected or the knowledge to be more vulnerable than effectively 
vaccinated people. It is also an economic cost caused by the social re-
strictions imposed by governments (e.g., prohibition to accessing certain 
public places) on susceptible individuals. For these reasons, we assume 
that a susceptible individual, even if not actually infected, incurs a cost 
proportional to the probability of becoming infected λ (the greater the 
probability of becoming infected, the greater the fear and the greater the 
social restrictions) and the cost to be paid in the event of infection (the 
greater that cost the greater the fear of becoming infected, for example). 
Hence, in the Sie case, the payoff is − CV − λCI, where the second addend 
is the cost of potential infection and CI is the effective cost of infection 
(in terms of economic costs in treating the disease or psychological costs 
due, for example, to isolation). We refer to this outcome as the 
vaccination-non-effective-strategy (VNS). If the ineffectively vaccinated 
individual actually becomes infected, the cost to be incurred would be 
the cost of vaccination plus the effective cost of infection. In this case, we 
refer to this outcome as the vaccination-infection strategy (VNI). 
Instead, if the individual decides not to vaccinate (N), the cost corre-
sponds only to the cost of potential infection defined above, and we refer 
to this outcome as the non-vaccination-susceptible strategy (NS). If the 
non-vaccinated individual actually becomes infected, the cost to be 
incurred would be the effective cost of infection and we refer to this 
outcome as the non-vaccination-infection strategy (NI). 

Denoting as πi the payoff of outcome i, we can write 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

πVES = − CV

πVNS = − CV − λCI

πVNI = − CV − CI

πNS = − λCI

πNI = − CI

(2) 

The relative cost is defined as c = CV/CI. Generally, the cost of 
vaccination is less than the effective cost of infection, so we have 
0 < c < 1. For convenience, we redefine Eq. (3) as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

πVES = − c

πVNS = − c − λ

πVNI = − c − 1
πNS = − λ

πNI = − 1

(3) 

When a susceptible individual adopts the IB-RA method, she selects a 
random neighbor to compare costs and payoffs and choose the most 
profitable strategy. It is assumed that she imitates her random neighbor's 
strategy with a probability given by the Fermi updating rule [66–68]. In 
particular, an individual belonging to the SV compartment (hence with a 
VNS payoff) will imitate a random neighbor with NS or NI payoffs with 
probabilities: 

P(VNS←NS) =
1

1 + exp[ − ( − λ − ( − CV − λ) )/κ ]
(4)  

P(VNS←NI) =
1

1 + exp[ − ( − CI − ( − CV − λ) )/κ ]
(5)  

P(VNS←VES) =
1

1 + exp[ − ( − CV − ( − CV − λ) )/κ ]
(6) 

Here, the parameter κ describes the degree of rationality of an in-
dividual: when κ is zero, the probability to switch to the lowest cost 
strategy is one (full rationality); in the large κ limit, the Fermi's proba-
bility is always 1/2 (random choice). 

Analogously, an individual belonging to the SN compartment (hence 
with a NS payoff) will imitate a random neighbor with VES, VNS, or VNI 
payoffs with probabilities: 

P(NS←VES) =
1

1 + exp[ − ( − CV − ( − λ) )/κ ]
(7)  

P(NS←VNS) =
1

1 + exp[ − ( − CV − λ − ( − λ) )/κ ]
(8)  

P(NS←VNI) =
1

1 + exp[ − ( − CV − CI − ( − λ) )/κ ]
(9) 

Now, we can finally write down the interaction terms Δ1 and Δ2 

introduced in the dynamic system (1): 

Δ1 = SN ⋅VEP(NS←VES) + SN ⋅SV P(NS←VNS) + SN ⋅IV P(NS←VNI)

= SN ⋅VE⋅
1

1 + exp[ − ( − c − ( − λ) )/κ ]
+

SN ⋅SV ⋅
1

1 + exp[ − ( − c − λ − ( − λ) )/κ ]
+

SN ⋅IV ⋅
1

1 + exp[ − ( − c − 1 − ( − λ) )/κ ]

(10)  

Δ2 = SV ⋅SNP(VNS←NS) + SV ⋅INP(VNS←NI)

= SV ⋅SN ⋅
1

1 + exp[ − ( − (λ1 + λ2) − ( − c − λ) )/κ ]
+

SV ⋅IN ⋅
1

1 + exp[ − ( − 1 − ( − c − λ) )/κ ]

(11)  

2.2.2. Society-based risk assessment (SB-RA) 
In the SB-RA case, individuals make their decisions based on the 

global average payoff, rather than the payoff of a randomly selected 
neighbor. The global average payoffs, πC and πD, of susceptible in-
dividuals adopting the cooperation and deception strategy, respectively, 
can be written as 

Table 2 
The payoff matrix.   

Health Infected 

V Se Sie − CV − CI [VNI] 
− CV [VES] − CV − λCI [VNS] 

N − λCI [NS] − CI [NI]  
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πC =
VE⋅( − CV) + SV ⋅( − CV − λCI) + IV ⋅( − CV − CI)

VE + SV + IV
(12)  

πD =
SN ⋅( − λCI) + IN( − CI)

SN + IN
(13) 

Then, the Fermi's probability for an individual ineffectively vacci-
nated to switch to the deception strategy is 

P(VNS←D) =
1

1 + exp[ − (πD − ( − CV − λ) )/κ ]
(14) 

Instead, the Fermi's probability for a non-vaccinated individual to 
switch to the cooperation strategy is 

P(NS←C) =
1

1 + exp[ − (πC − ( − λ) )/κ ]
(15) 

This time, the interaction terms are: 

Δ1 = SN ⋅(VE + SV + IV)⋅P(NS←C) (16)  

Δ2 = SV ⋅(SN + IN)⋅P(VNS←D) (17)  

3. Reproduction number 

The reproduction number R0 is defined as the average number of 
infections caused by an infected person. If it is larger than 1 and no 
restrictive measures are applied, the epidemic will continue to grow. 
The greater R0, the faster the epidemic spreads. When it is <1, instead, 
the epidemic will gradually slow down or even disappear. 

3.1. Next-generation matrix method 

Here, we briefly show the next-generation matrix method [69,70] to 
find the basic reproduction number R0. 

Step 1: Defining I = (IV , IN)T, and dynamic system (1) can be written 
as 

dI
dt

= r(I) − h(I) (18)  

Where r(I) is the proportion matrix of newly infected individuals and 
h(I) is the transfer proportion matrix of newly recovered individuals. 

r(I) =

⎡

⎢
⎣

SV

[
1 − (1 − β)〈k〉(IV+IN )

]

SN

[
1 − (1 − β)〈k〉(IV+IN )

]

⎤

⎥
⎦ =

[
r1
r2

]

(19)  

h(I) =

[
μIV
μIN

]

=

[
h1
h2

]

(20)   

Step 2: The disease-free equilibrium point of the dynamic system is 
E0 =

(
S*

N, S*
V , I*

N, I*
V ,V*

E,R*) = (1,0, 0,0, 0,0). The Jacobian F and V 
of the matrices r(I) and h(I) at the disease-free equilibrium point are 

F =

[
∂r(I)

∂I

] ⃒
⃒
⃒
⃒

E0

=

⎡

⎢
⎢
⎢
⎢
⎣

∂r1

∂IV

∂r1

∂IN

∂r2

∂IV

∂r2

∂IN

⎤

⎥
⎥
⎥
⎥
⎦

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

E0

=

⎡

⎢
⎣
− S*

V〈k〉(1 − β)〈k〉(I*
V+I*

N)In(1 − β) − S*
V〈k〉(1 − β)〈k〉(I*

V+I*
N)In(1 − β)

− S*
N〈k〉(1 − β)〈k〉(I*

V+I*
N)In(1 − β) − S*

N〈k〉(1 − β)〈k〉(I*
V+I*

N)In(1 − β)

⎤

⎥
⎦

⃒
⃒
⃒
⃒
⃒
⃒
⃒

E0

=

⎡

⎣
0 0

− 〈k〉In(1 − β) − 〈k〉In(1 − β)

⎤

⎦

(21)  

V =

[
∂h(I)

∂I

]

=

⎡

⎢
⎢
⎢
⎣

∂h1

∂IV

∂h1

∂IN

∂h2

∂IV

∂h2

∂IN

⎤

⎥
⎥
⎥
⎦
=

[
μ 0
0 μ

]

(22)   

Step 3: The basic reproduction number R0 of the dynamic system is 
the spectral radius of the matrix FV− 1, i.e., its largest eigenvalue: 

R0 = ρ
(
FV − 1) = ρ

⎛

⎜
⎝

⎡

⎢
⎣

0 0

−
〈k〉In(1 − β)

μ −
〈k〉In(1 − β)

μ

⎤

⎥
⎦

⎞

⎟
⎠

= max
(

λFV − 1

1 , λFV − 1

2

)
= −

〈k〉In(1 − β)
μ

(23)  

3.2. Effective reproduction number 

The definition of R0 requires that all the people in the population are 
susceptible. The number of susceptible individuals decreases when the 
disease starts to spread and there are conditions for post-infection im-
munity or prevention and control measures. As a result, for the effective 
reproduction number Re(t) calculation, the disease-free equilibrium is. 

S*
N = SN(t), S*

V = SV(t), I*
N = I*

V = 0 (24) 

And the effective reproduction number Re(t) at any time t is also 
given by the spectral radius of FV− 1 which is the largest eigenvalue of 
FV− 1 [3,71]. 

4. Numerical simulations 

In this section, we show in details the numerical results of our 
coupled disease-vaccination behavior dynamic model defined by Eq. (1), 
both in the IB-RA and the SB-RA cases. 

4.1. Parameter influence on compartments dynamics 

We first study the numerical solutions of the dynamical system in (1) 
and their dependence on the model parameters employing the Runge- 
Kutta method [15]. Fig. 2(a) shows the numerical solutions of Eq. (1) 
in the IB-RA case when the parameters are set to β = 0.3, μ = 0.3, κ =

0.1, e = 0.6, 〈k〉 = 4.2, c = 0.1, and the initial conditions are 
(SV(0) , SN(0) ,IV(0) ,IN(0) ,VE(0) ,R) = (0.4999, 0.4999, 0.001, 0.001, 0, 
0). Here, it can be observed that the proportion of non-vaccinated sus-
ceptible individuals increases at an early stage, and then decreases. This 
is explained as follows. At the beginning of the epidemic, the proportion 
of infected individuals in the network is small and therefore the risk of 
infection for susceptible individuals is low. Hence, in this phase, the non- 
vaccination strategy is the optimal strategy. This will result in the rapid 
spread of the disease. In the second phase, the risk of infection among 
susceptible individuals in the network increases as the disease spreads. 
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The risk perception of susceptible individuals who do not vaccinate 
gradually becomes larger than the cost of vaccination, making the 
vaccination strategy more profitable. 

To better emphasize this point, Fig. 2(b) shows the dynamic phase 
diagram between non-vaccinated susceptible individuals (SN) and 
vaccinated susceptible individuals (SV), still in the IB-RA case. In phase 
1, the average risk of infection is low for susceptible people. In this re-
gion, the non-vaccination strategy is preferred. In phase 2, the average 
risk of infection for susceptible people is higher and the vaccination 
strategy prevails. With the above parameters, the coordinates of the 
tipping point between the two phases are p*(0.1854,0.6763). 

The final epidemic size (FES) and the corresponding vaccination 
coverage (VE) as a function of β are shown in Fig. 2(c). Here, the FES of 
the IB-RA and SB-RA cases is compared with that of the classical SIR 
model. From this comparison, it is evident that, as expected, vaccination 
can effectively reduce the total number of infections in the population. 
Moreover, when β is small, the final epidemic size in the IB-RA case is 
smaller and the vaccination coverage is larger than those in the SB-RA 
case. On the contrary, when β is larger, the SB-RA case has a smaller 
final epidemic size and a larger vaccination coverage than those in the 
IB-RA case. Remarkably, this implies that, when the disease breaks out, 
the population should share as much information as possible so that 
susceptible individuals can adopt a global updating rule and reduce the 

total number of infections. 
Finally, Fig. 2(d) shows the final epidemic size and the corresponding 

vaccination coverage as a function of c. We see that, in both cases, VE is a 
decreasing function of c, while the FES is an increasing function. Also, 
the FES in the IB-RA case is smaller than that in the SB-RA case, 
particularly for small values of c. Hence, the relative cost c has a greater 
impact in the SB-RA case and, for small relative cost, the IB-RA updating 
rule is better for controlling the disease spreading. 

4.2. Phase diagrams of the final epidemic size 

To further understand the impact of evolving strategies on the spread 
of the disease, we now show various phase diagrams of the FES in 
different parameter spaces. In the following, when the average degree 
〈k〉 is not a variable parameter of the phase diagram, it is set to 4.2 or 7.6. 
The smaller of these two values represents the situation where restrictive 
measures are applied to control the outbreak (e.g., quarantine); the 
larger value, instead, is more suitable for the case where no restrictions 
are applied, as shown in [3]. 

In Fig. 3, we show the FES phase diagrams versus recovery rate (μ) 
and per-contact transmission probability (β). Fig. 3(a-d) are in the IB-RA 
case, while Fig. 3(e-h) are in the SB-RA case. Comparing the upper 
panels with the lower ones, we observe that, when restrictive measures 

Fig. 2. Numerical simulations of the model. (a) Temporal evolution of epidemic states in the IB-RA case. (b) Evolutionary phase space of SV and SN states in the IB-RA 
case. (c) Final epidemic size and vaccination coverage vs β, for the IB-RA and SB-RA cases. These are compared with the final epidemic scale of the SIR model. (d) 
Final epidemic size and vaccination coverage vs c, for the IB-RA and SB-RA cases. 
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are applied (lower 〈k〉), the regions corresponding to high FES (shown in 
yellow) shrinks. Hence, as already well known, the total number of in-
fections can be effectively controlled by supervising the number of in-
teractions in the population. In addition, higher recovery rate and 
vaccination efficacy also reduce the FES. Notably, the latter effect is 
more pronounced in the SB-RA case. In general, for any combination of μ 
and β, the FES in the SB-RA diagrams is smaller than that in the IB-RA 

diagrams. This again suggests that having more information about 
payoffs in society and adopting a global strategy are more favorable to 
reducing infections in the population. In Fig. 9 in Appendix A, the phase 
diagram of VE against the same parameters of Fig. 3 is shown. Here, one 
can observe that high values of μ and low values of β increase the 
number of (effectively) vaccinated individuals. 

The phase diagrams of the FES versus relative cost (c) and per- 

Fig. 3. FES Phase diagrams with respect to recovery rate and per-contact transmission probability with e = 0.6 or 0.9,〈k〉 = 4.2 or 7.6. Panel a-d: IB-RA case. Panel 
e-h: SB-RA case. 

Fig. 4. FES Phase diagrams with respect to relative cost and per-contact transmission probability with e = 0.6 or 0.9,〈k〉 = 4.2 or 7.6. Panel a-d: IB-RA case. Panel e- 
h: SB-RA case. 
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contact transmission probability (β) are shown in Fig. 4. When β is small, 
the FES goes to zero for any value of c. On the other hand, when β is 
large, the FES gradually increases with the relative cost (consistently 
with Fig. 2(d)). It is also observed in Fig. 10 of Appendix A that 
increasing the cost of vaccination prevents the spread of the cooperative 
(pro-vaccination) strategy. Note that when c is small, the IB-RA method 
favors a higher vaccination coverage than the SB-RA method. 

Finally, the phase diagrams of the FES versus average degree (〈k〉) 
and vaccination efficacy (e) are shown in Fig. 5. In Fig. 11 in Appendix A 
are shown the phase diagrams of VE versus the same parameters. Here, 
we observe that a lower average degree and higher vaccination efficacy 
can reduce FES and increase VE. 

4.3. Effect of time delay on the epidemic spreading 

In reality, there is a time delay between an individual's imple-
mentation of any vaccination strategy and the observation of virus 
spread. This delay is due, for example, to the thinking time about which 
strategy to adopt or simply to the bureaucratic time between booking 
the vaccine and its execution. In this section, we slightly modify our 
model to account for this time lag and observe how unvaccinated sus-
ceptible individuals and the final epidemic size vary as this time lag 
varies. 

Let us denote by τ the lag time between the spread of infection and 
the spread of vaccination behavior. The ordinary differential equations 
of system (1) are thus transformed into delay differential equations 
(DDE). The form of the DDE is the same as in system (1), except that the 
interaction terms are modified as follows: 

Δ1 = SN(t − τ)⋅VE(t − τ)P(NS←VES) + SN(t − τ)⋅SV(t − τ)P(NS←VNS)
+SN(t − τ)⋅IV(t − τ)P(NS←VNI)

Δ2 = SV(t − τ)⋅SN(t − τ)P(VNS←NS) + SV(t − τ)⋅IN(t − τ)P(VNS←NI)

The solution of this DDE system is shown in Fig. 6, where we set the 
model parameters as those in Fig. 2. 

From Fig. 6(a), we observe that, as τ increases, more individuals 
choose the non-vaccination strategy. In particular, the peak of SN 

increases and moves forward in time. Fig. 6(b) shows the behavior of the 
FES when τ increases. We note that, when τ < 3, the FES is small, but 
that of the SB-RA case is slightly larger than that of the IB-RA case. When 
τ increases, also the FES increases, but that of the IB-RA case becomes 
significantly larger than that of the SB-RA case. This difference con-
tinues to grow until a saturation point (τ ≈ 5) where the FES in both 
cases reach its maximum value (where most of the population has been 
infected). 

These results suggest that to control the virus spreading it is neces-
sary to reduce the time delay for vaccine execution. If this is not possible, 
adopting a global viewpoint for deciding the vaccination behavior 
strategy limits the negative effects of time delay compared with adopt-
ing an individual viewpoint. In general, early promotion of vaccination 
strategy can effectively reduce the infection size of the population. 

5. Model validation with data of COVID-19 in France 

To validate our model, real data from the COVID-19 pandemic in 
France is analyzed. Since there is no data on people's behavior and 
vaccination strategies, we restrict ourselves from comparing real data 
with our mechanism of disease spreading. In this section, a time-varying 
per-contact transmission probability β is considered. 

5.1. Data acquisition and preprocessing 

Our data come from the Our World in Data and COVID-19 data 
archive of the Center for Systems Science and Engineering (CSSE) at 
Johns Hopkins University (JHU) [3,72]. 

The LOWESS (locally weighted regression scatterplot smoothing) 
method is used to smooth the data. LOWESS is a nonparametric method 
for local regression analysis [73,74]. It divides the samples into small 
intervals and performs polynomial fitting on each interval. This process 
is repeated to obtain weighted regression curves in different intervals. 
Finally, the centers of these regression lines are connected to form a 
complete regression curve. 

Fig. 5. FES Phase diagrams with respect to average degree and vaccination effectiveness with β = 0.3 or 0.6, μ = 0.3 or 0.6. Panel a-d: IB-RA case. Panel e-h: SB- 
RA case. 
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Fig. 6. Effect of time delay on the epidemic spreading. (a) Temporal evolution of susceptible non-vaccinated individuals in the IB-RA case for different values of time 
delay. (b) Final epidemic size vs time delay in the IB-RA and SB-RA cases. 

Fig. 7. Analysis of the COVID-19 epidemic data in France from January 24, 2020 to July 2, 2022. (a) Temporal evolution of new infections. (b) Temporal evolution 
of newly vaccinated people. (c) Temporal evolution of the cumulative number of vaccinated people. (d) Temporal evolution of the per-contact transmission 
probability computed combing real data with Eq. (29). 
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5.2. Parameters fitting 

Let us denote by H(t) the proportion of health individuals in the 
population who are not infected, i.e., H(t) = SN(t)+ SV(t)+ VE(t), by S 
(t) the proportion of susceptible individuals, i.e., S(t)=SN(t)+ SV(t), and 
by I(t) the proportion of infected individuals, i.e., I(t)=IV(t)+ IN(t). The 
dynamic system in Eq. (1) can be rewritten as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dH(t)
dt

= − S(t)
[
1 − (1 − βt)

〈k〉I(t)
]

dI(t)
dt

= S(t)
[
1 − (1 − βt)

〈k〉I(t)
]
− μI(t)

dR(t)
dt

= μI(t)

(25) 

Since the real data describes the number of health, infected, and 
recovered individuals per day, we discretize the above differential 
equations: 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(t + 1) − H(t) = − S(t)
[
1 − (1 − βt)

〈k〉I(t)
]

I(t + 1) − I(t) = S(t)
[
1 − (1 − βt)

〈k〉I(t)
]
− μI(t)

R(t + 1) − R(t) = μI(t)

(26) 

Noting that 

H(t+ 1) − H(t) + I(t+ 1) − I(t) +R(t+ 1) − R(t) = 0 (27) 

we can write the following relations 

μ =
R(t + 1) − R(t)

I(t)
(28)  

βt = 1 − exp

⎛

⎜
⎜
⎝

In
[

1 −
I(t+1)− I(t)+R(t+1)− R(t)

S(t)

]

〈k〉I(t)

⎞

⎟
⎟
⎠ (29) 

The daily number of new infections and newly vaccinated people in 
France from January 24, 2020, to July 2, 2022, is shown in Fig. 7(a-b). 
The measured parameters are e = 0.75, μ = 0.3 and 〈k〉 = 6 [61]. Solid 

Fig. 8. Comparison of empirical data with our couple disease-vaccination behavior dynamic. (a) Temporal evolution of new infections. (b) Temporal evolution of the 
effective reproduction number. (c) Temporal evolution of new infections and effective reproduction number. Time is divided in seven intervals, each corresponding 
to a new epidemic wave. 
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lines represent smoothed data and shaded areas are the 95 % confidence 
intervals. The cumulative number of vaccinated people is shown in 
Fig. 7(c). On October 27, 2022, the population in France began to be 
gradually vaccinated. Fig. 7(d) shows the per-contact transmission 
probability as a function of time, obtained by applying data to Eq. (29). 

5.3. Reproduction number analysis 

The above fitting of COVID-19 pandemic data is used to calculate the 
effective reproduction number of the coupled disease-vaccination dy-
namic in France. By knowing the effective reproduction number, the 
pandemic outbreak can be prevented. In this section, we compare our 
coupled model with the Kalman filter method [75] applied to the data to 
calculate the effective reproduction number. 

Fig. 8(a) shows the fitted time dependence of newly infected people 
calculated with our model using parameter β of Fig. 7(d), compared with 
smoothed data. The mean square error (MSE) between the two curves is 
calculated as follows: 

MSE =
1
n
∑n

i=1

(
I(t) − I

∧

(t)
)2

(30) 

The MSE is equal to 0.00067, meaning that parameter β calculated 
with our model is reliable. In Fig. 8(b), the temporal behavior of the 
effective reproduction number predicted by our coupled model (with Eq. 
(23) and the same β of Fig. 7(d)) is compared with that obtained by the 
Kalman filter method. Remarkably, the two curves are very close to each 
other. 

In Fig. 8(c), the green line represents the temporal behavior of the 
effective reproduction number computed with our model, while the blue 
line represents the temporal behavior of newly infected people. The 
spread of the pandemic is divided into seven intervals characterized by 
an epidemic wave, as shown in Table 3. Between intervals, the effective 
reproduction number is 1 and is marked by a red dot. After these points, 
the effective reproduction number will increase becoming larger than 1. 
The red dots, therefore, indicate the bottom of each previous epidemic 
wave and the probable outbreak of a new wave. On the other hand, after 
the blue dots, the effective reproduction number will decrease becoming 
<1. This indicates that the epidemic will gradually decrease. Together, 
these results suggest a method to give an early warning of the epidemic 
outbreak. 

6. Conclusion and discussion 

To summarize, a dynamic model of coupled disease-vaccination 
behavior is introduced to investigate the impact of individual vaccina-
tion strategies evolution on the spread of infectious diseases. In our 
model, the mechanism of disease spreading is described by an infectious 
disease transmission model based on the mean-field approximation 
theory. It is assumed that interactions between individuals occur in a 
homogeneous social network, and the infection rate is nonlinear with 
the number of neighbors in the network and describes simultaneous 
contacts. This mechanism is combined with an individual decision- 
making process for determining whether to vaccinate or not. It is 
described by a model of vaccination strategy evolution based on the 
evolutionary game theory. In this framework, individuals decide 
whether to change their vaccination strategy from a cost-benefit anal-
ysis. We considered two individual vaccination strategy updating rules: 
a local one, based on a comparison with the payoff of a single random 
neighbor; a global one, based on a comparison with the average payoff 
of society. Unlike previous studies [34,63,64], our model treats the 
vaccination strategy and disease dynamics as interrelated mechanisms 
that evolve simultaneously and give rise to a unique process. To validate 
our infection transmission model, we analyzed the real data from the 
COVID-19 pandemic in France. 

Our findings suggest that adopting a global point of view for 

updating the individual vaccination strategy is better for reducing the 
final epidemic size. Hence, it is beneficial to share as much information 
with as many people as possible to encourage behaviors based on 
adopting a global updating strategy. The numerical simulations show 
that the proportion of susceptible individuals who do not vaccinate in-
creases at an early stage and then decreases. This is a consequence of the 
temporal behavior of the individual risk perception of infection pro-
duced by the model. Furthermore, our analyses confirm that restrictive 
measures to reduce the average number of interactions in the population 
are effective in decreasing the final epidemic size. Finally, analyzing the 
real data of COVID-19, we show an early warning method for new 
epidemic waves. Quantitative analysis of all these factors can better 
guide policy makers' decisions. 

Overall, our model can better describe the co-evolution between the 
infection spreading and the vaccination process for highly infectious and 
rapidly spreading viruses, such as COVID-19. However, our work can be 
extended and improved in several ways. For example, one possible di-
rection is to consider the vaccination process split into multiple vacci-
nations, similarly to some vaccination protocols for COVID-19. 
Furthermore, it is possible to study the situation where vaccine efficacy 
decreases over time, as usual in real cases. Also, it is possible to study the 
behavioral effects of other protective measures (wearing a face mask, 
washing hands, social distancing, etc.) that have less impact, in terms of 
payoff, than vaccination. Regarding data collection and model valida-
tion, it would be important to design a method to detect people's 
vaccination behaviors and strategies during pandemics. 
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Appendix A. VE phase diagrams with game theory approach for different parameters

Fig. 9. VE phase diagrams with respect to recovery rate and per-contact transmission probability with e = 0.6 or 0.9,〈k〉 = 4.2 or 7.6. Panel a-d: IB-RA case. Panel e- 
h: SB-RA case. 

Fig. 10. VE phase diagrams with respect to relative cost and per-contact transmission probability with e = 0.6 or 0.9,〈k〉 = 4.2 or 7.6. Panel a-d: IB-RA case. Panel e- 
h: SB-RA case.  

X. Meng et al.                                                                                                                                                                                                                                    



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 169 (2023) 113294

13

Fig. 11. VE phase diagrams with respect to average degree and vaccination effectiveness with β = 0.3 or 0.6, μ = 0.3 or 0.6. Panel a-d: IB-RA case. Panel e-h: SB- 
RA case. 
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