Table 2.
Model | MaxEnt | XGBoost | Ensemble | |||
---|---|---|---|---|---|---|
Dataset | Train | Test | Train | Test | Train | Test |
AUCROC | 0.833 ± 0.003 | 0.821 ± 0.009 | 0.933 ± 0.002 | 0.854 ± 0.007 | 0.904 ± 0.002 | 0.845 ± 0.008 |
Sensitivity | 0.622 ± 0.006 | 0.606 ± 0.026 | 0.916 ± 0.004 | 0.742 ± 0.18 | 0.781 ± 0.005 | 0.684 ± 0.020 |
Specificity | 0.874 ± 0.003 | 0.874 ± 0.003 | 0.816 ± 0.003 | 0.816 ± 0.003 | 0.848 ± 0.003 | 0.848 ± 0.003 |
F1-score | 0.479 ± 0.007 | 0.312 ± 0.008 | 0.548 ± 0.005 | 0.293 ± 0.005 | 0.527 ± 0.005 | 0.308 ± 0.005 |
Bolded value indicates the best performance per evaluation metric (AUCROC, Sensitivity, Specificity, and F1-score) per train or test dataset across the three modeling methods.