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Serum thrombospondin-1 serves as a novel biomarker and
agonist of gemcitabine-based chemotherapy in intrahepatic
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BACKGROUND: At present, the first-line treatment for advanced intrahepatic cholangiocarcinoma (ICC) is gemcitabine combined
with cisplatin, but a considerable portion of ICC patients exhibit resistance to gemcitabine. Therefore, finding sensitisers for
gemcitabine chemotherapy in ICC patients and predicting molecular markers for chemotherapy efficacy have become
urgent needs.
METHODS: In this study, PDX models were established to conduct gemcitabine susceptibility tests. The selected PDX tissues of the
chemotherapy-sensitive group and drug-resistant group were subjected to transcriptome sequencing and protein chip technology
to identify the key genes. Sixty-one ICC patients treated with gemcitabine chemotherapy were recruited for clinical follow-up
validation.
RESULTS: We found that thrombospondin-1 (TSP1) can predict gemcitabine chemosensitivity in ICC patients. The expression level
of TSP1 could reflect the sensitivity of ICC patients to gemcitabine chemotherapy. Functional experiments further confirmed that
TSP1 can increase the efficacy of gemcitabine chemotherapy for ICC. A mechanism study showed that TSP1 may affect the intake of
oleic acid by binding to the CD36 receptor.
CONCLUSIONS: In summary, we found a key molecule—TSP1—that can predict and improve the sensitivity of ICC patients to
gemcitabine chemotherapy, which is of great significance for the treatment of advanced cholangiocarcinoma.
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BACKGROUND
The incidence of intrahepatic cholangiocarcinoma (ICC) has
gradually increased in recent years, and this disease is char-
acterised by insidious onset, rapid progression and a poor
prognosis [1]. Surgical treatment is the best choice for patients
with ICC, but only 30–40% of patients are suitable for radical
surgery, and the recurrence rate is ~40–80% [2]. Systemic
chemotherapy is still the preferred treatment for unresectable
ICC and recurrent ICC, and it is also the basis of combined
treatment. At present, the first-line treatment of patients with
advanced ICCA is the combination of gemcitabine (GEM) and
cisplatin, but the curative effect of this treatment is poor, and the
total survival time of patients is only slightly improved [3]. The
main reason for the poor efficacy of this drug is the problem of
tumour resistance. A considerable number of ICC patients have a
poor response to GEM chemotherapy in the clinic [4]. Some ICC
patients may benefit from the targeted therapy and immunother-
apy, but there is still no clear definition about the characteristics of

potential beneficiaries. According to Response Evaluation Criteria
In Solid Tumours, the evaluation of chemotherapy effect mainly
depends on imaging examination. However, excessive imaging
examinations increase physiological and economic burden on the
patients, and cannot predict the curative effect in advance, which
leads to delays in treatment plan adjustment. Therefore, it is
urgent to find sensitisers and molecular markers for efficacy
prediction to improve the chemotherapy effect of ICC.
Gemcitabine is a deoxycytidine nucleoside analogue that is

transported into cells by nucleoside transporters, and then
phosphorylated by deoxycytidine kinase to interfere with DNA
synthesis, inhibit ribonucleotide reductase and block the cell cycle
at the G1/S-phase transition, thereby playing a role in killing
tumour cells [5]. The specific mechanisms of drug resistance in
cancer patients include: nucleoside transporter- and nucleoside
enzyme expression- mediated drug resistance [6]; the occurrence
of epithelial-mesenchymal transition of tumour cells [7]; drug
resistance caused by abnormal tumour energy metabolism, such
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as abnormal changes in glucose metabolism or lipid metabolism,
which can affect the occurrence and development of cancer [8]; and
noncoding RNA-mediated chemoresistance mechanisms [9]. Among
patients with advanced cholangiocarcinoma, GEM resistance is an
important factor affecting the survival of patients, and there is still a
lack of effective intervention measures. Therefore, screening the
markers that can be used to predict the GEM sensitivity of ICC
patients and the potential targets of its drug resistance are crucial to
improving the prognosis of advanced ICC patients.
Patient-derived tumour xenograft (PDX) models have been

increasingly used in the research of various cancers. As preclinical
models, they can truly simulate the situation in vivo, and are
widely used in the research and development of tumour
therapeutic drugs and the mechanism of drug resistance. PDX
models capture the unique genomic and molecular characteristics
of parental tumours, and enable the analysis of the specific clinical
response of patients [10]. There have been a large number of
studies involving different types of cancer in which the efficacy of
drugs and chemotherapy resistance were studied by establishing
PDX models [11–13].
TSP1 is a homotrimeric glycoprotein, and each TSP1 monomer

is composed of n- and C-terminal globular domains and fine
linkers. It is a multifunctional extracellular matrix protein that is
generally secreted outside the cell to bind with related receptors
to play a functional role [14, 15]. TSP1 not only plays an important
role in normal cells but also shows important biological functions
in different types of tumour cells. In hepatocellular carcinoma
(HCC), TSP1 can act as an inhibitor of angiogenesis and inhibit the
function of VEGF [16]. In addition, TSP1 mimics can inhibit
angiogenesis in breast cancer by affecting VEGF [17]. TSP1 also
inhibits invasion, migration and proliferation in multiple tumours
[18–20]. However, the role of TSP1 in ICC is still unknown and
worth exploring.
In this study, we established PDX models to carry out a GEM

susceptibility tests. The selected PDX tissues of the chemotherapy-
sensitive group and the drug-resistant group were subjected to
transcriptome sequencing and protein chip technology and
identifiedthrombospondin-1 (TSP1) as a gene that can predict
the GEM chemosensitivity of ICC patients. At the clinical level, we
verified whether the expression level of TSP1 can reflect the
sensitivity of ICC patients to GEM chemotherapy. In vivo and
in vitro functional experiments further confirmed that TSP1 can
increase the sensitivity of cholangiocarcinoma to GEM chemother-
apy. In the mechanistic study, we found that TSP1 may affect the
intake of oleic acid (OA) by binding to the CD36 receptor on the
surface of cholangiocarcinoma cells, reduce the levels of ROS and
ATP in tumour cells, and further affect the chemotherapy effect of
GEM. In short, we found a key molecule (TSP1) that can predict
and improve the sensitivity of ICC patients to GEM chemotherapy,
which is of great significance for the treatment of advanced
cholangiocarcinoma.

METHODS
Patients and tissue samples
All the samples were obtained from the Third Affiliated Hospital of Navy
Medical University. The sample collection of all patients and healthy
people was approved by the Ethics Committee of the Third Affiliated
Hospital of Navy Medical University. Patient consent was obtained, and
informed consent was signed before collection. More information about
patients and samples is explained in the supplementary materials.

PDX models and drug susceptibility tests
The tumour tissues taken from different ICC patients during surgery were
established by professional and technical personnel for the PDX model
library, and the total rate of engraftment was ~30%. In this study, we
randomly selected 20 PDX models derived from 20 patients with ICC in the
library. The engraftment of the selected 20 models is 100% at third

generation and GEM tests were performed. Model replicates from the
same source patient were divided into GEM medication group (50mg/kg)
and a solvent group, with five nude mice (details in the “Animal study”)
in each group. Drug treatment was started when the tumour size was
~150 cubic millimetres (the time was recorded from the first medication).
Treatment was administered twice a week, and the tumour volume was
measured twice a week. According to volume= l/2ab2 (where a represents
the long diameter, and b represents the short diameter), the nude mice
were sacrificed after 4 weeks, and the tumour tissue was properly
preserved.

RNA transcriptome sequencing and protein chip technology
Three resistant PDX tissues and three sensitive PDX tissues were selected
for high throughput RNA transcriptome sequencing. Sequencing and
subsequent correlation analysis were carried out with the support of
Shanghai Luming Biotechnology Co., Ltd. Two of the above resistant and
sensitive tissues were selected for sequencing of the 2 vs. 2 protein chip in
Shanghai Huaying Biomedical Technology Co., Ltd., and the target
molecules were determined by comprehensive analysis of transcriptome
sequencing and protein chip results.

Cell culture
Human ICC cells RBE and HCCC9810 were purchased from the Cell Bank
of Shanghai Academy of Sciences. Penicillin and streptomycin (P/S)
for cell culture were purchased from Beyotime Biotechnology Co., Ltd.
RPMI-1640 cell culture medium and foetal bovine serum were purchased
from Gibco, USA. The human hepatobiliary cancer cell lines RBE and
HCCC9810 were cultured on RPMI 1640 medium (hereafter referred to as
1640 medium). Serum (FBS, 10%) was added to the medium, and 1% of
streptomycin/ penicillin was added to prevent cell contamination. The
conditions for cell growth in the incubator were 37 °C and 5% carbon
dioxide. These cell lines were authenticated by short tandem repeat
profiling and routinely tested as mycoplasma-free.

Animal study
All immunodeficient mice used in the experiment were purchased from
Shanghai Experimental Animal Center of Chinese Academy of Sciences,
which was approved by the Ethics Committee of the Third Affiliated
Hospital of Navy Medical University and met the requirements of
experimental ethics before the experiment. SPF grade 5-week-old male
BALB/c nude mice were subjected to PDXs and subcutaneous tumour
loading experiment. HCCC9810 ICC cells were cultured until cell growth
showed a logarithmic growth phase. The cells were digested and
resuspended to prepare a cell suspension with a density of 5 * 10 ^ 6/
100 ul, and ~200 ul was injected into the subcutaneous tissue of nude
mice. Then, 20 nude mice were randomly divided into four groups on
average: (1) the MOCK group; (2) the TSP1 group; (3) the GEM group; and
(4) the GEM+ TSP1 group. Mice were administered 300 μl of vehicle
(saline), recombinant human TSP1 protein (0.5 mg/kg), GEM (50 mg/kg)
and recombinant human TSP1 protein (0.5 mg/kg) and GEM (50mg/kg) via
intraperitoneal injection twice a week for 4 weeks. The tumour volume was
measured twice a week. The long and short diameters of the tumour were
recorded, and the volume was calculated as follows: tumour volume=
0.5*a*b2. The investigators recording tumour growth were blinded to
mouse allocation.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 8 and R version
4.2.0 software. We chose the appropriate statistical method according to
the characteristics of the data. Statistical analysis methods included
Student’s t test, the chi square test, the Mann‒Whitney test, the Wilcoxon
signed rank test and the Pearson correlation test. The survival curve was
calculated by the Kaplan‒Meier method. A P value < 0.05 was considered
statistically significant. * P < 0.05, * * P < 0.01, * * * P < 0.001. The remaining
methods are described in the Supplementary Materials.

RESULTS
Preclinical models of PDXs preserved the patients’
pathological characteristics
In this study, the PDX models were established using the cancer
tissues of 20 patients with ICC from the PDX model library, and the
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key molecules mediating GEM resistance were screened by high-
throughput technology (Fig. 1a). By pathological staining of
tumour tissue, we found that the features of PDX tissues were
highly consistent with those of patient tissues in terms of tumour
morphology or tumour differentiation and atypia (Fig. 1b).
According to the Edmondson score [21], there was no significant
difference between the PDX models and patient tumour tissues
(Fig. 1c). Immunohistochemical staining of CK19 and CK7 also
confirmed that PDXs preserved ICC tumour characteristics (Fig. 1d).
Therefore, the PDX models can accurately simulate the tumour
state of clinical patients.

Thrombospondin-1 (TSP1) is significantly abundant in PDXs
sensitive to gemcitabine
The PDX models established from 20 patients with ICC was used
for the drug sensitivity tests (Fig. 1e), and 13 chemotherapy-
sensitive models were selected, of which the representative
models were CH-17-0001, CH-17-0003, and CH-17-0044 (Fig. 2a).
Moreover, seven drug resistance models with poor effects on GEM
were screened, and the representative models were CH-17-0073,
CH-17-0004, and CH-17-0036 (Fig. 2b). The PDX models of the

selected three pairs of sensitive and drug-resistant groups were
subjected to transcriptome sequencing, and eighty genes with
the highest expression difference (p < 1.02e−3, log2(Fold-
change) > 2.5) were screened after the integration of the eligible
gene analysis results. Seventy-one genes were highly expressed in
the sensitive model, and the other nine genes were expressed at
low levels in the drug-resistant model (Fig. 2c). Moreover, protein
chip technology was used to screen the top ten secreted proteins
(five upregulated proteins and five downregulated proteins) with
significant differences in serum expression between the sensitive
and resistant groups (Fig. 2d). We found that thrombospondin
(TSP1) was highly expressed in the PDX models of the sensitive
group and could be detected in serum as a secreted protein. TSP1
is a multifunctional extracellular matrix protein that is secreted
into the extracellular matrix and binds to related receptors [15]. As
an extracellular mediator of matrix mechanotransduction, TSP1
acts via integrin αvβ1 to establish focal adhesions [22]. Differential
gene enrichment analysis showed that ‘receptor ligand activity’,
‘collagen−containing extracellular matrix’, ‘extracellular structure
organization’ and ‘extracellular matrix organization’ were signifi-
cantly enriched in the GO enrichment analysis (Fig. 2e). In the

ICC patients (n = 20) Tumour tissue PDX Models: drug sensitivity testing
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KEGG enrichment analysis, ‘focal adhesion’ was significantly
enriched. (Fig. S1A). This further indicates that the functional
pathways related to TSP1 may be significantly differentially
enriched between the GEM-resistant and GEM-sensitive
groups of GEM. The expression of TSP1 mRNA and protein in 20

PDX models was verified. The results showed that the mRNA
expression of TSP1 in the 13 models of the sensitive group was
significantly higher than that in 7 models of the resistant group
(Fig. S1B), and the expression of TSP1 protein was significantly
higher than that in the 7 models of resistant group (Fig. S1C). This
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further confirmed the consistency of the PDX models’ results and
sequencing results.

High serum TSP1 levels correlate with better efficacy of
gemcitabine-based chemotherapy for ICC
The expression of TSP1 in tumour tissues of different ICC patients
was verified by immunohistochemistry (Fig. S2A). The serum
samples of 12 ICC patients before and after the operation were
randomly selected for the determination of TSP1. The overall level
of TSP1 in the serum of patients after the operation was lower
than that before the operation (Fig. 3a). Twenty-seven ICC patients
and 27 healthy people were randomly selected to determine the
expression level of TSP1 in the serum. The overall level of TSP1
expression in the serum of 27 ICC patients was higher than that in
the serum of 27 normal people (Fig. 3b). We collected the tumour
tissues and preoperative serum of 20 ICC patients, and detected
the expression levels of TSP1 in the tissues and serum (Fig. S2B,
S2C). We found that the two were highly positively correlated
(Fig. 3c). This finding indicates that TSP1 in the serum of ICC
patients may mainly come from tumour tissues, and the TSP1 level
in serum before surgery can reflect the expression level of TSP1 in
tumour tissues to some extent.
To further explore whether the expression level of TSP1 in ICC

patients can reflect their chemotherapy sensitivity, we detected
the expression level of TSP1 in the serum of 61 patients with
advanced ICC who met the inclusion criteria before chemother-
apy, and selected the median expression level of TSP1
(82.851 ng/ml) as the cut-off value (Fig. S2D). According to this
cut-off value, the patients were classified into the high

expression group and the low expression group (n= 30 and
n= 31, respectively). In patients with high TSP1 expression, the
number of patients with a good chemotherapy effect of GEM
was greater (16 cases of SD+ 6 cases of PR), and the number of
patients with a poor chemotherapy response was lower (8 cases
of PD) than that in the low expression group; in this group, only
10 patients (8 SD+ 2 PR) had a good response to chemotherapy,
while a large proportion of patients exhibited a poor response to
chemotherapy (21 PD) (Fig. 3d). The ROC curve showed that
TSP1 had high predictive value for chemotherapy.response in
patients with cholangiocarcinoma (AUC= 0.742) (Fig. 3e). We
analysed the correlation between the basic pathological data of
patients and the expression level of TSP1 and found that the
expression level of TSP1 was related to the chemotherapy
response (p < 0.001) but not related to other factors such as age,
gender, hepatitis B surface antigen, chemotherapy selection and
ECOG score (Tab. S2), which fully illustrated that the expression
level of TSP1 could reflect the GEM chemotherapy sensitivity of
ICC patients.

Serum TSP1 levels could predict the prognosis of patients
with unresectable ICC
We followed up regarding the prognosis of 61 patients with
advanced ICC. The overall survival (OS) time of the high TSP1
expression group was longer than that of the low TSP1 expression
group (Fig. 4a), and the median survival times were 10.5 months
and 7 months respectively. The progression-free survival (PFS)
time in the high TSP1 expression group was also longer than that
in the low TSP1 expression group (Fig. 4b). The median
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progression-free time was 6 months and 3 months, respectively.
The difference was statistically significant. Cox univariate analysis
showed that albumin, GGT, ALP, chemotherapy.response, and
TSP1 were correlated with OS in patients with cholangiocarcinoma
after chemotherapy (Fig. 4c); age, chemotherapy.response and
TSP1 were correlated with PFS in patients with cholangiocarci-
noma undergoing chemotherapy (Fig. 4d). Cox multivariate
analysis showed that TSP1 was an independent risk factor for
OS in patients with cholangiocarcinoma undergoing chemother-
apy (Fig. 4e); age, chemotherapy.response and TSP1 were
independent risk factors for PFS in patients with cholangiocarci-
noma undergoing chemotherapy (Fig. 4f). This further indicates
that TSP1 is a key factor affecting the prognosis of patients with
cholangiocarcinoma after chemotherapy. During the follow-up
period, it also had a good predictive value for the survival of
patients (AUC= 0.624) (Fig. 4g); It is of great significance to
predict whether the disease will progress in the first 6 months of
chemotherapy (AUC= 0.783) (Fig. 4h).

Thrombospondin-1 (TSP1) enhances the chemotherapy effect
of gemcitabine in intrahepatic cholangiocarcinoma
Next, we explored whether TSP1 had biological effects only as a
molecular marker. We first screened out the half-maximal
inhibitory concentration (IC50) of GEM in two bile duct cancer
cell lines as the working concentration of GEM in subsequent
experiments. The IC50 values of HCCC9810 and RBE were 2331 nM
and 2044 nM, respectively (Fig. S3A). We set up different groups,
including the MOCK group (blank control), GEM group, TSP1
group (different concentrations of TSP1 recombinant protein), and
TSP1+ GEM group. After 72 h, the OD value of the cells was
detected (OD value can represent cell proliferation activity). The
results showed that in the HCCC9810 cell line, compared with the
MOCK group, the addition of TSP1 recombinant protein did not
significantly affect the proliferation of cholangiocarcinoma cells,
and there was no significant difference in cell viability between
groups with different concentrations of TSP1. In the GEM group,
cell viability decreased significantly compared with that in the
MOCK group, and the difference was statistically significant. With
the increase in TSP1 concentration in a certain range, the cell
viability of the TSP1+ GEM group also showed a downwards
trend compared with that of the GEM group, and reached
saturation when the concentration of TSP1 was ~80–160 ng/ml.
Continuing to increase the concentration of TSP1 did not further
decrease cell viability. The same phenomenon was also observed
in RBE cholangiocarcinoma cells (Fig. 5a). Hence, we set the
concentration of TSP1 recombinant protein to 100 ng/ml in
the follow-up experiments. To further confirm the reliability of
the results, we also conducted Edu experiments (Fig. 5b) and
colony formation experiments (Fig. S3B) on HCCC9810 cells and
RBE cells, which further confirmed the above conclusions.
Then we subcutaneously xenografted HCCC9810 cells in nude

mice (Fig. 5c, d). These results showed that there was no
significant difference in tumour size or growth curve between
the MOCK group and the TSP1 recombinant protein group. The
GEM group (Gemcitabine alone) showed significantly inhibited
tumour growth compared with the first two groups, with statistical
significance. The tumours in the GEM+ TSP1 group were further
reduced compared with those in the GEM group, indicating that
TSP1 recombinant protein could enhance the sensitivity of GEM
in vivo.

TSP1 inhibits the uptake of oleic acid by intrahepatic
cholangiocarcinoma cells, thereby increasing the therapeutic
effect of gemcitabine
Studies have shown that changes in lipid metabolism can alter the
effect of GEM on pancreatic cancer, resulting in chemotherapy
resistance [23, 24]. Isenberg JS et al. found that TSP1 binds to
CD36, a target cell surface receptor, and affects its uptake of

certain fatty acids [25]. Therefore, we speculate that TSP1 may
affect lipid metabolism by binding to CD36 on the cholangio-
carcinoma cell surface, thereby affecting the chemotherapeutic
effect of GEM. We detected the metabolites in RBE cell lines (the
experimental group added TSP1 recombinant protein; the control
group was saline). The metabolites with P values <0.05 were
selected as the differentially expressed, and we screened 156
differentially expressed metabolites. The top 50 differentially
(p < 0.05, log2(Foldchange) > 3.5) expressed metabolites are
shown in the heatmap (Fig. 6a). Among these differential
metabolites, OA, as an unsaturated fatty acid, has been reported
to be associated with chemotherapy resistance in some tumours
[26–29], with a significant research value. Functional enrichment
of differential metabolites also showed significant enrichment of
unsaturated fatty acids (Fig. 6b). Therefore, OA was taken as the
research object. To further confirm the above hypothesis,
we constructed a CD36 knockdown cholangiocarcinoma cell line
(Fig. S3A, B). We found that in HCCC9810 cells, compared with that
in the MOCK group, the oil red O staining level in the OA group
was significantly enhanced after 24 h of OA addition. When CD36
was knocked out and OA was added (OA+ si-CD36 group), the oil
red O staining level of the cells was significantly decreased
compared with that of the OA group, and there was no significant
difference in the oil red O staining level between the OA group
and the MOCK group. In OA+ TSP1group (OA and TSP1recombi-
nant protein), we found that compared to OA, TSP1decreased the
oil red O staining density, but the staining was still stronger than
that in the MOCK group and OA+ Si-CD36 group, and the
difference was statistically significant (Fig. 6c). Similar results were
also verified in RBE cell lines (Fig. 6d). Based on the above
experimental results, we speculated that OA mainly enters the
cells through the membrane receptor CD36; after adding TSP1
recombinant protein, TSP1 can inhibited the uptake of OA by ICC
cells. It is likely that TSP1 may affect the uptake of OA by binding
to CD36 on the surface of cholangiocarcinoma cells, thereby
affecting the chemotherapy effect of GEM. To further verify
whether OA can alter the effect of GEM chemotherapy, a CCK-8
experiment was used to detect the cell viability of two ICC cell
lines, RBE and HCCC9810. In RBE cells, the GEM group exhibited
significantly decrease cell viability compared with the MOCK
group; in the GEM+ OA group (GEM and OA), although the cell
viability of the GEM+ OA group was lower than that of the
MOCK group, the cell viability increased compared with that of
the GEM group (Fig. S4C), indicating that OA weakened the
chemotherapy effect of GEM. Similar results were obtained in
HCCC9810 cells (Fig. S4F). Then, the above conclusions were
verified in RBE and HCCC9810 cell lines by colony formation
experiments (Fig. S4D, S4G) and EdU experiments (Fig. S4E, S4H).
When fatty acid oxidation is enhanced, the contents of ROS and
ATP, the related metabolites, will also increase, and these
substances will promote the occurrence of drug resistance.
Gemcitabine can cause DNA damage during cancer treatment,
thereby inducing the formation of ROS. The increase in local ROS
concentration can cause DNA damage and induce mutations,
resulting in drug-resistant cancer cells. We also found that OA
increased intracellular ROS and ATP levels, while TSP1 recombi-
nant protein effectively reduced ATP to ROS levels (Fig. 6e–h;
Fig. S3I–L). Therefore, we speculate that TSP1 promotes GEM
chemosensitivity by inhibiting the entry of OA into the cell,
leading to a decrease in ROS and ATP levels.

DISCUSSION
Although GEM is currently used as the first-line drug for
chemotherapy in many cancer patients, the effect in most patients
is poor and drug resistance is widespread [30, 31]. At present,
many scholars are committed to studying the mechanism of GEM
resistance in patients with ICC. Tiemin P et al. found that
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downregulation of miR-148a results in overexpression of GLUT1 in
iCCA, leading to the progression of iCCA and GEM resistance [32].
Lu et al. found that LINC00665 plays an important role in the
resistance of CCA cells to GEM, providing new biomarkers or
therapeutic targets for CCA treatment [33]. Carotenuto P et al.
found that MIR1249 is involved in GEM resistance in cholangio-
carcinoma and is a potential therapeutic target [34]. Although
these studies have explained the mechanism of resistance of
cholangiocarcinoma to GEM chemotherapy from various aspects,

it is difficult to translate these findings to the clinic in a short
period of time. In addition, there is a lack of clinical markers that
can effectively predict whether GEM chemotherapy is effective for
a given cholangiocarcinoma case. This, to some extent, leads to
blindness in the treatment of patients with advanced cholangio-
carcinoma, which greatly shortens the survival time of patients.
The protein encoded by the molecule TSP1 we studied is easy to
detect in the serum, and we confirmed that the level of TSP1 in
the serum of patients with ICCA can reflect their sensitivity to GEM
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Fig. 5 Thrombospondin-1 (TSP1) enhances the effect of gemcitabine chemotherapy on intrahepatic cholangiocarcinoma. a The effect of
CCK-8 on the proliferation of HCCC9810 and RBE cells under different treatments. b The proliferation ability of HCCC9810 and RBE cells under
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recombinant protein * represents p < 0.05, * * represents p < 0.01, * * represents p < 0.001.
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treatment, indicating that TSP1 can be used as a serological
indicator to predict the efficacy of chemotherapy in patients with
ICC. Before chemotherapy for advanced cholangiocarcinoma
patients, the level of TSP1 in serum can be detected, which can
be more effective and accurate in formulating chemotherapy
regimens than traditionally used markers.

Many studies have confirmed that TSP1 has great application
prospects in tumour therapy. Uronis HE and other researchers
have used the analogue of TSP1 (ABT-510) in combination with
bevacizumab to conduct phase I clinical research on advanced
solid tumours. The results show that compared with the single
drug application of bevacizumab, the effect of combined
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treatment is significantly improved, and the inhibitory effect on
tumours is significantly enhanced [35]. Campbell NE et al. found
that TSP1 mimics increased the cellular uptake of cisplatin and
paclitaxel in mice with epithelial ovarian cancer and improved the
effectiveness of chemotherapy [36]. In this study, we confirmed
that TSP1 plays a role in chemotherapy sensitisation in ICC by
CCK8, EdU and colony formation experiments, indicating that
TSP1 may be used as a chemotherapy sensitiser for patients with
ICC in the future. Although studies have shown that high
expression of TSP1 is associated with the invasion and progression
of HCC, the expression of TSP1 was positively correlated with the
expression of VEGF in HCC patients. It seems to be a
proangiogenic factor that stimulates angiogenesis in HCC [37].
However, in this study we found that high expression of TSP1 in
the serum of patients with cholangiocarcinoma indicated a better
prognosis, and patients with high expression of TSP1 had a better
response to GEM. In addition, we found that when TSP1 alone was
applied to ICC cells, it had no significant effect on proliferation,
indicating that TSP1 itself has no therapeutic effect on patients
with ICC but can make cholangiocarcinoma cells sensitive to
chemotherapy.
TSP1 needs to bind to its receptors to perform its corresponding

biological functions, and one of its important receptors is CD36.
CD36 is a scavenger receptor that mainly plays the role of uptake
of long-chain fatty acids [38]. Studies have found that TSP1
inhibits fatty acid uptake by CD36 [25]. These findings are
consistent with the conclusions of our study. In this study, we
found that OA can be taken up by cholangiocarcinoma cells
through CD36 mediation, and the addition of TSP1 reduces the
uptake of OA by cholangiocarcinoma cells, indicating that TSP1
may reduce the intake of OA by acting on CD36 receptors in
cholangiocarcinoma cells. Changes in lipid metabolism can affect
chemosensitivity in many tumours, including GEM [39, 40]. When
the oxidation of fatty acids is enhanced, the content of ROS and
ATP will also increase, and these substances will promote the
occurrence of drug resistance [28]. ATP is a ‘nutrient’ that cancer
cells need to survive, and changes in its content will directly affect
the growth of cancer cells [41]. Gemcitabine can cause DNA
damage during cancer treatment, thereby inducing the formation
of ROS. A high concentration of ROS can induce mutation of
tumour cells, leading to the generation of drug-resistant cells [29].
In our study, we found that when OA was added, the inhibitory
effect of GEM on tumour cells decreased, and intracellular ROS
and ATP levels increased, while TSP1 recombinant protein
effectively reduced ATP and ROS levels. Hence, we concluded
that OA is a sort of competitor of TSP1 and that its presence
reduces the effect of GEM. The addition of TSP1reduced
intracellular ROS and ATP levels by inhibiting the uptake of OA
in cholangiocarcinoma cells and restored the resistant conditions
of tumour cells to a sensitive state. There are still some
shortcomings in this study. Although the current results confirm
that TSP1 has the potential to become a serological marker for
predicting the effect of chemotherapy in cholangiocarcinoma, it
does not mean that TSP1 has been clinically applied, and a
rigorous and scientific verification process with real clinical
translation is still needed. Moreover, the chemotherapy patients
were enrolled from a single-centre, and the sample size is
relatively small, so multicentre cohorts are needed for further
validation. In the mechanism study, although the TSP1 - CD36 - OA
connection is clear, this study mainly focuses on confirming that
TSP1 can affect the entry of OA into ICC cells and that the entry of
OA will affect the response to GEM. However, it remains unclear
how TSP1 functions through CD36. We hypothesised that TSP1
competes with OA for binding to the CD36 receptor, which
requires further experiments for confirmation. Furthermore, there
is insufficient evidence that TSP1 mediates the entry of OA mainly
through CD36. Therefore, the effect of abnormal OA and lipid
metabolism on GEM chemotherapy sensitivity is still worthy of

further study, which may be an important clue for disrupting the
mechanism of GEM resistance.
In summary, based on the phenomenon of GEM resistance in

patients with advanced cholangiocarcinoma, this study carried
out a GEM drug sensitivity tests based on PDX models, used the
tissue and serum samples of the drug-resistant group and
sensitive group for transcriptome sequencing and protein chip
detection, and finally identified that TSP1 is differentially
expressed between the drug-resistant group and sensitive
group. Then we confirmed in clinical studies that the expression
level of TSP1 reflects the sensitivity of ICC patients to GEM
chemotherapy. In vivo and in vitro experiments confirmed that
TSP1 could enhance the chemotherapeutic effect of GEM on ICC.
In the mechanistic study, we found that TSP1 may affect the
intake of OA by binding to the CD36 receptor on the surface of
cholangiocarcinoma cells, and then affect the chemotherapy
effect of GEM. In conclusion, we found a key molecule (TSP1)
that can predict and improve the sensitivity of ICC patients to
GEM chemotherapy, which is of great significance for the
treatment of advanced cholangiocarcinoma.
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