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IL-33/ST2 signaling promotes constitutive and inductive
PD-L1 expression and immune escape in oral squamous
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BACKGROUND: Loss-of-function of PD-L1 induces therapy resistance of anti-PD-1/L1 therapy, and the complex regulatory
mechanisms are not completely understood. We previously reported that stroma-derived interleukin-33 (IL-33) promoted the
progression of oral squamous cell carcinoma (OSCC). We here focused on the immune-regulation role of IL-33 and its receptor
ST2 signaling in PD-L1-positive OSCC patients.
METHODS: Activated T cells in in situ and peripheral blood were analyzed by IL-33/ST3 expression. Knockdown or overexpression
of ST2 combined with IL-33/IFN-γ stimulation were performed to determine PD-L1 expression and PD-L1-dependent immune
escape in OSCC/human T cells co-culture system, and OSCC orthotopic model based on humanized mouse with immune
reconstitution and C57BL/6 mice models.
RESULTS: High IL-33/ST2 correlated with less activated T cells infiltration in situ and peripheral blood. Knockdown of ST2 down-
regulated constitutive PD-L1 expression, whereas ST2 also promoted IL-33-induced PD-L1 Mechanistically, IL-33/ST2 activated
JAK2/STAT3 pathway to directly promoted PD-L1 expression, and also activated MyD88/NF-κB signaling to up-regulate IFN-γ
receptor (IFN-γR), which indirectly strengthen IFN-γ-induced PD-L1. Furthermore, ST2 is required for PD-L1-mediated immune
tolerance in vitro and in vivo. ST2high OSCC patients have more PD-L1 and IFN-γR level in situ.
CONCLUSIONS: IL-33/ST2 signaling enhanced PD-L1-mediated immune escape, ST2high OSCC patients might benefit from anti-PD-
1/L1 therapy.
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BACKGROUND
Antibodies directed against the programmed cell death-1 (PD-1)
receptor have revolutionized the systemic therapy of advanced
head and neck squamous cell carcinoma (HNSCC) [1, 2]. So far, the
most commonly used predictor of therapeutic response to PD-1
blockade is the expression of PD-L1, a ligand of PD-1, on tumor
cells [3]. However, a poor response rate to immune checkpoint
blockade therapies in PD-L1-negative patients is a crucial problem
to overcome [4, 5]. Therefore, it is critical to understand the
molecular mechanism of tumor PD-L1 regulation, which is
important for the improvement of anti-PD-L1/PD-1 therapy and
its subsequent clinical effect. Currently, genetic events including
PTEN deletions, EGFR mutations or JAK1/2 mutations etc. have
been reported to preclude constitutive PD-L1 expression [6–8].
Moreover, stroma cells-derived, especially cytotoxic T cells,
interferon-γ (IFN-γ) contribute to the inducible PD-L1 expression
[9]. It is well-known that cytokines serve as mediators in shaping

tumor microenvironment (TME) and facilitating tumor progression
[10]. Previous studies have reported that CXCL12, IFN-γ and IL-6
promoted PD-L1 expression in cancer cells, but various mechan-
isms that regulate PD-L1 expression have already been described
to be cell type-dependent [11–14].
Our team have been focusing on carcinoma-associated

fibroblasts (CAF) in tumor growth and invasion, and immune
regulation in oral squamous cell carcinoma (OSCC) [15–18].
Aberrant secretion of cytokines (TGF-β, IL-6, CCL22, IL-33, SDF-1
etc.) to tumor stroma is one of the features of CAFs. We reported
that CAF-derived IL-33 promoted stromal fibroblast activation and
proliferation of tumor cells in OSCC patients [15]. IL-33, a member
of the IL-1 family, its role is to activate the immune system in
response to tissue damage via interactions with its receptor ST2.
Moreover, the IL-33/ST2 axis influences other elements of the TME,
since it modifies the activity of T-helper lymphocytes via IL-4 and
IL-13 [19]. Emerging evidences also show that IL-33/ST2 signaling
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play an important role in tumor progression, IL-33-directed
ST2 signaling induced the preferential proliferation of tumor-
infiltrating Tregs and enhanced tumor progression. Knockdown of
IL-33/ST2 signaling decreased the accumulation of Tregs [20]. IL-
33/ST2 signaling also induced immunosuppression of HNSCC by
inducing IL-10 and TGF-β1 as well as decreasing the proliferation
of responder T cells [21]. Accumulated evidences demonstrate
that CAFs/tumor cells interaction is a critical regulator of
immunosuppression via PD-1/L1 regulated T cell response [14].
However, the immune regulation role of IL-33/ST2 signaling in
OSCC microenvironment remains to be unclear.
In this study, we analyzed the relationships between IL-33/

ST2 signaling and PD-L1 expression in OSCC patients and cell lines,
which was confirmed by knockdown or overexpression of ST2. The
detail mechanisms of ST2/PD-L1 regulation were determined and the
human peripheral blood mononuclear cells were isolated to establish
ST2+ OSCC/T cell co-culture system in vitro, humanized mouse
models with no immunodeficiency and C57BL/6 mice in vivo to verify
the ST2/PD-L1-mediated immune tolerance and tumor growth.
Though these investigations, we test whether ST2 is potential
predictors of PD-L1/PD-1 therapy efficacy for OSCC patients.

MATERIALS AND METHODS
Clinical sample collection and ethical approval
With the approval of the ethical committee of Nanjing Stomatology
Hospital, Medical School of Nanjing University, oral tumors were collected
from Nanjing Stomatology Hospital (No.2019NL-009(KS)). All the patients
received radical surgery without any form of presurgical adjuvant therapy.
Informed consent was provided by the patients for the use of their tissues
and data. All animal experiments were performed in accordance with
Jiangsu Association for Laboratory Animal Science (Authorization Number:
220195073) and were subject to review by the animal welfare and ethical
review board of Nanjing university.

Immunohistochemistry (IHC) analysis
Sections of formalin-fixed and paraffin-embedded tissues were deparaffi-
nized and subjected to antigen retrieval using 10mM citrate buffer (92 °C for
30min). Gene expression was evaluated according to stain intensity and the
percentage of positive cells. The intensity of staining was graded as 1=weak
staining, 2 = moderate staining and 3 = strong staining. The percentage of
stained cells was graded as 0= 0–5%, 1= 6–25%, 2= 26–50%, 3= 51–75%
and 4= 75–100%. The final score was obtained by multiplying the two
scores. All scorings were conducted by two pathologists without knowledge
of the patients’ clinical characteristics or outcome.

Isolation and primary culture of fibroblasts
OSCC specimens and adjacent normal tissues were harvested within 30min
after surgical resection. Harvested tissues were placed in DMEM/F-
12 supplemented with 10% FBS and antibiotics (Invitrogen Corporation)
for immediate transportation on ice to the laboratory. NFs and CAFs isolated
from tissues by combiningmechanical and enzymatic methods. Tissues were
performed in detail as previously described [15]. The sterile fresh OSCC
tissues and its corresponding normal tissues were washed with PBS and
antibiotics, and eliminated the epithelial and adipose tissues. The specimens
were sliced into small pieces and digested by enzyme mixture (Collagenase,
Neutral protease, Hyaluronidase) for 30min. The remaining small tissues
incubated in DMEM/F12 medium with 20% fetal bovine serum at 37 °C. The
medium was replaced every 2–3 days and the epithelial cells were removed
via trypsinization, the remaining cells were fibroblasts.

Cell culture
HN6, Cal27, Hsc3 and SCC7 cells were maintained in Dulbecco’s Modified
Eagle’s Medium (Invitrogen), supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin–streptomycin.

Reagents
p-STAT3(#9145), p-JAK2(#3771), PD-L1(#13684), JAK2(#3230), STAT3(#9139),
NF-κB (#8242), p-NF-κB (#3033) were obtained from Cell Signaling
Technology. ST2 (#ab25877), IL-33 (#ab54385), IFNGR1 (#ab134070), CD8

(#ab237710/ab217344) and Foxp3 (#ab215206) were obtained from the
Abcam company. Secondary anti-rabbit IgG Dylight 680 (#35568), anti-rabbit
IgG Dylight 488 (#35553) and anti-mouse IgG Dylight 800 (#35521) were
obtained from ThermoFisher. Recombinant human IL-33 protein (3625-IL)
was obtained from R&D Systems. Recombinant Mouse IL-33 Protein (3626-
ML) was obtained from R&D Systems.

RNA analysis
RNA was obtained using Trizol reagent following the manufacturer’s
procedure and then reversed into cDNA using HiScript III RT SuperMix
(Vazyme Biotech Co., Ltd). The relevant expression of the genes was
determined via AceQ® qPCR SYBR® Green Master Mix (Vazyme Biotech Co.,
Ltd). Transcriptome sequencing of three cell lines was performed by
Shanghai OE Biotech. Co., Ltd.

T cell-mediated tumor cell killing assay
PBMC were cultured in CTSTM AIIM VTM SFM (A3021002; Gibco) with
ImmunoCult Human CD3/CD28/CD2 T cell activator (10970; STEMCELL
Technologies) and Recombinant Human IL-2 (1000 U/mL, 202-1L-050, R&D)
for one week according to the manufacturer’s protocol. The experiments
were performed with anti-CD3 antibody (100 ng/mL; 16-0037; eBioscience,
Thermo Scientific), IL-2 (1000 U/mL). Cancer cells were allowed to adhere to
the plates overnight and then incubated for 48 h with activated T cells.
Different proportion between cancer cells and activated cells (1:3) were
utilized according to the purpose of each experiment. T cells and cell debris
were removed by PBS wash, and living cancer cells were then quantified by a
spectrometer at OD (570 nm) followed by crystal violet staining.

Lentivirus vectors
The GFP-labeled Lentivirus-mediated overexpression vector containing
IL1RL1(Lv- IL1RL1) was used to stably overexpressing ST2 in OSCC cells,
with Lv-ctrl as the matched controls (GENECHEM, Shanghai, China and
OBiO Technology Co. Ltd., Shanghai, China) according to the manufac-
turer’s instruction. The GFP-labeled Lentivirus vector expressing sh-IL1RL1
(Lv-shIL1RL1) was used to stably knock down ST2 expression (GENECHEM,
Shanghai, China and OBiO Technology Co. Ltd., Shanghai, China). The cells
were treated with puromycin (5 μg/mL) for 2 weeks to establish stable
cell lines.

Cell transfection
Cells were grown on 6/12 wells plate to 60% confluence and transfected
the plasmid of overexpression or knockdown of ST2 using Lipofectamine
2000 (Invitrogen) according to the manufacturer’s instructions and a final
concentration was 60 nM. At 48 h after transfection, cells were harvested
for qPCR or Western blot analysis. Similarly, transient transfection of siRNAs
targeting the MYD88 and TRAF6 (50 nM) into HN6 cells was performed in
the presence of lipofectamine RNAiMAX (Invitrogen) for 24 h according to
the manufacturer’s instructions, and cells were harvested for qPCR analysis.

Immunofluorescence
Cells were seeded on coverslips in 24-well plate and cultured overnight.
Subsequently cells were fixed in 4% paraformaldehyde, permeabilized in
0.2% Triton X-100 at room temperature, and then incubated with primary
antibody overnight at 4°C after 5%BSA blocking for 1 h. After incubating
2 h at room temperature with secondary antibody, the coverslips were
counterstained with 0.2 mg/ml DAPI and followed by washing PBS. Sealed
with nail polish and observed under FV3000 confocal microscope
(OLYMPUS, Japan). Tissues immunofluorescence was performed as the
description of cells immunofluorescence.

Western blot analysis
Cells were lysed in buffer containing 50mmol/L Tris–HCl, pH8.0, 150 mmol/
LNaCl, 0.02% NaN3, 0.1 %SDS, 100mg/L phenylmethylsulfonylfluoride,
1 mg/L aprotinin, and 1% Triton. Cell extract was separated by SDS-PAGE
and transferred onto PVDF membranes. The membranes were blocked for
1 h in TBST (10mmol/L Tris–HCl, pH 7.4,150mmol/L NaCl, 0.05% Tween-20)
containing 5% bovine serum albumin (BSA), incubated with primary
antibodies at 4 °C overnight and then incubated with secondary
antibodies. Bands were visualized with enhanced chemiluminescence
reaction (Millipore Corp.). GAPDH was used as the loading control. Protein
bands were captured and analyzed using the Lane 1D software (Sage
Creation Science Co, Beijing).
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Experimental animals
Female NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt (NCG) mice and
C57BL/6 mice were obtained from Gempharmatech Co., Ltd (China) and

were used between 6 and 8 weeks of age. The mice were maintained
under pathogen-free conditions according to SPF guideline (room
temperature, 40–60% humidity).
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Preparation of PBMC
Fresh whole blood from patients was collected with EDTA tube
(ethylenediamine tetraacetic acid tube, BD Vacutainer). On average,
1.0 × 107 cells were isolated from 5ml of whole blood. The collected
whole blood was 2× diluted with Hanks’ Balanced Salt solution (HBSS,
Gibco, Rockville, MD, USA) for loading on Ficoll-paque (Pharmacia,
Uppsala, Sweden). The blood-loaded sample on Ficoll solution is
centrifuged at 2000 rpm for 20 min (Acceleration /Break = lowest
/zero), and middle layer was collected as PBMC. The collected cells were
enumerated and stored in liquid nitrogen tank until us. All study
participants provided informed consent, and was approved by the
ethical committee of Nanjing Stomatology Hospital, Medical School of
Nanjing University.

PBMC injection process for Hu-PBL-NCG mouse tumor model
The PBMC from healthy patients was stored in liquid nitrogen tank until
use. The restored PBMC is washed one time with HBSS (Gibco), and finally

mixed with 200 μl of HBSS (Gibco) for intravenous injection in the tail of
recipient mouse (NCG mouse). Injection of 1–2 × 107 PBMCs in the lateral
side of tail vein was performed.
To generate an orthotopic xenograft tongue tumor model, conditional

2.5 × 105 HN6 OSCC cells were suspended in 20 μL of PBS/Matrigel (3:1)
and injected into the anterior portion of the tongue of Hu-PBL-NCG
mouse using a syringe with a 30 gauge needle (BD Biosciences). On day
7-10 after injection, mice were randomly divided into different treatment
groups.
In orthotopic xenograft tongue tumor model of C57BL/6 mice with no

immunodeficiency, control or ST2-knockdown SCC7 cells were used. Anti-
mPD-L1 (clone 10 F.9G2, catalog no. BP0101–2, BioXcell) or IgG isotype
control (catalog no. BP0090, BioXcell) was treated, 200 μg/mice, i.p., every
2 days. Tumor weight were determined, and CD8+ T cells, Foxp3+ Tregs in
tumor tissues were analyzed by immunohistochemistry. All tumors were
measured using calipers by technicians blinded to the aims of the study
and the hypothesized outcome.
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Statistics
Statistical analysis was performed using GraphPad Prism (San Diego, CA).
Two-tailed Student’s t tests were used for comparison of experimental
groups. Statistical significance was defined at equal to or more than 95%
confidence interval or P < 0.05. The experiments presented are
representative of 3 different repetitions. Data are presented as Mean ±
standard deviation.

RESULTS
High IL-33/ST2 level in OSCC tissues is associated with less
CD8+ T cell infiltration in situ and in blood
We firstly analyzed the expression of IL-33 and ST2 in tumor
tissues and normal tissues in HNSCC and OSCC by database
(https://tnmplot.com/analysis/). In HNSCC patients, the expres-
sion of ST2 in tumor tissues was significantly higher than that in
normal tissues (Fig. 1a). IL-33 was also up-regulated in tumor
tissues of OSCC and further enriched in metastatic niche
(Fig. 1b). Consistently, our previous study demonstrated that
OSCC patients with advanced TNM stage and tumor proliferation
showed high-expressed IL-33. The prognostic value of IL-33 and
ST2 in HNSCC patients were determined and found that patients
with high ST2 had short overall survival time (Fig. 1d) and

patients with high IL-33 had worse OS than those with low IL-33
expression (Fig. 1e). We also determined the expression patterns
of IL-33 and ST2 in 30 OSCC tissues were evaluated by
immunohistochemical (IHC) staining. The results showed that
the expressions of ST2 and IL-33 were absent in normal
epithelium and up-regulated during carcinogenesis. In OSCC,
ST2 was mainly expressed in tumor cells, while IL-33 showed
more stromal expression in CAFs and vascular endothelial cells,
which was consistent with our previous study [15] (Fig. 1c).
Moreover, we evaluated the correlation between the expres-

sion of IL-33/ST2 and CD4+ or CD8+ T cells in HNSCC patients
based on TCGA database. The results showed that there was a
significant negative correlation between the expression of ST2/
IL-33 and the infiltration of CD4+ T cells (Fig. 1f, h) and CD8+

T cells (Fig. 1g, i) in the tumor microenvironment. Furthermore,
using our biobank and clinical laboratory as previously reported
[16, 22], we retrospectively analyzed the ratio and absolute
number of key immunocytes in the blood of OSCC patients
(n= 16) according to ST2 expression. Human CD3+ T cells,
CD3+CD4+ helper/inducer T cells, CD3+CD8+ cytotoxic T cells,
CD3-CD19+ B cells, and CD3-CD16+ and/or CD56+ NK cells were
analyzed in ST2high and ST2low groups. Results showed that
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patients with high ST2 had relatively low ratio and numbers of
CD3+CD8+ cytotoxic T cells in blood.

IL-33/ST2 signaling promote PD-L1 expressions in oral
squamous cell carcinoma cells
To uncover the potential connection between ST2 and
decreased activated T cells, we obtained three cell lines to

acquire stable knockdown of ST2 by transfecting Cal27, HN6 and
Hsc3 OSCC cell lines via lentivirus-shRNA-ST2. The knockdown
efficiency was verified by WB (Fig. 2a). We constructed the
luciferase plasmid containing the promoter region of PD-L1, and
found that luciferase activity decreased significantly in ST2
knockdown tumor cells (Fig. 2b). Transcriptome sequencing of
three cell lines indicated that CD274 (encod PD-L1) were
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significantly reduced in ST2 knockdown cell lines (Fig. 2c).
Correspondingly, MyD88/TRAF6, as ST2 downstream adapter
protein, were also inhibited by ST2 knockdown. ELISA results
confirmed our previous finding that the secretion of IL-33 in
CAFs was significantly higher than that in NFs (Fig. 2d). After
stimulated by recombinant human IL-33 cytokine (25 ng/ml), ST2
overexpressed (ST2OE) HN6 cell line showed significant up-

regulated CD274 expression, indicating that ST2 activation is
required for PD-L1 expression (Fig. 2e).
In order to clarify the co-expression in situ of ST2 and PD-L1 in

OSCC tissue, we performed immunofluorescence staining on 10
frozen OSCC tissue sections, pan- keratin+ tumor cells simulta-
neously showed ST2 and PD-L1 positive staining and co-
localization (Fig. 2f). Similarly, through the correlation analysis of
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IL-33, ST2 and PD-L1 in HNSCC patients by database (http://
www.cbioportal.org/), we found that IL-33 and ST2 (Fig. 2g) had a
significant positive correlation with the expression of PD-L1,
respectively. We also collected RNA samples from 45 OSCC tissues
and confirmed that ST2high patients also have higher PD-L1 level
(Fig. 2h). Similar findings were found in 9 OSCC cell lines (including
Cal27, Cal33, Scc4, Scc9, Scc131, Scc172, Hsc2, Hsc3 and HN6)
(Fig. 3h). In turn, we sorted PD-L1low and PD-L1high cells in three
OSCC cell lines by Flow cytometry (Cal27, Scc9 and Hsc3). qPCR
analysis showed that the expression of ST2 in PD-L1low cells was
significantly lower than that in PD-L1high cells (Fig. 2i).

IL-33/ST2 signaling promote constitutive PD-L1 expression via
JAK/STAT3 pathway
In order to identify the key pathway orchestrating the PD-L1
expression in ST2high tumors, we performed a Genome Transcription
Regulation Database (GTRD) database analysis (http://
gtrd.biouml.org/). Several predicted transcriptional factors (TFs)
binding sites in the CD274 promoters were found. Through KEGG
enrichment analysis of these TFs, the JAK/STAT pathway significantly
harbor the TFs targeting the CD274 promoters, which was consistent
with previous findings [3, 7] (Fig. 3a). Thus we detected the activation
of JAK2 and STAT3 in OSCC cell with ST2 knockdown. Results found
that the phosphorylation of JAK2 and STAT3 both reduced by ST2
inhibition (Fig. 3b). Moreover, although the stimulation of IL-33
cytokine could significantly up regulate the phosphorylation degree
of JAK2 and STAT3, ST2 knockdown could suppress JAK2/STAT3
pathway activation (Fig. 3c). In contrast, the phosphorylation of JAK2/
STAT3 was enhanced in ST2OE OSCC cell lines (Fig. 3d). To confirm the
role of JAK/STAT pathway in PD-L1 transcription, JAK2 inhibitor
AG490 was treated. Results showed that the phosphorylation of JAK2
and STAT3 gradually decrease by AG490, accompanied by the down-
regulation of PD-L1 expression (Fig. 3e).
The immunofluorescence results also showed that the expres-

sion of PD-L1 and the nucleus staining of p-STAT3 were enhanced
by IL-33 stimulation (25 ng/ml) (Fig. 3f). To investigate the IL-33/
ST2/PD-L1 pathway further, we co-cultured the HN6 OSCC cell line
with IL-33 in an ultra-low adhesive environment to form 3D tumor
organoid (Fig. 3g). The immunofluorescence staining results
confirmed that IL-33/ST2 activation could activate p-STAT3 nuclear
localization and increase PD-L1 expression. (Fig. 3h).

IL-33/ST2 signaling up-regulates IFN-γR expression via MyD88
to enchance IFN-γ-mediated inductive PD-L1 expression
Clinical data from pan-cancer and HNSCC patients cohorts showed
that CD274 was positively correlated with IFNGR (http://
www.cbioportal.org/) (Fig. 4a). RNA-sequence indicated that IFNGR
was down-regulated by ST2 knockdown in OSCC cell lines (Fig. 2c),
whereas IFN-γ/IFN-γR activation is critical event for PD-L1
induction during targeting therapy [9, 23], thus we speculate that
IL-33/ST2 signal may indirectly enhances IFN-γ/PD-L1 pathway
activation by IFN-γR. Indeed, overexpression of ST2 enhanced IL-
33-induced IFNGR up-regulation (Fig. 4b). The effect of IL-33/ST2
activation on IFN-γR level was confirmed by immunocytochem-
istry and immunofluorescence staining (Fig. 4c, d).
MyD88 and TRAF6, as the downstream signal molecules of ST2

[24, 25], is reported to induce NF-κb activation which is necessary
for IFNGR transcription [26, 27]. IL-33/ST3 activation promoted

MYD88 and TRAF6 expression (Fig. 4e–f), which was verified by WB
analysis (Fig. 4g). At the same time, the phosphorylation of NF-κB
and IFN-γR were also up-regulated under the stimulation of IL-33/
ST2 signal (Fig. 4g). MYD88 and TRAF6 was knocked down by siRNA
in ST2High HN6 cells and was found to impair IFNGR expression.
Moreover, in response to IFN-γ treatment, IL-33/ST2 activation
require MyD88 and TRAF6 to regulate IFN-γ/IFN-γR/PD-L1 pathway,
which could be inhibited by MyD88 knockdown (Supplementary
Fig. 1a–c). Combination of ST2 overexpression and IFN-γ stimulation
induced a further increase in the gene and protein level of PD-L1
was observed (Fig. 5h, i), which was involved with activated STAT3
and p65 (Fig. 5j). Therefore, these data indicated that ST2 signaling
could directly promote PD-L1 expression via JAK-STAT3 pathway,
and indirectly promote IFN-γR expression to further enhance IFN-γ-
mediated PD-L1 induction (Fig. 5k).

ST2High tumor cells inhibit the tumor killing function of
human CD8+T cells through PD-L1
To estimate the role of ST2+ tumor cells in immune escape, we
established tumor/immunocytes co-culture system. We sorted
CD8+ T cells in human peripheral blood mononuclear cells
(PBMCs) by magnetic bead, CD3/CD28 activator and IL-2 cytokine
were used to stimulate the expansion of CD8+ T cells and induce
the activation of cytotoxic T lymphocyte (CTLs) (Fig. 5a). T cell-
mediated tumor cell-killing assays showed that activated CD8+

T cells efficiently promoted ST2+ tumor death, which was further
strengthened by ST2 knockdown. Overexpression of ST2 in HN6
cells, in turn, rendered the cells more resistant to human CTLs
(Fig. 5b, c). Meanwhile, T cell activation ratio in the supernatant
was detected by flow cytometry. The results showed that
compared with the control group, the proportion of CD3+CD8+

T cells and CD8+IFN-γ+ T cell in CD3+ T cells was significantly up-
regulated in HN6 group with ST2 knockdown (Fig. 5d, e).
To provide more evidence in vivo, we transplanted NCG mice

(NODprkdc-/-il-2rg-/-) mice with human peripheral blood mono-
nuclear cells (PBMCs) (i.p. 2*107 /mice) for immune reconstitution
to establish a new humanized PBMC (hu-PBMC) mouse model.
(Fig. 6f). After 10 days of PBMC injection, the efficiency of
reconstitution was analyzed by flow cytometry and results showed
that the average ratio of CD45+ cells was ~20-30% and the human
CD45+CD3+ T cells in the peripheral blood of mice were clustered
(~80%) (Fig. 5g, h). We further established an orthotopic model of
OSCC in NCG mice and Hu-PBMC mice by injecting human OSCC
cell line HN6 into the tongue, and found that the infiltration of
CD8+ T cells in tumor were only detected in Hu-PBMC group
(Fig. 5i). ST2KD HN6 cells were used for tongue tumor implantation
and the tumor volume in ST2KD group was significantly smaller
than that in control group (Fig. 5j, k). Immunohistochemical
staining was performed to detect the infiltration of CD3+ T cells
and CD8+ T cells in the tumor (Fig. 5l, n). The staining results
showed that the infiltration of CD3+ T cells and CD8+ T cells in the
transplanted tumor of ST2KD group was higher than that in the
control group.

ST2 knockdown combines with anti-PD-L1 therapy show
superior anti-tumor effects in OSCC
We assessed the immunosuppressive effect of IL-33/ST2 signals on
CD8+ T cells in the presence of anti-PD-(L)1 blocking Ab. C57BL/6

Fig. 5 ST2 knockdown promote the human CTL killing function in vitro and in vivo of Hu-PBMC mouse model. a Schematic diagram of T
cell-mediated tumor cell killing assay and T cell activation assay. b T cell-mediated cancer cell-killing assay results. HN6 cells cocultured with
activated T cell for 48 h were subjected to Crystal violet staining and CCK-8 detection. c Numbers of live tumor cells were counted. d, e After
co-cultured with ST2 knockdown HN6, the percentage of CD3+ CD8+ T cells and CD8+IFN-γ+ T cells in PBMC were analyzed. f Schematic
diagram of Hu-PBMC mouse model construction. g, h After 10 days of PBMC transplantation (1–2*107 per mice, i.v.), the CD45+CD3+ T cell
integration rate was tested in tail blood sampling. i The infiltration of CD8+ T cells in orthotopic OSCC model in Hu-PBMC mouse.
J, k Transplanted tumor in mice tongue and representative diagram of HE staining. l, n The infiltration of CD3+T and CD8+T cells in ST2
knockdown group and control group was analyzed by immunohistochemistry. Results are shown as mean ± SEM. *p < 0.05, **p < 0.01,
***p < 0.001. p= Two-tailed t test.
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mice with no immunodeficiency were used. In orthotopic
xenograft tongue tumor model (Supplementary Fig. 2a), treatment
of recombinant IL-33 or ST2 overexpressed tumor cells induced
significant tumor growth in vivo. Tumor tissues showed increased
Foxp3+ Tregs infiltration and reduced CD8+ T cells ratio
(Supplementary Fig. 2b–d). Additionally, anti-PD-1 therapy alone
in control group showed no significant impacts on the proportion
of Foxp3+ Tregs, but increased 6.4% CD8+ T cells infiltration, and
inhibited tumor growth, although not significantly (Supplemen-
tary Fig. 2e). However, anti-PD-L1 therapy in tumors with IL33/ST2
activation significantly induced tumor regression and abrogated
ST2/PD-L1-induced immunosuppression. Tumor infiltrated Foxp3+

Tregs were reduced 9% and CD8+ T cells were increased 10.4%
(Supplementary Fig. 2f).
We further analyzed the transcriptomic features of response in

pre- and post-treatment tumors from anti-PD-1 therapy for
resectable oral squamous cell carcinoma [28]. Therapy responders
have higher expression of CD274, IL33, IL1RL1, JAK2 and TRAF6
than non-responders. TIGIT as an inhibitory receptor expressed by
activated T cells was up-regulated in non-responders (Supple-
mentary Fig. 3a–f). Besides, after PD-1 blockade treatment, tumor
from responders showed more CD8 expression and ST2 level,
which provided a basis for testing rational combination treat-
ments of ST2 inhibition and PD-1/L1 blockade (Fig. 6a). Indeed,
ST2 knockdown combined with anti-PD-L1 therapy showed
superior anti-tumor effects with increased CD8+ T cells and
reduced Foxp3+ Tregs as shown in (Fig. 6b–e).
Finally, we verified the ST2/IFN-γR/PD-L1 pathway in situ in

OSCC patients (n= 12) by IHC staining. The protein expression of
ST2, PD-L1 and IFN-γR in OSCC clinical samples were estimated by
staining area and intensity. The results showed that the expression
location of ST2, PD-L1 and IFN-γR were observed in tumor cells in
OSCC, and high ST2 expression significantly correlated with high
PD-L1, IFN-γR expression (Fig. 6f, g). Therefore, evidences in vitro,
in vivo and clinical data together illustrated a IL-33/ST2/PD-L1-
based immune regulation model (Supplementary Fig. 4): When
tumor shows low ST2/PD-L1 expression, more activated T cells and
IFN-γ present in tumor microenvironment and the tumor
progression is inhibited. However, when tumor shows up-
regulated ST2 expression, IL-33 and IFN-γ induced more PD-L1
expression and less activated T cells in tumor microenvironment,
which leads to tumor progression. But ST2+ tumor patients with
high PD-L1 might be more vulnerable to the anti-PD-1/L1 therapy.

DISCUSSION
The stromal cells in the surrounding TME, such as the CAFs, not
only act as an active contributor to cancer growth, but CAF-
derived factors involved in the upregulation of PD-L1 in different
tumor cell types for immune escape [29, 30]. Through the
secretion of soluble factors like CXCL2, α-SMA+CAFs can increase
PD-L1 expression in lung adenocarcinoma cells, thereby influen-
cing antitumor immunity [31]. Recent studies have revealed some
detailed intracellular signaling mechanisms. As shown in the
research by Zhang et al, CAFs in colorectal cancer facilitate
extracellular signal regulated kinase 5 (ERK5) expression and
phosphorylation to increase the synthesis of PD-L1 protein [32].
On the basis of the fact that CAFs were the important source of IL-
33 and participated into immune escape [15, 33], we here found
that IL-33 mainly located in OSCC stroma fibroblast, which might
create opportunities for stroma IL-33 to activate ST2+ tumor cells
to induce PD-L1 expression for immunosuppression.
Previous studies have shown that constitutive PD-L1 expression

involves PTEN deletions, EGFR mutations or JAK1/2 mutations;
whereas both type I and II interferons (IFN) contribute to the
inducible PD-L1 expression, especially interferon-γ (IFN-γ) [34, 35].
IFN-γ is a key driver of PD-L1 expression in host tumors, whereas
IL-33 can stimulate a variety of immune cell responses, including

IFN-γ production by stimulating activated CD8+T cells, and IL-1β,
IL-6, TNF-α from macrophages and mast cells [36–38]. These
cytokines are known stimulators of PD-L1. However, most of the
existing studies only focus on the functional regulation of IL-33 on
immune cells. In this study, we found that stroma IL-33 activated
ST2 signaling of tumor cells, leading to the constitutive PD-L1 on
OSCC cells via JAK-STAT3. Indeed, activity of JAK was essential for
PD-L1 expression in many cancer types [3].
ST2 activation was reported to activate diverse intracellular

kinases and factors (e.g. MyD88, IRAK-1, IRAK-4, and TRAF-6) and
increase the transcription activity of NF-kB, p-38, JNK, and ERK for
downstream inflammatory genes expressions and ultimately to
the production of inflammatory cytokines/chemokines and
mounting of an adequate immune response [39–41]. Notably,
IFNGR expression induced by IL-1 were found to be dependent on
NF-kB transactivation in epithelial cells [27]. Our research showed
that the stimulation of IL-33 could activate NF-kB signaling and
promote IFN-γR expression in tumor cells. Thus we speculated that
IL-33 increased the expression of IFN-γR in tumor cells, which
showed enhanced response to the CD8+ T cells-derived IFN-γ
and PD-L1 expression in tumor microenvironment.
Our data show that stroma IL-33 could activate JAK2/STAT3

phosphorylation of ST2+ tumor cells and promote the expression
of PD-L1. IL-33/ST2 can also activates the expression of IFN-γR
through MyD88/TRAF6/NF-κB signaling to indirectly stimulates
IFN-γ-induced PD-L1 expression. These findings revealed a
complex tumor-promoting microenvironment shaped by IL-33/
ST2 axis in OSCC. Inhibition of ST2 signaling might benefit for anti-
PD-1/L1 therapy of OSCC patients.
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