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Patients with the heritable cancer disease, Lynch syndrome, carry germline variants in the MLH1, MSH2, MSH6 and PMS2 genes,
encoding the central components of the DNA mismatch repair system. Loss-of-function variants disrupt the DNA mismatch repair
system and give rise to a detrimental increase in the cellular mutational burden and cancer development. The treatment prospects
for Lynch syndrome rely heavily on early diagnosis; however, accurate diagnosis is inextricably linked to correct clinical
interpretation of individual variants. Protein variant classification traditionally relies on cumulative information from occurrence in
patients, as well as experimental testing of the individual variants. The complexity of variant classification is due to (1) that variants
of unknown significance are rare in the population and phenotypic information on the specific variants is missing, and (2) that
individual variant testing is challenging, costly and slow. Here, we summarise recent developments in high-throughput
technologies and computational prediction tools for the assessment of variants of unknown significance in Lynch syndrome. These
approaches may vastly increase the number of interpretable variants and could also provide important mechanistic insights into
the disease. These insights may in turn pave the road towards developing personalised treatment approaches for Lynch syndrome.
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INTRODUCTION
Lynch syndrome (LS) is a hereditary cancer predisposition disease,
caused by germline variants that impair the DNA mismatch repair
(MMR) system and lead to the accumulation of spontaneously
acquired somatic mutations. Thus, patients with LS suffer from a
high cumulative lifetime cancer risk compared to the general
population. As a result, LS underlies 3% of all colorectal cancer
(CRC) cases, and 8% of cases in young CRC patients (<50 years)
[1, 2]. This makes LS the most common cause of genetically
predisposed CRC, giving rise to its previous term hereditary non-
polyposis colorectal cancer (HNPCC). Accordingly, LS was the first
familial cancer disorder to be described and was later found to
cause 2% of all endometrial cancers and predispose patients to a
range of other cancers, including stomach, brain and ovarian
cancer [3–5].
The main therapeutic approach for LS-derived CRC is the partial

or complete surgical removal of the colon or colon-rectum [6, 7],
while prophylactic surgery has been suggested as an approach to
treat LS-derived gynaecological cancers [8–10]. Although che-
motherapeutic treatments are given as supplementary treatment
in the later stages of LS-derived CRC, its effectiveness remains
unclear [6], and probably new treatments such as immunotherapy
will in time be implemented in combination with personalised

medicine [11]. Thus, the strongest clinical tool at hand is an early
diagnosis, together with frequent surveillance and surgical
removal of early adenomas [5]. Importantly, early diagnosis relies
on a thorough understanding of the underlying germline variant
as well as the disease mechanism that relates to the specific
variant, which is the focus of this review.

DNA MISMATCH REPAIR
The MMR system repairs spontaneously arising somatic mutations.
During replication, the DNA polymerase may incorporate mis-
matched nucleotides. The polymerase is a highly “faithful” enzyme
and performs proofreading, which reduces the error rate [12].
However, the proofreading works in strong cooperation with the
MMR system, which is recruited to sites of replication to correct
mismatched base pairs [13] and is necessary to bring down the
overall mutation rate [12, 14]. Thus, loss of MMR function is
detrimental to genome integrity and sets the stage for cancer
development.
LS patients carry germline loss of function (LoF) variants in one

of the four key genes involved in MMR: MutL homolog 1 (MLH1),
MutS homolog 2 (MSH2), postmeiotic segregation increased 2 (PMS2)
and MutS homolog 6 (MSH6). In more rare cases, LS is caused by
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constitutional epimutations [15] that lead to the silencing of the
MLH1 gene [16, 17] or the MSH2 gene [18]. Moreover, germline
variants of MutS homolog 3 (MSH3) have been implicated in LS
when occurring together with other low-risk alleles [19].
The MMR proteins form heterodimers, MutSα (MSH2-MSH6) and

MutLα (MLH1-PMS2) (Fig. 1a), which play key and distinct roles in
the MMR pathway (Fig. 1b) [20]. Through the MSH6 protein, MutSα
binds the DNA at the site of the mismatch, thus detecting base-
base mismatches and small insertion/deletion loops (IDLs) [21]. An
alternative complex (MutSβ) consisting of MSH2 and MSH3
corrects larger IDLs and exists in a 1:10 ratio to MutSα. Although
the binding mechanism of MSH3 to DNA is unlike that of MSH6,
redundancy between MutSα and MutSβ has been suggested [22].
The MMR pathway is bidirectional. The 5’ to 3’ repair proceeds

as follows (Fig. 1b): first, a 5’ nick in the newly synthesised strand,
which occurs randomly during replication and serves as strand
discrimination to the MMR, allows exonuclease 1 (EXO1) to bind
[23]. ATP exchange converts the mismatch-bound MutSα into a
sliding clamp locked around the DNA [24]. The conformational
change releases MutSα from the site of the mismatch and allows it
to move along the DNA strand. Moreover, the change permits
interaction with MutLα, which subsequently binds the DNA [24].
The MutSα/MutLα complex binds EXO1, after which 5’ to 3’
movement of the MutSα/MutLα/EXO1 complex allows for excision
by EXO1 assisted by the single-stranded DNA binding protein
complex replication protein A (RPA), which protects the exposed
single-stranded DNA. Then, the DNA polymerase in complex with
the proliferating cell nuclear antigen (PCNA) sliding clamp as well
as the DNA ligase finish the repair process. The 3’ and 5’ directed
repair processes seem to proceed differently, although some
details remain to be resolved. For example, an in vitro study of the
yeast MMR system suggests that 3’ to 5’ repair merely requires
action from MutSα, EXO1 and RPA, while 5’ to 3’ repair requires
additional action from MutLα and PCNA [25, 26]. Because EXO1
only excises DNA in a 5’ to 3’ direction, the main role of MutLα
might be to travel with PCNA in the 5’ direction and nick the
newly synthesised strand 5’ to the mismatch. This action is
stimulated by PCNA and performed by PMS2 in an MLH1-
dependent manner [26–28]. Moreover, whether EXO1 is essential
for MMR also remains unclear [20, 29].
MLH1 forms alternative dimers with MLH3 and PMS1 (Fig. 1a).

The MLH1-MLH3 dimer (MutLγ) plays a role in meiotic recombina-
tion [30] and triplet repeat DNA expansion [31], while the function
of the MLH1-PMS1 dimer (MutLβ) is unknown, but may play a
minor role in MMR [32]. Lastly, besides DNA repair, the MMR
pathway promotes the DNA damage response, including cell cycle
arrest and cell death, which further explains the tumorigenic load
in MMR-deficient cells [33] and why LS tumours are often
associated with resistance to a range of chemotherapies, including
temozolomide, 5-fluorouracil and cisplatin [34].

DIAGNOSIS OF LYNCH SYNDROME
LS-derived tumours are recognised by loss of one of the four key
MMR proteins visualised by immunohistochemical staining of the
tumour cells, and by the acquisition of a microsatellite instability
(MSI) phenotype. Microsatellites are spans of short tandem repeats
within the DNA, which are especially prone to acquiring frameshift
mutations, due to DNA polymerase slippage. Loss of MMR results
in a hypermutagenic MSI phenotype with altered microsatellite
patterns, which is considered a hallmark of LS [35–37]. However,
MSI is not exclusive to LS, and is seen in as much as 15% of CRCs,
most of which are caused by spontaneous hypermethylation of
the MLH1 promoter, leading to MMR loss [37, 38]. Thus, next to the
molecular analysis of the tumour, the diagnosis must also rely on
the family cancer history, individual cancer history and age of
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Fig. 1 The human DNA mismatch repair (MMR) system. a The
MSH2 protein forms dimers with MSH6 (MutSα) and MSH3 (MutSβ).
The MLH1 protein forms dimers with PMS2 (MutLα), PMS1 (MutLβ)
and MLH3 (MutLγ). Heterodimer functions are listed. IDL, insertion/
deletion loop. b A schematic illustration of the 5’ to 3’MMR pathway.
EXO1 binds a nick in the newly synthesised DNA strand 5’ to the
mismatch. MutSα recognises the mismatch and undergoes an ATP-
dependent conformational change, which locks the complex around
the DNA to form a sliding clamp. MutSα moves along the DNA
strand and interacts with MutLα, which further binds the DNA.
MutSα/MutLα binds EXO1 and moves in the 5’ to 3’ direction
allowing for the excision of the mismatch by EXO1. RPA protects the
unpaired strand until the DNA polymerase bound to PCNA repairs
the strand, after which the DNA ligase seals off any remaining nicks
(not shown).
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cancer onset. A variety of risk assessment tools have been used
over the years: the Amsterdam criteria II [39], the revised Bethesda
guidelines [40], simple CRC risk assessment tools [41], and more
recently, computational prediction models [42]. Probably, these
will be gradually complemented by sequence-based gene panel
analyses of the germline. This development is likely to be
accelerated by the need for individualised treatment depending
on in which gene a pathogenic variant is detected.
Moreover, the diagnosis should involve evaluation of the

specific germline variant, and accordingly, the disease course
differs dramatically. It is estimated that there is a high general risk
in the population (1:279) of carrying a LS-linked MMR variant [43].
Most LS variants are detected in the PMS2 (1:714) and MSH6
(1:758) genes, whereas MLH1 and MSH2 variants are less common
(1:1946 and 1:2148, respectively). However, there is a difference in
disease penetrance, which seems to be correlated inversely with
the population frequencies, since most LS-linked cancers arise
from variants in the MLH1 or MSH2 genes [6, 44, 45]. The
difference in penetrance has been recognised in several studies
[3, 5, 6, 46], but is not well understood. Importantly, penetrance is
affected by environmental factors and the individual genetic
makeup of patients, like co-segregating germline variants and
modifier genes that may cause stronger or milder clinical effects.
Thus, diverging penetrance patterns between individual patients
is a major caveat for the classification of disease-linked protein
variants. Lastly, while LS is dominantly inherited, disease devel-
opment follows Knudson’s two-hit hypothesis [47], and thus relies
on a “second hit” of the wild-type allele to ablate the MMR
function and significantly increase the risk for further mutations
[48], meaning the expressivity of the disease ultimately also relies
on the timing of the second hit.
Notably, the MMR proteins are not equally dependent on each

other, which may partially explain this difference in penetrance.
For instance, the MSH2 protein is stabilised by MSH6, causing
MSH2 levels to drop upon loss of MSH6 [49]. Moreover, interaction
with MLH1 rescues PMS2 from degradation [50, 51], thus leaving
PMS2 protein levels to depend on the presence of MLH1 [52],
while MLH1 levels do not rely on PMS2. This means that the cell
effectively can lose both MLH1 and PMS2 if MLH1 is destabilised
[51], which is why the loss of both MLH1 and PMS2 visualised by
immunohistochemical staining may indicate a germline MLH1
variant. Indeed, this depends on the specific variant, as some
MLH1 variants induce solitary loss of PMS2 [53]. Likely, these
variants alter the PMS2-interaction interface of the MLH1 protein,
thus preventing the stabilisation of PMS2.
The specific variants also define how the disease is expressed.

For example, some studies find MSH6-linked cancers to induce a
high risk of gynaecological cancers [3, 5, 54, 55], which indicates
that the genes play different roles in tumorigenesis. Conclusively,
a thorough description of individual disease-causative LS variants
is crucial for correct diagnosis and treatment of patients.

VARIANTS AND DISEASE MECHANISM
To improve diagnosis, known LS-linked MMR variants have been
collected in the InSiGHT database (http://insight-database.org/)
and assigned to one of five classes of pathogenicity based on the
data published on each variant [56]. The types of germline variants
distribute differently between the classifications. For example,
synonymous substitutions or intron variants would likely have no
effect on the given MMR protein structure or function and
predominate in class 1 (benign) and 2 (likely benign) [56]. In
contrast, large IDLs, non-sense (truncating) and splice site variants
would, in most cases, cause significant alterations to the protein
sequence, expression level and structure. These will obviously be
disruptive to the protein function and are highly represented in
class 4 (likely pathogenic) and class 5 (pathogenic) [56]. However,
missense variants are represented in all five different InSiGHT

categories and make up the majority of variants in class 3 (variants
of uncertain significance, VUS) and also constitute a significant
part of the classified pathogenic MLH1 (40%), MSH2 (30%), MSH6
(50%) and PMS2 (60%) variants [45].
Missense variants are abundant in the VUS pool because their

effects on a protein may range from undetectable to detrimental
and greatly depend on the type and location of the amino acid
substitution. Even a conservative amino acid substitution within or
near an active site or binding interface may affect protein function,
however, many non-conservative substitutions occur outside the
active site, and thus mainly affect the stability of the protein.
Most protein structures are only marginally stable [57], and exist

in an equilibrium between a folded and unfolded state. However,
the folded and functional state of the protein—the native
structure—is under normal conditions more stable than the
unfolded state, which drives the equilibrium towards this native
state. A germline variant that changes the protein sequence may
destabilise the protein structure and shift the equilibrium towards
the unfolded state. In the unfolded state, the protein may expose
degradation signals (degrons) that are buried in the native
structure and therefore becomes vulnerable to degradation. The
exposed degrons recruit the cellular protein quality control (PQC)
system, which directs the protein for proteasomal degradation
(Fig. 2a). The PQC and degradation of misfolded proteins have
recently been reviewed [58–62]. Briefly, most misfolded proteins
are degraded through the ubiquitin–proteasome system (UPS)
and thus rely on ubiquitin conjugation achieved by the sequential
actions of three enzymes: a ubiquitin-activating enzyme (E1), a
ubiquitin-conjugating enzyme (E2) and a ubiquitin-protein ligase
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Fig. 2 Proteasomal degradation of misfolded proteins.
a Overview of the ubiquitin–proteasome system (UPS). A ubiquitin
moiety is activated by an E1 enzyme and transferred to an E2
enzyme. From here, the ubiquitin is transferred to the target protein
by the means of an E3 ubiquitin-protein ligase. Ubiquitination
promotes binding at the proteasome and subsequent degradation
of the target protein. b A wild-type protein (left) mainly exists in the
functional native structure that is not degraded. Mutations affect the
protein structure to mild (centre) or more severe (right) degrees and
may obstruct the protein function. Both mildly and severely
misfolded proteins risk undergoing proteasomal degradation.
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(E3) (Fig. 2a). Following activation by an E1 and transfer to an E2,
the substrate-specific E3 enzyme covalently links the ubiquitin
molecule to the target protein. This mediates the binding of the
substrate to the 26S proteasome, which in turn catalyzes the
degradation of the target protein.
In theory, even mild alterations to or destabilizations of the protein

structure can cause protein degradation (Fig. 2b). Accordingly, the
UPS also regulates the cellular abundance of wild-type proteins,
including the MSH2 protein [49, 63–65]. However, the degradation of
misfolded protein variants occurs more rapidly and is a well-
established disease mechanism that appears to be the underlying
cause for many cases of LS, causing low cellular levels of MSH2 and
MLH1 variants [66–69], which is diagnosed by immunohistochemical
staining of LS tumours. In some cases of LS, the unstable variant may
still be functional. In the case of MSH2, inhibition of the UPS was
shown to restore MMR function in cells with structurally unstable but
functional MSH2 variants [70]. In these specific cases, inhibiting
degradation could serve as a prophylactic treatment for patients
carrying these variants [71]. Ideally, the rescue of a functional variant
from degradation would restore the MMR function sufficiently and
relieve the patient from the increased cancer risk—a strong
incitement for obtaining a mechanistic understanding of individual
LS variant effects at the molecular level [72].

THE EFFECTS OF VARIANTS OF UNCERTAIN SIGNIFICANCE
Interpretation of genetic variants is inherently difficult. Close to
90% of LS-linked missense variants are classified as VUS [66], and

correct classification is a large and difficult task, which needs to
be solved before clinicians can accurately diagnose and treat
many suspected LS patients. The majority of variants identified
by sequencing have never been observed in the human
population before, hence the simple lack of preceding events
in the population causes most variants to be classified as VUS
[73]. Of course, the vast number of VUS is not specific for MMR
proteins, and the majority (99%) of missense variants, including
LS-linked VUSs, are rare [74] and have only been observed once
or a few times in patients, which makes it difficult to determine
potential disease causality. In contrast, variants that occur
frequently in the population, such as founder mutations [75],
are well-described, e.g., the highly penetrant MSH2 A636P
variant, which underlies a third of all LS cancers in the Ashkenazi
Jewish population [76]. A variant can also be categorised as a
VUS if there exists conflicting evidence for its pathogenicity.
Reasons for this could include co-segregation with a pathogenic
variant in another MMR gene, inconclusive IHC or MSI analysis,
or patients with a low prevalence of LS cancers among relatives.
In such cases, functional assays can help elucidate the variant
effect on MMR and thus reclassify the variant as likely
pathogenic/benign [77–79].
Ideally, clinicians should have access to a complete map of the

effects of every potential missense variant within a given protein.
Once they detect a rare variant, a complete map of variant effects
could be an excellent resource for classifying such rare variants.
Figure 3 presents an overview of the methods used for variant
interpretation. Traditionally, low-throughput studies of function
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and abundance are applied retrospectively to analyse individual
variants and ensure correct classification (Fig. 3a). Functional
testing of individual variants in the MMR genes will possibly be
made more readily available in the clinic with flow cytometry-
based MMR assays that can be performed directly in blood cells
from individuals that meet the Amsterdam II criteria [80]. However,
individual verification is a slow, costly and labour-intensive
process and applying such analysis to all possible missense
variants in a protein is a daunting task.

Computational methods for variant interpretation
The implementation of computational prediction tools for
missense variant effects has been an important step towards
shedding light on the VUS pool. These tools were developed using
both evolutionary conservation and structural data as input, and
most are trained on clinically labelled data of benign and
pathogenic variants (Fig. 3b) [73]. As evolution selects for protein
function, residues that are critical for catalysis, protein or ligand
binding, or structural stability can all be identified in this manner.
However, methods based exclusively on sequence conservation
will therefore on their own not provide any mechanistic
information as to why a particular variant might be damaging.
Conversely, structure-based methods may pinpoint variants that
are likely to cause protein destabilization or loss of key
interactions, but these methods will be blind to variants that
may destroy enzymatic function without affecting the global
protein stability. Combining evolution-based methods with
structural stability calculations can provide an understanding of
the various loss of function mechanisms inflicted by protein
variants [81].
A detailed discussion of the many different approaches to predict

variant effects and pathogenicity is beyond the scope of this review.
These include, however, specific models for MMR genes and LS
[82, 83]. Many of the models for variant effect prediction, such as
PolyPhen-2 [84], PROVEAN [85], SIFT [86], EVMutation [87] and
GEMME [88], generally use multiple sequence alignments of
homologous proteins as input to construct a statistical model that
estimates the likelihood of a given variant, and outputs an
evolutionary sequence score. The algorithms consider both the
conservation at individual positions as well as the co-evolution of
amino acid pairs, the co-evolution term being the major difference
between the algorithms. Evolutionary sequence analysis is also the
basis of the recently published mutational effect predictor
DeepSequence [89] and pathogenicity predictor EVE [90], and these
types of prediction methods have been shown to work well for both
MSH2 [67, 68, 90] and MLH1 [50].
Computational modelling of amino acid substitutions directly

on the 3D structure of the given protein allows the prediction of
the change in folding energy between the protein variant and the
wild-type. The tools Rosetta [91] and FoldX [92] predict the change
in stability with an accuracy of about 1 kcal mol−1. The FoldX
algorithm was developed to predict the structural destabilization
afflicted by a missense substitution within a protein [93]. In
simplified terms, these algorithms utilise information about the
protein structure to calculate the difference in stability of a
missense protein variant and the wild-type protein. Thus, one can
predict the individual effects of all possible variants at any position
within a structure. Several previous studies of the MMR proteins
have found a correlation between LS and destabilised missense
MMR variants [70, 94, 95]. Thus, in previous research, the FoldX
and Rosetta algorithms were used to produce stability predictions
of all possible missense variants of MSH2 [68], MLH1 [50] and a
range of other proteins [96–98]. Here, it was shown that the effects
of the majority of previously described missense variants with
known clinical consequences could be accurately predicted, and
that the predictions matched with cellular measurements of the
individual variant abundances and protein function. Thus, an
advantage of structure-based disease predictors is that they help

provide the molecular mechanism underlying the damaging effect
of a variant.

Multiplexed assays of variant effects
In another attempt to truly overcome the issues of variant
interpretation, new laboratory-based high-throughput approaches
have been developed, known as deep mutational scanning or
multiplexed assays of variant effect (MAVE) technologies (Fig. 3c)
[99]. These assays score the effects of all possible missense
variants of a protein, and have been reported to outperform
several computational prediction tools [66, 74, 100, 101]. However,
in some cases, computational predictions have also been
observed to outperform MAVEs in variant classification [90, 102].
MAVE technologies can be used to measure function, abun-

dance, or interaction of libraries consisting of all possible single
amino acid variants in a protein of interest. For example, the
Variant Abundance by Massively Parallel sequencing (VAMP-seq)
method measures abundance of fluorescently tagged protein
variants, and thus scores their individual difference in pathogeni-
city in a high-throughput manner, when low abundance is the
cause of loss of function [103]. Moreover, one can use the MAVE
methods to test for variant function, by applying a selective
pressure to the variant library, which was recently done for MSH2.

Multiplexed assays of MSH2 function
Recently, the function of missense MSH2 variants has been
assayed in a high-throughput manner by Ollodart et al. [69] and
Jia et al. [66]. In yeast, Ollodart et al. selected for LoF MSH2
variants by measuring the cellular mutation rate in a library of 185
different MSH2 variants. They selected cells with high mutation
rates by measuring their resistance to canavanine, which is only
tolerated by cells with a mutated CAN1 gene. With this method,
they successfully distinguished pathogenic and benign MSH2
variants. At an even larger scale, Jia et al. utilise a human MSH2
knockout cell line in which they introduce a saturated library of
MSH2 variants, including nearly all possible single amino acid
missense variants. Treatment with 6-thioguanine (6TG) is toxic to
MMR-proficient cells and allowed the authors to select for MMR-
deficient MSH2 variants and identify these by sequencing. From
this study, they estimate that 10–11% of missense variants are
deleterious to MSH2 function [66] and that 7-8% of MSH2 VUS
show a pathogenic phenotype, meaning the vast majority of
MSH2 VUS are likely benign. This fits with predictions based on
analyses of protein stability and sequence conservation that show
that MSH2 is relatively tolerant to missense variants, and that most
variants are predicted to have only minor effects [67, 68].

Current challenges in high-throughput variant classification
However, despite the promising progress, both functional MAVE
analyses and computational prediction tools still wrongly classify
some variants. In case of MAVE studies, misclassifications can
occur if the employed assay is not sufficiently sensitive or does not
capture all functional aspects of the protein. Further, it is
important to establish guidelines for how to use MAVE functional
data in clinical variant classification, as in addition to the
guidelines that already exist for low-throughput functional assays
[104]. Including functional data has been demonstrated to
significantly aid in the reclassification of VUS [77].
Regarding computational pathogenicity predictions, the preci-

sion of the current prediction tools is promising, and it could
certainly be a strong supportive tool in the clinic. Although some
tools are challenged by reports of low sensitivity and a high
number of false positives [105, 106], the advantages of computa-
tional prediction tools might in some situations outweigh their
weaknesses, as the applicability, cost and efficiency is remarkable
compared to individual variant testing. Indeed, new tools are
being developed and perfected to overcome some of the inherent
problems with the prediction algorithms [107, 108].
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MAVE data can serve as useful benchmarks for computational
variant effect predictors [73, 81, 87, 90, 102, 109], and may also be
used to train variant effect predictors. This will likely lead to
refined predictors in the near future.

POTENTIAL FOR RESTABILIZATION OF DISEASE-CAUSING
MSH2 VARIANTS
MAVE technologies may also help to uncover particular disease
mechanisms on the molecular level, for instance, by helping to
determine which gene variants disrupt catalytic activity, interac-
tions, or cause destabilization. For those variants that are
degraded, the methods may shed light on the specificity of the
PQC system, i.e., how does the PQC engage with proteins and
what characterises the PQC-bound elements within the target
proteins. For example, a recent study in E. coli shows how
expression of PQC proteins, specifically the Lon protease, alters
the mutational landscape of a model protein, and thus constrains
which variants are allowed [110]. In a similar manner, the cellular
PQC apparatus will also ultimately decide the threshold for which
destabilised missense variants in MMR components will be
pathogenic. Combining MAVE experiments with perturbations of
the PQC apparatus will potentially allow the identification of
variants that will regain function upon increased protein levels
(Fig. 2b). This pool of variants is interesting, as they would be
targetable from a clinical perspective. In principle, stabilisation of
the protein would prevent disease development in the patient,
and so far, this approach is used for the rescue of the cystic fibrosis
CFTR F508Δ variant [111–113]. Proof-of-concept studies in yeast
have demonstrated that restabilization of some pathogenic MSH2
variants can restore MMR function [70]. Thus, it may be possible to
prevent cancer development for LS patients that carry “rescuable”
MSH2 variants through the development of pharmaceuticals that
act to increase the cellular amount of natively folded MSH2.

CONCLUDING REMARKS
MAVE-based experimental approaches combined with computa-
tional biology have already brought us key insights for VUS in
Lynch Syndrome. Importantly, these tools have provided us with
new approaches to study basic scientific questions focused on
how individual variants operate through effects on catalysis,
interactions or protein stability, and this knowledge can in turn
improve the diagnosis and potential treatment of not only Lynch
syndrome but also other genetic diseases.
At the moment, use of computational evidence is restricted to

“supporting evidence only” according to clinical guidelines such as
those provided by the ACMG-AMP [114]. These guidelines specify
that multiple computational predictions may not be considered
independent due to concerns over overlap in the underlying
algorithms and the data that they are trained on. While it is true
that some programmes use similar approaches and are thus not
independent, others can be considered complementary. More-
over, rapid growth of sequence databases can lead to improved
variant consequence predictions, such that the guidelines with
respect to computational results should perhaps be revised.
The value of including MAVE data in clinical variant classification

was demonstrated in a recent study on the TP53, PTEN and BRCA1
proteins [115], where MAVE data was integrated with available
clinical data to correctly classify VUS. The same approach may be
applied to MSH2, for which both MAVE and clinical data exist.
Similar prospective studies for other MMR proteins could help
provide broader knowledge on MMR variant effects and enable
personalised treatment for patients suffering from Lynch Syn-
drome. Indeed, the importance of Lynch Syndrome and the
promise of patient benefits from personalised approaches is also
recognised in its listing among genes to be prioritised for
systematic assessment of variant consequences [116, 117].
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