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A B S T R A C T   

Lung diseases lead to complications from obstructive diseases, and the COVID-19 pandemic has increased lung 
disease-related deaths. Medical practitioners use stethoscopes to diagnose lung disease. However, an artificial 
intelligence model capable of objective judgment is required since the experience and diagnosis of respiratory 
sounds differ. Therefore, in this study, we propose a lung disease classification model that uses an attention 
module and deep learning. Respiratory sounds were extracted using log-Mel spectrogram MFCC. Normal and five 
types of adventitious sounds were effectively classified by improving VGGish and adding a light attention 
connected module to which the efficient channel attention module (ECA-Net) was applied. The performance of 
the model was evaluated for accuracy, precision, sensitivity, specificity, f1-score, and balanced accuracy, which 
were 92.56%, 92.81%, 92.22%, 98.50%, 92.29%, and 95.4%, respectively. We confirmed high performance 
according to the attention effect. The classification causes of lung diseases were analyzed using gradient- 
weighted class activation mapping (Grad-CAM), and the performances of their models were compared using 
open lung sounds measured using a Littmann 3200 stethoscope. The experts’ opinions were also included. Our 
results will contribute to the early diagnosis and interpretation of diseases in patients with lung disease by 
utilizing algorithms in smart medical stethoscopes.   

1. Introduction 

Chronic obstructive pulmonary disease (COPD) ranked third world-
wide in 2019, caused more than 3.2 million deaths, according to World 
Health Statistics [1]. Furthermore, more than one billion people 
worldwide suffer from COPD, asthma, occupational lung disease, and 
acute lower respiratory tract infections [2]. Although obstructive pul-
monary disease is simple to diagnose, it causes pneumonia complica-
tions due to COVID-19, and the infectious disease is further spreading 
owing to the lack of professional medical personnel. Particularly, when a 
COPD patient becomes infected with COVID-19, the outcome becomes 
worse than general patients. Many patients with underlying COPD were 
hospitalized in the intensive care unit (ICU), and 65 % of severely ill 
patients died with a history of COPD [3]. Additionally, lung diseases, 
such as asthma and pneumonia, have been the leading causes of death 
since COVID-19, and considerable research and efforts are being 
invested toward the early diagnosis of lung diseases [4,5]. Therefore, the 
early detection of diseases is important to prevent epidemics and lung 
diseases. Early detection of respiratory diseases can reduce the chances 

of complications with proper diagnosis and treatment [6]. 
Medical staff use X-rays, computed tomography (CT), and stetho-

scopes to diagnose lung diseases [2]. In particular, stethoscopes are 
widely used for lung auscultation because it is possible to observe the 
characteristic sound of breath [7]. Auscultation is noninvasive and 
inexpensive, making it easy to observe various lung diseases. Respira-
tory sounds measured by auscultation were divided into normal and 
adventitious respiratory sounds. Since adventitious sounds are distin-
guished from normal sounds, they are useful for diagnosing diseases. As 
shown in Table 1, a normal sound is attained at 100–200 Hz, and when 
sensitive, it is detected at a frequency of up to 800 Hz. Adventitious 
sounds were divided into wheezes and crackles. Wheezes are common in 
patients with airway obstructions. Typically, COPD and asthma detect 
breathing at a frequency of 400 Hz. Crackles are divided into subtle 
sounds according to their pitch and timing. It is characterized by the 
sound of bubbles bursting discontinuously and is distributed in the fre-
quency band of 60–2000 Hz. The representative diseases include inter-
stitial lung disease (ILD), bronchiectasis, and pneumonia [8,9]. 

Lung auscultation is considerably influenced by the doctor’s 
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experience, patient’s condition, external environment, and stethoscope 
frequency [10]. The frequency of respiratory sounds measured by the 
stethoscope system is 100–2000 Hz, whereas humans are sensitive only 
to frequencies of 1000–2000 Hz [11]. Low-quality breath sounds 
complicate symptom monitoring and diagnosis or lead to misdiagnosis 
[12]. In addition, it is difficult to evaluate breath patterns during 
auscultation because a doctor’s experience with abnormal sounds is very 
important. There is a limit to finding abnormal breathing characteristics 
if the patterns are complex or many. Several systems have been used to 
solve problems, but these systems have limitations [13,14]. Therefore, 
this study classified breathing patterns after preprocessing using a 
bandpass filter to solve the nonlinear pattern problem and misdiagnosis 
of lung diseases. 

Deep learning research that classifies biometric data using an intel-
ligent stethoscope or mobile device to classify lung diseases is being 
actively developed. Machine learning and artificial intelligence based on 
deep learning architecture have been applied in several fields, such as 
cough sound, lung auscultation, lung chest radiography [15], and 
COVID-19 [16,17]. Artificial intelligence technology can be analyzed 
and utilized more accurately with a new approach to respiratory sounds 
[18]. Deep learning can objectively compensate for inaccurate auscul-
tation by clinicians and help in the rapid diagnosis and appropriate 
treatment of lung diseases [19]. Related works have automatically 
classified respiratory sounds based on deep learning. As a related sound 
classification methodology, convolutional neural network (CNN), such 
as VGGish, L3-Net [20], and transfer learning, is widely used in lung 
disease classification research. Shi et al. [10] classified lung diseases 
using transfer learning-based VGGish and BiGRU. The temporal char-
acteristics of respiration were considered using BiGRU. Ponomarchuk 
et al. [21] classified COVID-19 symptoms by combining VGGish 
embedding and ensemble models (gradient boosting, lightweight CNN, 
and logistic regression) using speech, breathing, and coughing signals. 
Altan et al. [22] proposed a methodology for extracting features by 
decomposing the time–frequency bands using the Hilbert–Huang 
transform composed of empirical mode decomposition and Hilbert 
transform. They attained the highest COPD identification performance 
by using the proposed deep belief networks. Choi et al. [23] proposed a 
lightweight CNN-GRU skip connection combining a CNN and BiGRU by 
collecting respiratory sounds from outpatients and inpatients using 
Littmann 3200. Through feature stacking, the characteristics of respi-
ratory sounds were emphasized, and a high performance of 92.3 % was 
confirmed. 

The previous study aimed to classify the respiratory sound using 
original VGGish optimized for audio embedding to reflect the charac-
teristics of the respiratory sound. A performance improvement model 
reflecting respiratory sound characteristics was proposed using BiGRU, 

and an ensemble model using machine learning was proposed. However, 
the types of diseases classified in previous studies (normal, asthma, 
pneumonia, cough, etc.) were few, and there was a limitation that it was 
not possible to confirm which characteristics affected classification 
performance. Moreover, owing to the nature of the algorithm, the pos-
sibility of interpreting detailed information regarding the analysis re-
sults in the form of a black box is insufficient [18]. This study 
emphasized the characteristics of respiratory sound by applying the light 
attention connected module. We analyzed the respiratory sound classi-
fication results using Grad-CAM and interpreted the section where 
abnormal breathing appeared. Related works suggested a smaller 
number of layers and mentioned weight reduction; we confirmed the 
advantages of the model by presenting a lightweight model even though 
it is a deep structure convolution. 

Therefore, in this study, we modified VGGish among audio signal- 
based transfer learning methods to classify lung diseases and sug-
gested the possibility of interpreting the results. A respiratory specialist 
collected data by measuring the respiratory sounds using a Littmann 
3200 stethoscope. The collected data were provided directly after la-
beling for the normal and five diseases. For preprocessing, the necessary 
band was obtained through a bandpass filter to remove noises of respi-
ratory sounds. Respiratory information was extracted with the log-Mel 
spectrogram MFCC features. We classified high performance by 
applying a light attention connected module to the improved VGGish 
model proposed. Accordingly, the contributions of this study are as 
follows.  

• We constructed the architecture of a lightweight model by reducing 
weights and minimizing parameters.  

• The light attention connected module emphasized the characteristic 
information of respiratory sounds and improved the model 
performance.  

• We analyzed and interpreted significant respiratory patterns for the 
causes of disease classification and the results of attention applica-
tion. The clinician checked for the symptoms of inspiration or expi-
ration within 5 s of respiration. As a decision-making aid for lung 
disease diagnosis, it bridges the medical gap. 

The remainder of this paper is organized as follows. Section 2 de-
scribes previous studies on lung disease classification, attention, and 
eXplainable artificial intelligence (XAI) using deep learning. Section 3 
presents a model that combines the improved VGGish, and attention 
proposed in this study and describes the data collection, noise removal, 
and feature extraction methods. Section 4 describes the experimental 
environment and evaluation indicators, and Section 5 describes the 
experiment and presents comparisons and analyses of the experimental 
results. Finally, Section 6 provides the discussion, and Section 7 presents 
the conclusions, limitations, and prospects of the study. 

2. Related work 

2.1. Deep learning with CNN 

Deep learning using CNNs has made great strides in computer vision. 
ConvNet is being continuously studied prominently for computer vision 
and audio processing analysis, and it has recently been widely applied to 
time series analysis. ConvNet improves the generalization performance 
of time series analysis through many hidden sides, transfer learning, and 
significant feature learning of feature activation maps [24]. Studies are 
being conducted to classify lung diseases using respiratory sounds, 
which are one of the bio-signals. Lung disease classification research has 
focused on the collection of publicly available datasets and real-world 
respiratory sounds, and several attempts have been made to use ma-
chine learning and deep learning architectures. Additionally, research 
on the development of weight reduction is being actively conducted to 
increase learning efficiency and reduce the parameters of the model 

Table 1 
Characteristics of respiratory sounds: Normal, Wheeze, and Crackle [8,9].  

Type Continuous Frequency Pitch Cause Disease 

Normal – 100–200 
Hz 

High 
(>800 
Hz) 

– Asthma, COPD 

Wheeze O 400 Hz High 
(>400 
Hz) 

Airway 
narrowing, 
airflow 
limitation 

Asthma, COPD 

Crackle X 60–2000 
Hz 

Low 
(<350 
Hz) 

Explosive 
opening of 
small 
airways 
(fine 
crackle) and 
air bubbles 
in large 
bronchi 
(coarse 
crackle) 

ILD, 
Bronchiectasis, 
Pneumonia  
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used. Gupta et al. [25] extracted the lung sounds from a Littmann 3200 
stethoscope using Gammatonegram and converted them into images. 
The classification model was presented for the extracted features using 
the transfer learning of pre-trained AlexNet, GoogleNet, ResNet50, and 
Inception v3. Asatani et al. [26] presented a classification model using 
the respiratory dataset from the International Conference on Biomedical 
and Health Informatics (ICBHI). A short-time Fourier transform (STFT) 
was applied to the signal to extract spectrograms for time and frequency, 
and a convolutional recurrent neural network was used. The perfor-
mance achieved 63 % and 83 % sensitivity and specificity, respectively. 
Shuvo et al. [27] presented a respiratory disease classification model 
using a lightweight CNN. A hybrid-scalogram feature extraction method 
was designed using empirical mode decomposition and continuous 
wavelet transform, and the accuracy of three and six types was 98.2 % 
and 98.72 %, respectively. Kranthi Kumar et al. [28] proposed a light-
weight CNN using Enhanced-GFCC and Modified-MFCC techniques for 
SARS-CoV-2/COVID-19 approved at Cambridge University. The accu-
racy was improved by 4–10 % to 91 % compared to the basic MFCC. 

A study on the classification of respiratory sounds related to COPD is 
also in progress. Altan et al. [29] analyzed COPD lung sounds of 12 
channels with five severities of RespiratoryDatabase@TR. COPD is 
divided into five symptoms (risk, mild, moderate, severe, and very se-
vere). They measured auscultation sounds from the anterior (chest) and 
posterior (back) and proposed a quantization analysis of the 3D space 
using three consecutive signal points. They classified COPD with a 
classification performance of 95.84 %, 93.34 %, and 93.65 % for accu-
racy, sensitivity, and specificity, respectively. Then, they [30] proposed 
a methodology for extracting lung sound features by applying 3D 
second-order difference using a deep extreme learning machine classi-
fier (deep ELM). The performance of the model achieved accuracy, 
sensitivity, and specificity for 94.31 %, 94.28 %, and 98.76 %, respec-
tively. The limitation of the study was the difficulty in diagnosing 
because the general severity and relationship between smoking were 
confused with a small number of datasets. 

2.2. Attention 

In this study, the performance of the model was improved by 
emphasizing the characteristic information of the respiratory sound, 
excluding the specific feature selection step. Attention intensively learns 
important parts of feature information when training a deep learning 
model. Representative attention utilizes squeeze-and-excitation net-
works (SENet), a convolutional block attention module (CBAM), and an 
ECA-Net. Attention is applied to the multiple layers of the classification 
model to emphasize and learn feature information. Qayyum et al. [31] 
classified the COVID X-rays using SENet and depthwise separable 
convolution. Compared with transfer learning, they showed an accuracy 
of more than 96.17 %. Dar et al. [13] extracted the main features of 
respiratory sounds using the bark frequency cepstral coefficient, spectral 
flux, and spectral centroid. They proposed a hierarchical attention 
network structure that combined a CNN and LSTM. The model showed 
an accuracy of 92.3 %. Chen et al. [32] proposed a squeeze-and- 
excitation CNN for lung cancer classification. Adding only two SE 
blocks to the classification model improved the performance by 1 %~2 
% compared to the baseline, and the efficiency of attention was 
demonstrated. However, there was a limitation that more than 85 % of 
the performance was required to detect benign and malignant tumors. 
Related studies have used simple attention mechanisms or SE blocks. 
Therefore, we propose a light attention connected module using ECA- 
Net. 

2.3. Interpretation with Grad-CAM 

XAI is an explanatory artificial intelligence model that can help 
interpret the black box. Most previous XAI studies have applied Grad- 
CAM to chest X-rays for visual analysis and interpretation. Haghanifar 

et al. [33] presented a COVID-CXNet model to classify published COVID- 
19 chest radiography images. The model obtained an accuracy of 87.88 
%, and the classification results for COVID-19 and pneumonia were 
visually confirmed using Grad-CAM. Zhang et al. [34] converted the 
voice data of the 2019 TAU Urban Acoustic Scenes into a Mel spectro-
gram, classified the voice using ResNet20, and applied Grad-CAM to 
interpret the results. CAM was applied and analyzed to the Mel spec-
trogram and MFCC, which converts 1D-based sound into a 2D image. 
The characteristics of the Mel spectrogram were efficiently analyzed to 
visualize the CNN. XAI utilizing Grad-CAM has been extensively studied 
only in X-rays; studies related to lung sounds are incomplete and require 
more research. This study presents a classification analysis of respiration 
information by applying Grad-CAM to a log-Mel spectrogram MFCC 
feature information for respiratory sounds. 

3. Materials and methods 

This section describes the architecture of data collection and pre-
processing, feature extraction, attention, the proposed method, and 
interpretation based on Fig. 1. 

3.1. Data - clinical dataset 

Respiratory sounds were measured in outpatients and inpatients 
(average age, 66 years; height, 160 cm; weight, 60.5 kg) aged ≥ 19 years 
who visited the respiratory medicine department. The clinician used 
chest X-rays and CTs to label the patient’s lung disease. The consent of 
patients and the approval of the Institutional Review Board of the 
Human Research Ethics Committee were obtained (Approval No. 
KC20ONSI0774). The respiration was measured at four sites by a res-
piratory specialist using a Littman 3200 stethoscope. The specialist 
measured the respiratory sounds within 1 min. The respiratory sounds 
were measured from the right and left sides, respectively, in the upper 
and lower parts of the anterior region (chest) and the posterior region 
(back). The data collected in this study were classified into normal, 
crackle, and wheeze, and the respiratory sounds were measured for 
patients who satisfied the conditions in Table 2. As shown in Table 2, 
wheezing consists of COPD and asthma. Auscultation of symptoms such 
as cough, sputum, and shortness of breath appear. The crackle sounds 
were collected from the patients with the disease using chest X-rays and 
CTs. The respiratory sounds for ILD, bronchiectasis, and pneumonia 
were collected by auscultating crackles at the lesion site. 

3.2. Preprocessing & feature extraction (stage 1) 

3.2.1. Segmentation of respiratory sounds 
When measuring respiration, the protocol was set at intervals of 2–3 

s for inhalation and 1–2 s for exhalation. We collected experts’ opinions 
and constructed 1,021 datasets by dividing a total of 126 respiratory 
sounds within 1 min into 5 s. As listed in Table 3, respiratory sounds 
were used to train and evaluate the model. The sampling rate of respi-
ratory sound was sampled at 4000 Hz. A sampling at 4000 Hz also had 
the effect of removing ambient noise [22]. 

3.2.2. Bandpass filter 
Respiratory sounds generate noise during measurement, depending 

on the treatment environment and time. In this study, noises, such as 
skin friction generated during measurement, were removed using a 
bandpass filter, as shown in Fig. 2. We applied the 5th-order Butterworth 
filter and the frequency band of 250–1800 Hz to the respiratory sound 
and verified the experimental performance by comparing each pass filter 
pretreatment in the experimental results in Section 5. 

3.2.3. Log-Mel spectrogram MFCC 
This study converted 1D respiration signals into 2D time–frequency 

log-Mel spectrogram mel frequency cepstral coefficient (MFCC) for 
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feature extraction and classification model input. Log-Mel spectrogram 
was used as an advantage of time–frequency characteristics that re-
flected respiratory sounds of low and high frequencies compared to 
STFT, wavelet transform, and Stockwell transform [35]. Log-Mel spec-
trogram is the information obtained by converting the spectrogram to 
the Mel-scale and shows good performance in audio and respiratory 
sound classification [6]. The MFCC is a method for extracting the unit 
energy of an input signal. The energy coefficient of the characteristic 
frequency section was obtained by performing a discrete cosine 

transform (DCT) on the log-Mel spectrogram. Therefore, in this study, 
the log-Mel spectrogram MFCC [23] was used as an input for the pro-
posed model. The MFCC generation process shown in Fig. 2 is as follows.  

1) Respiratory sounds are continuously input and passed through a 
window filter (w(n)) that divides the signal into short intervals. N is 
the length of the window function and Eq. (1) is as follows: 

w(n) = 0.54 − 0.46cos
(

2πn
N − 1

)

0 ≤ n ≤ N (1)    

2) After passing through the window filter, a spectrogram of the signal- 
frequency band was obtained using STFT. The log-Mel spectrogram 
is a spectrogram of the time–frequency band in which log trans-
formation is performed after calculating the spectrogram using the 
Mel filter bank in Eq. (2). 

fmel = 2595log10(1 + f/700) (2)    

3) MFCC was converted to a log-Mel spectrogram through DCT [36]. A 
total of 313 frames overlapped by 75 %, each with a window length 

Fig. 1. Architecture of the proposed model.  

Table 2 
Information of respiratory sound and measurement conditions.  

Symptom Normal Wheeze Crackle 

Disease Normal Asthma COPD ILD Pneumonia Bronchiectasis 

Condition Normal 
breathing 

New or worsening 
symptoms, such as 
cough, phlegm, or 
shortness of 
breath 

Auscultation of crackles at 
the lesion site 

New lesions on chest X-rays or CT one 
week before enrollment 

Auscultation of crackles in the area of 
bronchiectasis on chest imaging 

Auscultation of crackles at the lesion site 

Number of 
data 

12 23 20 26 20 25  

Table 3 
Segmentation of the clinical dataset.  

Clinical Dataset 

Symptom Disease Total 

Normal Normal 114 
Wheeze COPD 160 

Asthma 300 
Crackle Pneumonia 200 

Bronchiectasis 160 
Interstitial lung disease 203 

Total 1021  
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of 64 ms. The MFCC coefficient, window size, and hop length were 
set to 13, 256, and 64, respectively in Table 4. 

3.3. Attention modules 

3.3.1. Squeeze-and-excitation networks (SENet) 
SENet is a module that improves performance after calculating the 

weights between channels using squeeze and excitation. SE block com-

presses and converts input (X ∈ RH′
×W′

×C′

) into the feature map 
(U ∈ RH×W×C). Squeeze (zc) transforms the H × W × C feature map into 
one-dimensional (1)1 × 1 × C for each channel through a global average 
pooling operation in Eq. (3). Excitation (S) is weighted after 1 × 1 × C 
normalization generated from squeeze Eq. (4). This activates the 
squeeze with the ReLU function after calculating the weight 
(W1 ∈ R(Cr)×C) and the fully connected product. After the activated value 
is multiplied by the weight (W2 ∈ RC×(C

r)) and the fully connected 
product, it is activated with a sigmoid function to obtain the excitation 
[37]. Since the hyperparameter does not increase significantly, there is 
an advantage that the amount of calculation of the parameter is small. 
However, although dimension reduction is performed in the fully con-
nected layer, as shown in Fig. 3(a), it is reduced by a ratio equal to the 
reduction ratio, which breaks the direct correspondence between the 
channels and weights.  

(1) Squeeze: 

zc =
1

H × W

∑H

i=1

∑W

j=1
uc(i, j),U = [u1, u2,⋯, uc] (3)    

(2) Excitation: 

S = sigmoid(g(z,W) ) = sigmoid(W2ReLU(W1Z)) (4)  

3.3.2. Efficient channel attention (ECA-Net) 
Wang et al. proposed ECA-Net as an attention module to improve the 

problem occurring in SENet [38]. Channel attention is used similarly to 
reduce the complexity of the model. Fig. 3(b) and Eq. (5) indicate that 
ECA-Net (ecaω) uses GAP (g(X)) and conv1D with kernel size (k) as a fully 
connected layer to lower complexity instead of dimension reduction, 
unlike SENet. 

g(X) =
1

H × W

∑H,W

i=1,j=1
Xi,j (5)  

ecaω = σ(conv1Dk(g(X))

ECA-Net has the advantage of considering local cross-channel in-
teractions and designing a lightweight model. To reduce the complexity 
of cross-channel interaction and maintain performance, it is necessary to 
set appropriate variables. The mapping function (ϕ) of the channel (C), 
including kernel size (k) and interaction, is given by Eq. (6). 

C = ϕ(k) = 2(γ− k− b) (6) 

The mapping function of k and C has limitations when characterizing 
the coverage of the interaction as a linear function. C is a nonlinear 
function; when converted into a function for C, it is given by Eq. (7). |t|odd 
is the nearest odd number of t, and γ and b are set to 2 and 1, respec-
tively, in all experiments. 

k = φ(C) =
⃒
⃒
⃒
⃒
log2(C)

γ
+

b
γ

⃒
⃒
⃒
⃒

odd
(7)  

3.4. Proposed models (stage 2) 

3.4.1. Modified VGGish 
In this study, a respiratory sound classification model was designed 

based on VGGish, which is widely applied to sound classification. 
VGGish is a deep CNN proposed by Hershey et al. [39] based on the 
VGGNet structure during transfer learning in computer vision. VGGish 
includes a deep audio embedding mode and is the proposed method for 
classifying audio from YouTube videos. Pre-trained VGGish is often used 
for audio classification [40]. A characteristic of the model structure is 
that several feature extractions are performed using the four block 
structures combined by convolution and max pooling. It also includes 

Fig. 2. Signal to log-Mel spectrogram MFCC.  

Table 4 
Parameters of the log-Mel spectrogram MFCC.  

Parameter Sampling 
rate 

FFT 
Window 
size 

Hop 
length 

Number of 
Mel bins 

Number of 
MFCC 

Value 4000 Hz 256 64 64 13  
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the structure of a fully connected layer that performs as a classifier [41]. 
In this study, to improve model performance and apply the XAI meth-
odology, the flattened layer and max pooling of VGGish were converted 
to global average pooling. This reduces the number of parameters that 
require model calculation and effectively prevents overfitting. In addi-
tion, the baseline is improved by applying global average pooing, Lea-
kyReLU, batch normalization, and spatial dropout. A depthwise 
separable convolution was used to improve the model with deeper layers 
and reduce the amount of computation. The structure is a convolution 
constructed by merging a depthwise structure that separates the feature 
map for each channel and performs an operation and a 1 × 1 pointwise 
convolution structure that merges multiple channels into one new 
channel [23]. 

3.4.2. Light attention connected module 
We proposed a structure that combines ECA-Net and depthwise 

separable convolution for the light attention connected module (LACM). 
This partly cites the block structure combining the SENet module of the 
inverted residual block in the MobileNetV3 [42]. Pseudo codes are 
summarized in Table 5. The input features (Inputlogmelmfcc) are passed 
through a depthwise separable convolution. By inputting the obtained 
Xdepth value into ECA-Net, attention is calculated. (Algorithm 1., 1–2) 
ECA-Net extracts attention through the input (Xdepth) and output (X′)

product by global average pooling, conv1d, and sigmoid. (Algorithm 1., 
3–7) The extracted value concatenates attention by combining 
Inputlogmelmfcc and X′

eca. As shown in Fig. 4(d), it is a connected structure 
and is transmitted to prevent loss of function and maintain information. 

The performance of the proposed model was compared with the results 
obtained using the SENet and CBAM in Section 5. 

3.4.3. Grad-CAM (stage 3) 
The class activation map (CAM) is an explainable AI model proposed 

by Zhou et al. [43] to interpret model prediction and classification re-
sults. This weakly supervised learning method computes weights be-
tween convolution and target classes. wc

k is the kth feature map that 
predicts the c class, and the CAM calculation is expressed as follows: 

Lc
CAM =

∑

k
wc

kf k (8) 

Since the CAM focuses on pixel label information rather than training 
image information, it visually interprets the feature information of the 
last layer. However, because the information is lost in the flattened 
layer, Selvaraju proposed Grad-CAM [44]. It is a visualization method-
ology that generalizes CAM for various CNN architectures by calculating 
the weight of the feature map, which can explain the class as a gradient. 
The calculation process of Grad-CAM, given by Eq. (9), is expressed as 
follows: 

1. Calculate ac
k that passed global average pooling (1

z
∑

i
∑

j) by differ-
entiating the k channel feature map (Ak ∈ Rμ*ν) for the target class 
with the predicted class score (yc) for class c(∂yc

∂Ak
ij
). Eq. (10) is as 

follows: 

Lc
Grad− CAM ∈ Rμ*ν (9)  

ac
k =

1
z
∑

i

∑

j

∂yc

∂Ak
ij

(10)   

2. Multiply ac
k using the feature map (Ak) to calculate the weight ob-

tained from the activation map and apply the ReLU. The ReLU is used 
to identify only the significant features that positively affect class c. 
Eq. (11) is as follows: 

Lc
Grad− CAM = ReLU

(
∑

k
ac

kAk

)

(11) 

Therefore, in Subsection 5.4, we analyzed the disease group 

Fig. 3. Attention modules: (a) SENet and (b) ECA-Net.  

Table 5 
Pseudo code for light attention connected module.  

Algorithm 1. Pseudo code for light attention connected module. 

Input: Log-Mel Spectrogram MFCC Inputlogmelmfcc 

Output: Attention network LACMFeature 

1 Lightweight Attention Network 
2 Xdepth← Depthwise Separable Conv2D (Inputlogmelmfcc) 
3 X′

eca←ECANet
(
Xdepth

)

4 X′←Globalaveragepooling
(
Xdepth

)

5 X′←Conv1D(X′)

6 X′←Sigmoid(X′)

7 X′
eca← Multiply ([X′, Xdepth]) 

8 LACMFeature = Concatenate (Inputlogmelmfcc, X′
eca)
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classification results using Grad-CAM and confirmed the effect of 
attention. 

4. Experiments 

4.1. Hyperparameter settings 

The experimental setup was implemented using Python 3.8 and 
TensorFlow 2.4.0 on a computer with an AMD Ryzen 7 2700X (CPU), 64 
GB RAM, and GeForce 1080TI (GPU). The loss and optimization 

functions used cross entropy and Adam optimizer, respectively. The 
hyperparameters in Table 6 were set to a batch size of 8, epoch 500, and 
learning rate 3e-4-3e-5. The model was improved by adjusting the 
learning rate using a learning rate scheduler. For the validation of the 
dataset, 5-fold cross validation was used. All comparison models were 
applied equally to the hyperparameters. 

4.2. Model structure 

We constructed the classification model using the structure in 
Table 7. The proposed model was trained using an input of 13 × 313 × 1 
and parameters of 802,194. 

4.3. Evaluations 

For the model evaluation, five performance indicators were used: 
accuracy, precision, sensitivity (12), specificity (13), f1-score, and 
balanced accuracy (14) [45]. 

Sensitivity(SE) =
TP

TP + FN
(12) 

Fig. 4. Models with (a) VGGish, (b) baseline, (c) proposed model, and (d) light attention connected module.  

Table 6 
Hyperparameter settings.  

Parameter Value 

Spatial dropout rate 0.2 
Learning rate 3e-4-3e-5 (ReduceLR On Plateau) 
Optimizer Adam 
Batch size 8 
Epoch 500 
Cross validation 5  
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Specificity(SP) =
TN

TN + FP
(13)  

Balancedaccuracy =
Sensitivity + Specificity

2
(14)  

5. Results 

5.1. Results of the baseline and proposed models 

Table 8 shows the performance results of the baseline and proposed 
models. As shown in Fig. 4(c), the proposed model was designed as a 
lightweight model using the LACM of ECA-Net and depthwise separable 
convolution in the baseline. The experiment was conducted using the 
experiment 5-fold cross validation, and the model performance was the 
average (±SD) value of cross validation. The proposed model showed 
high performance, with an accuracy of 92.56 %, precision of 92.81 %, 
sensitivity of 92.22 %, specificity of 98.50 %, f1-score of 92.29 %, and 
balanced accuracy of 95.4 %. In particular, sensitivity and specificity are 
widely used as the most important indicators in disease classification. 
Sensitivity refers to predicting a disease positively, and specificity is the 
prediction ratio of the absence of a disease when there is no actual 
disease. The better the performance evaluation, the better the reliability 
of the model. Compared with the baseline, the performance of the 
proposed model improved in terms of the indicators by 3.33 %, 3.45 %, 
3.21 %, 0.66 %, 3.32 %, and 2 %, respectively. 

We also analyzed the inference time of the results by citing Choe 
et al. [46]. The average inference time for 50 times was an average of 
387 MS, a minimum of 606 MS, and a maximum of 960 MS, respectively. 
The computation time was 21 MS and 30 MS for the baseline and pro-
posed models, respectively, for one training based on 500 iterations. The 
inference time was 508 MS and 706 MS for the baseline and the pro-
posed models, respectively. Although there was a 226 MS (0.3 s) dif-
ference from the baseline, the reasoning speed was faster than 1 s. The 
number of parameters was reduced by 80 % by applying depthwise 
separable convolution, and the lightweight effect was confirmed. When 

considering flops, the proposed model showed a lower amount of 
computation. 

5.2. Confusion matrix of baseline and proposed models 

Table 9 and Fig. 5 present the confusion matrix result for the baseline 
and proposed models. The result by the proposed model improved the 
score for all diseases. In particular, in the case of pneumonia with 
symptoms similar to COVID-19, pneumonia was partially confused with 
the normal and ILD symptoms at the baseline. However, the proposed 
model was classified as having high performance, as it could distinguish 
normal respiratory sounds successfully. Similarly, by classifying bron-
chiectasis, normal, and pneumonia diseases, the possibility of providing 
information on the early diagnosis of crackle symptoms to medical staff 
was confirmed based on the results. 

5.3. Interpretation of lung disease with XAI (Grad-CAM) 

We presented the visualization results of Grad-CAM to explain the 
evaluation of the proposed model. This study used Grad-CAM as the 
analysis model because there was no change in the model structure and 
no loss in the classification result. We also tried to ease the visualization 
with the log-Mel spectrogram and MFCC. The experimental results 
confirmed that information was concentrated in the activation map of 
the feature when attention was used. For each model, it was possible to 
visually identify the characteristic points at which diseases were 
classified. 

At the time of data collection, explanatory power was added to the 
XAI results by collecting respiratory sounds, including the positions to 
the right and left sides of the anterior (chest) and posterior (back), 
respectively, in Fig. 6. Specialists measured it at four sites. We could 
utilize the information on labeling the chest position for respiratory 
sounds with lung disease. Practically, we have received opinions from 
specialists that the wheezing sounds of COPD and asthma can be heard 
in both lung fields and that the crackles can be different at the locations 
of lung lesions. Therefore, we have incorporated expert opinion into our 
interpretation. 

As shown in Fig. 7(a), we can be confirmed that a constant respira-
tory sound is maintained and intensively learned. Normal sounds are 
heard during inspiration and early expiration [48]. This section corre-
sponds to one cycle of inhalation and exhalation and can be considered a 
section of normal sound. Clinicians directly identified the intervals for 
disease judgment. 

In the case of pneumonia, the phenomenon of pitch appeared directly 
in Grad-CAM and was compared with normal. We intensively visualized 
the bubble bursting in the breathing sound in the lower right posterior 
chest (RLL), and the predictive power was 0.999. Bronchiectasis and ILD 
at the right anterior chest (RUL) location were visually confirmed by 
bubble bursting or rough crackling. The clinician determined that the 
respiratory sounds were heard in the second area (exhalation) of two 
diseases but confirmed that an accurate diagnosis was needed using X- 
rays or CTs. CBAM and SENet demonstrated the accuracy of the pro-
posed model by showing that Bronchiectasis and ILD symptoms were 
incorrectly predicted as pneumonia. CBAM and SENet predicted more 
than 58 % probability, and both mispredicted other diseases, as shown 
in Fig. 7(b). 

Failure to diagnose wheezing early can lead to misdiagnosis or dis-
ease progression, which can have serious consequences [48]. In COPD 
and asthma, air blows occur owing to the narrowing of the airways, and 
it has been confirmed that the phenomenon mainly occurs during 
exhalation, characterized by a whistling sound. COPD showed abnormal 
symptoms in the left anterior chest (LUL), and asthma showed abnormal 
symptoms in the right posterior chest (RLL). Clinicians detected respi-
ratory sounds similar to cough or dyspnea patterns, as shown in Fig. 7 
(c). They confirmed that both diseases had high-pitched asthma and 
COPD symptoms. Therefore, by providing interpretive power in the 

Table 7 
Details of the model structure.  

Layer Output size Params 

Input (None, 13, 313, 1) – 
Conv2D (3 × 3, 64) (None, 13, 313, 64) 640 
Max pooling / Spatial dropout (rate = 0.2) (None, 13, 156, 64) 256 
LACM 1(3 × 3, 128) (None, 13, 156, 192) 9,412 
Depthwise separable conv2D (3 × 3, 256) (None, 13, 156, 256) 52,160 
LACM 2 (3 × 3, 256) (None, 13, 156, 512) 69,124 
Max pooling / Spatial dropout (rate = 0.2) (None, 6, 78, 512) – 
Depthwise separable conv2D (3 × 3, 512) (None, 6, 78, 512) 269,312 
LACM 3 (3 × 3, 512) (None, 6, 78, 1024) 269,316 
Global average pooling (None, 1024) – 
Dense layer (None, 128) 131,200 
SoftMax (None, 6) 774 
Total number of parameters  802,194  

Table 8 
Comparison of the baseline and proposed models (%).  

Evaluation Baseline model Proposed model Improvement 

Accuracy 89.23(±2.62) 92.56(±1.4) 3.33 
Precision 89.36(±2.86) 92.81(±0.86) 3.45 
Sensitivity 89.01(±2.54) 92.22(±1.65) 3.21 
Specificity 97.84(±0.52) 98.5(±0.3) 0.66 
F1-score 88.97(±2.63) 92.29(±1.33) 3.32 
Balanced accuracy 93.4(±1.53) 95.4(±0.97) 2 
Parameters 4,573,062 802,194 − 80 
Computation time (MS) 21 30 – 
Inference time (MS) 508 706 – 
FLOPS (billion) 1.9 1.0   
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model, COPD, a significant cause of death at an early stage, can be 
diagnosed early. 

5.4. Comparison of attention models 

Table 10 compares the experimental results with those of the pro-
posed model’s CBAM, SENet, and ECA-Net. We compared and analyzed 
the model’s performance according to attention. As shown in Table 10, 
the no-attention model achieved an accuracy of 89.81 %, precision of 
90.01 %, sensitivity of 89.42 %, specificity of 97.95 %, f1-score of 89.52 

%, and balanced accuracy of 93.38 %. The CBAM is an attention module 
that emphasizes features using channel and spatial attention [49]. The 
results using CBAM showed an accuracy of 78.05 %, precision of 78.20 
%, sensitivity of 77.16 %, specificity of 95.58 %, f1-score of 77.29 %, and 
balanced accuracy of 86.37 %. CBAM performed worse than the base-
line; therefore, there was no effect on attention. The results using SENet 
showed an accuracy of 90.21 %, precision of 90.17 %, sensitivity of 
89.81 %, specificity of 98.03 %, f1-score of 89.86 %, and balanced ac-
curacy of 93.92 %. CBAM and SENet either mispredicted respiratory 
sounds or had poor predictive power, as shown in Fig. 7. 

We compared the model to a previous study using the same Littmann 
3200 data set. Choi et al. [23] emphasized the respiratory sound infor-
mation using feature stacking, but this study emphasized the features of 
feature information using LACM based on ECA-Net. As shown in Fig. 8, 
compared to the previous study, the accuracy was 0.3 %, precision 0.81 
%, sensitivity 0.11 %, and f1-score improved by 0.4 %. We have 
confirmed the model’s strength by reducing standard deviations 
compared to previous studies. 

5.5. Comparison of pass filter and augmentation 

5.5.1. Result of pass filter 
Table 11 compares the performance of the models according to noise 

removal. The bandpass, lowpass, and highpass filters were analyzed, and 
Fig. 9 shows the result of applying the filters. For the lowpass filter, 
respiratory sounds in the 250 Hz or lower band were used, and for the 
highpass filter, 250 Hz or higher was used. Accordingly, the lowpass 
filter obtained an accuracy of 80.8 %, precision of 80.41 %, sensitivity of 

Table 9 
Result of the baseline and proposed models for the confusion matrix score (%).  

Baseline model Proposed model 

Class 6 Precision SE SP F1-score Class 6 Precision SE SP F1-score 

Bronchiectasis  86.04  85.5  96.46  85.4 Bronchiectasis  89.74  91.5  97.32  90.43 
COPD  91.82  83.75  98.61  87.5 COPD  96.27  87.5  99.3  91.4 
ILD  92.34  94.58  98.04  93.44 ILD  93.5  98.02  98.29  95.7 
Normal  86.54  87.71  98.24  86.88 Normal  90.15  91.26  98.68  90.39 
Pneumonia  85.59  91.25  96.99  88.13 Pneumonia  90.44  89.38  98.14  89.65 
Asthma  93.82  91.26  98.69  92.5 Asthma  96.78  95.64  99.28  96.18 
Average  89.36  89.01  97.84  88.97 Average  92.81  92.22  98.5  92.29  

Fig. 5. Confusion matrix with (a) baseline and (b) proposed model.  

Fig. 6. Respiration measurement location: Both left and right of (a) Anterior 
upper and (b) Posterior lower [47]. 
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79.83 %, specificity of 96.15 %, f1-score of 79.87 %, and balanced ac-
curacy of 87.99 %. The highpass filter showed an accuracy of 91.28 %, 
precision of 91.67 %, sensitivity of 90.91 %, specificity of 98.24 %, f1- 
score of 91.07 %, and balanced accuracy of 94.57 %. We achieved the 

highest performance, and the effect of pretreatment on the required 
band was confirmed. The required band was verified experimentally at 
250–1800 Hz. 

Fig. 7. Interpretation of disease with Grad-CAM (XAI): (a) Normal and crackle: pneumonia, (b) Crackle: bronchiectasis and interstitial lung disease, and (c) Wheeze: 
COPD and asthma. 
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5.5.2. Result of augmentations 
Table 12 and Fig. 10 present the results of applying augmentation of 

the time stretch and pitch. Time stretch is a method of increasing the 
data size by horizontally expanding the data. When converting a 1D 
respiratory sound into a 2D spectrogram, the speed is adjusted faster and 
slower without losing information. Pitch is a methodology in which the 
pitch of a sound is changed. Two types of time stretch and pitch were 
considered [36], and augmentation effectively improved the class 
imbalance in model performance [8]. However, the performance of the 
measurement data collected in this study decreased when the augmen-
tation was applied. According to the clinician’s advice, the opinion that 
the popping sound disappeared when listening to the auscultation sound 
was confirmed experimentally. The possibility of lung disease classifi-
cation was demonstrated with an accuracy of 89.81 %. 

5.6. Littmann stethoscope data utilization with data in brief 

We compared and analyzed the respiratory sound data from [50] to 
validate the lung disease classification model. The data were used to 
utilize the respiratory sounds measured by the same device (Littmann 
3200). The dataset was extracted from the stethoscope’s memory using 
stethoscope software, and the real lung sounds from Middle Eastern 

participants were recorded. The subjects were aged 21–90 years (mean 
± SD: 50.5, ± SD: 19.4). The dataset included sounds from seven dis-
eases (asthma, heart failure, pneumonia, bronchitis, pleural effusion, 
pulmonary fibrosis, and COPD) and normal sounds. As shown in 
Table 13, the open dataset used in this experiment was respiratory sound 
data for asthma, pneumonia, bronchitis, pulmonary fibrosis, and chronic 
obstructive disease. 

We summarized the performance results in comparison with those in 
[51] and [52] in Table 14. The methodology proposed achieved high 
performance with an accuracy of 86.37 % (± SD 4.02). In [51], the 
Mahalanobis distribution and ResNet were used, and in [52], the fea-
tures were extracted through empirical wavelet transformation, and the 
respiratory sounds were classified using a light gradient boosting ma-
chine (LGBM). The performance of the proposed methodology was the 
highest in the experimental results, and the effects of attention were 
confirmed. Moreover, Soni et al. [53] proposed a contrastive learning 
classification methodology using the dataset as an external validation 
set. Data was useful enough to be used for model validation. 

6. Discussion 

We devised a lung disease classification using a modified VGGish and 

Fig. 7. (continued). 

Table 10 
Comparison of attention with No-attention, CBAM, SENet, and proposed model (%).  

Attention Accuracy Precision Sensitivity Specificity F1-score Balanced accuracy 

No attention 89.81(±2.64) 90.01(±2.59) 89.42(±3.02) 97.95(±0.53) 89.52(±2.85) 93.69(±1.77) 
CBAM 78.05(±3.66) 78.2(±4.17) 77.16(±4.25) 95.58(±0.74) 77.29(±4.2) 86.37(±2.49) 
SENet 90.21(±2.73) 90.17(±2.92) 89.81(±2.86) 98.03(±0.54) 89.86(±2.9) 93.92(±1.7) 
Proposed model 92.56(±1.4) 92.81(±0.86) 92.22(±1.65) 98.5(±0.3) 92.29(±1.33) 95.36(±0.97) 
Choi et al. [23] 92.3(±2.5) 92.0(±2.6) 92.1(±2.6) 98.5(±0.5) 91. 9(±2.6) 95.3(±1.55)  
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LACM optimized for audio embedding. The main features were extrac-
ted using the log-Mel spectrogram MFCC of respiratory sounds collected 
using a smart stethoscope (Littmann 3200). Log-Mel spectrogram MFCC 
detects low and high-frequency bands of lung sounds––one of the ad-
vantages of the log-Mel spectrogram––and is suitable for learning data of 

respiratory sounds. MFCC also has the effect of removing noise through 
energy compression by DCT conversion. Combining the two methods, 
the main features of the appropriate band were extracted from the res-
piratory sound data collected in this study. We examined the visuali-
zation results of Grad-CAM to explain the evaluation of the proposed 

Fig. 8. Comparison of attention models: baseline, No-attention, CBAM, SENet, proposed model, and [23].  

Table 11 
Performance of pass filter: bandpass, lowpass, and highpass filters (%).  

Filter Accuracy Precision Sensitivity Specificity F1-score Balanced accuracy 

Bandpass filter (250 Hz-1800 Hz) 92.56(±1.4) 92.81(±0.86) 92.22(±1.65) 98.5(±0.3) 92.29(±1.33) 95.36(±0.97) 
Lowpass filter (<250 Hz) 80.8(±1.58) 80.41(±1.55) 79.83(±1.6) 96.15(±0.32) 79.87(±1.57) 87.99(±0.96) 
Highpass filter (>250 Hz) 91.28(±3.08) 91.67(±2.97) 90.91(±3.18) 98.24(±0.62) 91.07(±3.1) 94.57(±1.9)  

Fig. 9. Normal sound with pass filters: (a) non-pass filter, (b) bandpass filter, (c) lowpass filter, and (d) highpass filter.  
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classification model. The classification model intensively learns feature 
information using the improved VGGish and attention modules. The 
classification model transformed the CNN structure of VGGish into a 
depthwise separable convolution to learn the voice features of the log- 
Mel spectrogram MFCC. 

As the primary architecture of the model, the attention module is 
proposed to emphasize the characteristics of respiratory sounds. The 
attention module combines depthwise separable convolution and ECA- 
Net. The attention module takes advantage of ECA-Net’s lightweight 
design with lower complexity than SENet and CBAM. We tried to make 
the model lighter overall. As shown in Table 15, the performance of the 
proposed classification model obtained an accuracy of 92.56 %, preci-
sion of 92.81 %, sensitivity of 92.22 %, specificity of 98.50 %, f1-score of 
92.29 %, and balanced accuracy of 95.4 %. Compared to the previous 
study by Choi et al. [23], 6 class improved by 0.26 %, 0.81 %, 0.12 %, 
and 0.39 % in accuracy, precision, sensitivity, and f1-score, respectively. 
In addition, we included an experiment for 3 class and confirmed a 
performance improvement of 0.1 % and 0.3 % in precision and f1-score, 
respectively. We compared VGGish [39] and L3-Net optimized for audio 
embedding. The proposed model was obtained by modifying the VGGish 
structure, and an improvement in performance was demonstrated. When 
training two models, we changed the flattened layer to global average 
pooling. VGGish showed higher performance than L3-Net and was used 
in this study. Upon comparing the flops, the proposed model was found 
to be lighter. 

The superiority of the model was confirmed through various 
comparative experiments, such as experimental comparison between 
attention modules, preprocessing of the required band, and application 
of sound augmentation. We confirmed that the combination of bandpass 
filter preprocessing, no augmentation, and LACM showed the highest 
performance. In addition, an accuracy of 86.37 % or more was achieved 
using the public dataset. 

As for the limit of model performance, normal sound data had lower 

Table 12 
Performance of augmentation: time stretch and pitch (%).  

Augmentation Accuracy Precision Sensitivity Specificity F1-score Balanced accuracy 

Proposed model 92.56(±1.4) 92.81(±0.86) 92.22(±1.65) 98.5(±0.3) 92.29(±1.33) 95.36(±0.97) 
w/ Time stretch (0.7) 88.93(±3.52) 89.51(±3.17) 88.39(±3.7) 97.76(±0.71) 88.7(±3.55) 93.07(±2.20) 
w/ Time stretch (1.3) 89.81(±1.75) 89.96(±1.91) 89.68(±1.46) 97.95(±0.34) 89.69(±1.69) 93.81(±0.9) 
w/ pitch 88.64(±4.09) 88.87(±4.28) 88.38(±4.15) 97.72(±0.8) 88.46(±4.28) 93.05(±2.47)  

Fig. 10. Data augmentation: (a) non-augmentation, (b) time stretch (0.7), (c) time stretch (1.3), and (d) pitch.  

Table 13 
Lung sound of data [50].  

Disease Value 

Normal 339 
COPD 87 
Asthma 300 
Pneumonia 57 
Bronchitis 24 
Total 807  

Table 14 
Comparison with other models using the public dataset.  

Models Dataset Significance Accuracy (%) 

Park et al.  
[51] 

Littmann 3200 
stethoscope 

Mahalanobis / ResNet 80.57 

Tripathy et al. 
[52] 

EWT / LGBM 84.76 

Soni et al.  
[53] 

Contrastive learning 
external validation set 

69.1(AUC) 

Proposed 
Model 

Depthwise separable / 
LACM Attention 

86.37(±SD 
4.02)  

Table 15 
State-of-the-art models vis-a-vis the proposed model (%).  

Related works Models Dataset Accuracy Precision Sensitivity Specificity F1- 
score 

Flops 
(billion) 

Dataset class 

Park et al. [51] Mahalanobis / ResNet Littmann 3200 (Public 
dataset) 

4  80.57  –  –  –  –  – 
Tripathy et al. [52] EWT / LGBM 2  84.76  –  –  –  –  – 
Proposed model Depthwise separable / LACM 

Attention 
5  86.37  88.27  83.3  95.74  85.20  1.0 

Hershey et al. [39] VGGish Clinical dataset 6  76.89  77.48  75.77  95.35  75.83  2.9 
Arandjelovic et al.  

[20] 
L3-Net  76.69  76.77  75.81  95.32  75.89  2.5 

Choi et al. [23] CNN BiGRU  92.3  92.0  92.1  98.5  91.9  – 
3  94.6  93.3  91.8  96.8  92.5  – 

Proposed model Depthwise separable / LACM 
Attention 

6  92.56  92.81  92.22  98.5  92.29  1.0 
3  94.6  93.4  92.4  96.8  92.8   
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performance than other classes. At that time, there was a limit to the 
collection of respiratory sound data of normal people because of the 
COVID-19 outbreak. Because we were targeting patients with lung dis-
ease, the normal sounds were relatively insufficient. However, the 
model’s effectiveness was demonstrated by improving the classification 
performance of the low normal in the baseline and the performance 
improvement in the proposed model. Although there was a limit to 
securing patient data in the COVID-19 non-face-to-face situation, it 
presented an objective performance in lung disease classification. 

The high performance of the classification model guarantees the 
superiority of algorithm performance. However, AI models are prob-
lematic because they do not interpret the black box in predictive clas-
sification. In many cases, it was impossible to explain how the 
classification performance was reached. Despite the high performance of 
classification prediction, visualization of learned features and accurate 
detection of medical patterns within the black box were difficult [54]. AI 
judgment errors in the medical field are fatal to patient health [55]. 
Therefore, we focused on the classification performance of models for 
medical decision-making and supported and interpreted XAI to make it 
more clinician-trustworthy. Grad-CAM was used to show the contribu-
tion of identifying feature points and patterns in respiration. This study 
used Grad-CAM to explain how to classify lung diseases with high per-
formance. We used Grad-CAM to visualize normal sounds and patterns 
of five lung diseases, subsequently characterize the sections where 
abnormal sounds appear, and perform auxiliary analysis. In particular, 
the results mentioned in this study confirmed the phenomenon of 
cracking sounds and abnormal respiration for each of the five lung 
diseases. We received confirmation from the respiratory clinician 
regarding the experimental results and clinical opinions. 

The advantage of this study is that in the respiratory sound sample, 
XAI well detected the region that can be considered as the interval of 
disease judgment. Respiratory sounds confirmed that normal sounds 
maintain constant breathing. Bronchiectasis, pneumonia, and ILD 
symptoms detected respiratory abnormalities. COPD and asthma 
detected abnormal respiratory sounds (wheezing) in the high band 
during exhalation because of airway stenosis. Therefore, this study 
showed the advantage of being able to be used as an aid to determine 
inhalation, exhalation, abnormal respiratory sounds found in visual 
analysis, and disease prediction. However, there was still a limit to using 
it as a complete decision-making process. Depending on the patient’s 
condition, the lung field that can be diagnosed is different, and it is 
necessary to reflect some of the patient’s clinical information rather than 
XAI problems. Improvements are needed based on additional data 
collection and the know-how and experience of medical staff. 

There were advantages and limitations for XAI proposed in this 
study. Therefore, we plan a multi-modal concept prediction model based 
on clinical information by synthesizing clinical opinions. In addition, the 
correlation between each symptom and lung lesion can be expected 
using clinical information indicating the location of the lung lesion. 
Through this, it is expected that it will be possible to develop medical 
software that serves as a guide for medical staff who can judge diseases 
by converging the opinions of clinicians and XAI models. 

7. Conclusion 

Medical staffs have difficulty identifying abnormal respiratory 
sounds by auscultating sounds of lung disease and finding the charac-
teristics or patterns of adventitious sounds. This is because respiratory 
sounds have a complex structure, so there is a limit to identifying pat-
terns of various nonlinear data [14]. We proposed a lung disease clas-
sification model for patients suffering from lung disease. The proposed 
AI lung disease classification model shows more than 90 % of accuracy 
and is expected to play a significant role as an auxiliary tool to help 
medical staff decide whether there is an abnormality in breathing during 
inhalation or expiration pattern. It is valuable to use CNN models based 
on various measurement environments and experiences for each 

medical staff to detect diseases early and improve the patient’s prognosis 
[19]. 

The dataset used in this study is meaningful in that two medical staff 
directly listened to respiratory sounds and provided labeled data for 
lung diseases. Respiratory sounds were measured from four lung lesions 
directly using a stethoscope, and patients with actual diseases were 
targeted. COPD and asthma were confirmed diseases in both lung fields, 
and pneumonia, bronchiectasis, and ILD were confirmed at the site. 
However, there is a limit to the diversity of medical devices. Data vary 
depending on the noise technology, stethoscope frequency, measure-
ment location, medical staff’s experience, and sound patterns. Collecting 
data using various stethoscopes and images is necessary to improve the 
model. 

The proposed model is innovative and provides high accuracy and 
interpretability. The XAI described in this study is expected to contribute 
to the diagnosis of lung diseases by medical staff through early auscul-
tation. In the future, we plan to develop lung disease-related research at 
the level of face-to-face treatment by fusing X-rays images and disease 
information. It is expected that cooperation between AI model experts 
and respiratory system specialists will bridge the medical gap and 
reduce the burden of high medical expenses. 
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P. Natsiavas, A. Oliveira, C. Jácome, A. Marques, А respiratory sound database for 

Y. Choi and H. Lee                                                                                                                                                                                                                             

https://doi.org/10.3390/s22031232
https://doi.org/10.3390/s22031232
https://doi.org/10.1183/13993003.02108-2020
https://doi.org/10.21437/interspeech.2020-2487
https://doi.org/10.21437/interspeech.2020-2487


Biomedical Signal Processing and Control 84 (2023) 104695

15

the development of automated classification, Int. Conf. Biomed. Heal. Informatics, 
Springer (2017) 33–37, https://doi.org/10.1007/978-981-10-7419-6_6. 

[6] T. Xia, J. Han, C. Mascolo, Exploring machine learning for audio-based respiratory 
condition screening: A concise review of databases, methods, and open issues, Exp. 
Biol. Med. (2022) 15353702221115428. https://doi.org/10.1177/ 
15353702221115428. 

[7] M. Sarkar, I. Madabhavi, N. Niranjan, M. Dogra, Auscultation of the respiratory 
system, Ann. Thorac. Med. 10 (2015) 158, https://doi.org/10.4103/1817- 
1737.160831. 

[8] H. Pham Thi Viet, H. Nguyen Thi Ngoc, V. Tran Anh, H. Hoang Quang, 
Classification of lung sounds using scalogram representation of sound segments 
and convolutional neural network, J. Med. Eng. Technol. 46 (2022) 270–279. 
https://doi.org/10.1080/03091902.2022.2040624. 

[9] R. Zulfiqar, F. Majeed, R. Irfan, H.T. Rauf, E. Benkhelifa, A.N. Belkacem, Abnormal 
respiratory sounds classification using deep CNN through artificial noise addition, 
Front. Med. 8 (2021), https://doi.org/10.3389/fmed.2021.714811. 

[10] L. Shi, K. Du, C. Zhang, H. Ma, W. Yan, Lung sound recognition algorithm based on 
vGGish-BiGru, IEEE Access. 7 (2019) 139438–139449, https://doi.org/10.1109/ 
access.2019.2943492. 

[11] M. Fraiwan, L. Fraiwan, M. Alkhodari, O. Hassanin, Recognition of pulmonary 
diseases from lung sounds using convolutional neural networks and long short- 
term memory, J. Ambient Intell. Humaniz. Comput. 13 (2021) 4759–4771, https:// 
doi.org/10.1007/s12652-021-03184-y. 

[12] E. Grooby, C. Sitaula, D. Fattahi, R. Sameni, K. Tan, L. Zhou, A. King, 
A. Ramanathan, A. Malhotra, G.A. Dumont, Real-time multi-level neonatal heart 
and lung sound quality assessment for telehealth applications, IEEE Access. 10 
(2022) 10934–10948, https://doi.org/10.1109/access.2022.3144355. 

[13] J.A. Dar, K.K. Srivastava, S.A. Lone, Spectral features and optimal hierarchical 
attention networks for pulmonary abnormality detection from the respiratory 
sound signals, Biomed. Signal Process. Control. 78 (2022), 103905, https://doi. 
org/10.1016/j.bspc.2022.103905. 
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