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Abstract. The global burden of sepsis is concentrated in sub-Saharan Africa (SSA), where epidemic HIV and unique
pathogen diversity challenge the effective management of severe infections. In this context, patient stratification based
on biomarkers of a dysregulated host response may identify subgroups more likely to respond to targeted immunomodu-
latory therapeutics. In a prospective cohort of adults hospitalized with suspected sepsis in Uganda, we applied machine
learning methods to develop a prediction model for 30-day mortality that integrates physiology-based risk scores with
soluble biomarkers reflective of key domains of sepsis immunopathology. After model evaluation and internal validation,
whole-blood RNA sequencing data were analyzed to compare biological pathway enrichment and inferred immune cell
profiles between patients assigned differential model-based risks of mortality. Of 260 eligible adults (median age,
32 years; interquartile range, 26–43 years; 59.2% female, 53.9% living with HIV), 62 (23.8%) died by 30 days after hospi-
tal discharge. Among 14 biomarkers, soluble tumor necrosis factor receptor 1 (sTNFR1) and angiopoietin 2 (Ang-2)
demonstrated the greatest importance for mortality prediction in machine learning models. A clinicomolecular model
integrating sTNFR1 and Ang-2 with the Universal Vital Assessment (UVA) risk score optimized 30-day mortality prediction
across multiple performance metrics. Patients assigned to the high-risk, UVA-based clinicomolecular subgroup exhibited
a transcriptional profile defined by proinflammatory innate immune and necroptotic pathway activation, T-cell exhaus-
tion, and expansion of key immune cell subsets including regulatory and gamma-delta T cells. Clinicomolecular stratifica-
tion of adults with suspected sepsis in Uganda enhanced 30-day mortality prediction and identified a high-risk subgroup
with a therapeutically targetable immunological profile. Further studies are needed to advance pathobiologically informed
sepsis management in SSA.

INTRODUCTION

The global burden of sepsis, a heterogeneous syndrome
of acute organ dysfunction resulting from a complex host
response to infection, is concentrated in sub-Saharan Africa
(SSA).1,2 In contrast to high-income countries (HICs), where
sepsis typically affects older adults with severe bacterial
infections, sepsis in SSA disproportionately affects young
adults with HIV hospitalized with severe tuberculosis (TB),
malaria, and other infections highly divergent from those
prevalent in HICs.3,4 In this unique context, predictive perfor-
mance of physiology-driven prognostic scores for sepsis-
related mortality are suboptimal.5 Moreover, recent clinical
trials of sepsis treatment strategies, developed in HICs and
deployed agnostic of locally relevant immunopathology, have
shown harm when implemented in the region.6–8 In the
search for effective sepsis treatment strategies relevant to
SSA, patient stratification based on a combination of molecu-
lar and physiological markers may identify patient subgroups
more likely to respond to targeted therapeutics.
In this pilot study, we examined the prognostic and patho-

biological implications of a clinicomolecular approach to sep-
sis triage in SSA. In a prospective cohort of adults hospitalized

with suspected sepsis in Uganda, we developed a risk model
for mortality prediction at 30 days after hospital discharge
that integrates soluble immune biomarkers and bedside
physiological parameters. After model evaluation and internal
validation, we used whole-blood RNA sequencing to com-
pare biological pathway enrichment and inferred immune cell
profiles between patients assigned differential model-based
risks of mortality.

MATERIALS AND METHODS

Study setting, participants, and outcomes. In this study,
we analyzed data and blood samples from a prospective
observational cohort, Research in the Epidemiology of Severe
and Emerging Infections in Uganda (RESERVE-U), of adults
(age, $ 18 years) hospitalized with severe, undifferentiated
infection (suspected sepsis) at Entebbe General Referral Hos-
pital in central Uganda from April 2017 to August 2019.9

Entebbe General Referral Hospital is a 200-bed public district
referral hospital with a catchment area of approximately 3 mil-
lion persons. In the primary catchment area, HIV prevalence is
approximately 6% and malaria is endemic.9 The RESERVE-U
study enrollment occurred within 24 hours of hospital admis-
sion. The primary outcome of the RESERVE-U study was vital
status at 30 days after hospital discharge (obtained via
telephone from patients or their surrogates). Further details of
RESERVE-U study protocols, clinical data and sample
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collection, and study site capacity have been published and
are summarized in the supplemental materials.9,10

Soluble immune biomarkers. From cryopreserved serum
samples collected at the time of study enrollment, we quanti-
fied, using custom Luminex 200 system kits (Luminex, Austin,
TX) from MilliporeSigma (Burlington, MA) and R&D Systems
(Minneapolis, MN), 14 soluble biomarkers reflective of putative
domains of sepsis immunopathology (innate/adaptive immune
activation, endothelial dysfunction, fibrinolysis). These included
interleukin (IL)-6, IL-8, IL-10, interferon (IFN)-g, IFN-g-induced
protein-10/C-X-C motif chemokine 10 (IP-10/CXCL10), macro-
phage inflammatory protein-1-alpha/chemokine (C-C motif)
ligand 3 (MIP-1a/CCL3), macrophage inflammatory protein-1-
beta/chemokine (C-C motif) ligand 4 (MIP-1b/CCL4), tumor
necrosis factor-alpha (TNF-a), angiopoietin-1 (Ang-1), angio-
poietin-2 (Ang-2), macrophage migration inhibitory factor (MIF),
plasminogen activator inhibitor-1 (PAI-1), soluble TNF-receptor
type 1 (sTNFR1), and soluble IL-2 receptor alpha/soluble
CD25 (sIL-2RA/sCD25). Further details are in the supplemen-
tal materials.
Whole-blood RNA isolation, library preparation, and

sequencing. From cryopreserved whole-blood samples col-
lected in PAXgene blood RNA tubes (PreAnalytiX; Qiagen/BD,
Hombrechtikon, Switzerland), RNA was isolated and purified
using PAXgene blood RNA kits (Qiagen, Hilden, Germany).
RNA sequencing libraries were prepared using the NEBNext
Ultra RNA Library Prep Kit (NEB, Ipswich, MA). Sequencing
libraries were multiplexed and analyzed using a 2 3 150
paired-end configuration on the Illumina HiSeq 4000 platform
(Illumina, Inc., San Diego, CA). Further details on RNA sequenc-
ing methods, including data processing, alignment, and tran-
script quantification, are in the supplemental materials.11–14

Biomarker selection. To identify a parsimonious set of
biomarkers that may augment mortality prediction, we per-
formed feature selection using random forest and gradient-
boosted machine classifier models (mlr, caret, randomForest,
and xgboost R packages). Each hyperparameter-tuned classi-
fier, trained to predict 30-day mortality, was applied to log10-
transformed concentrations of all 14 biomarkers. For the
randomForest classifier, the mtry hyperparameter was
selected based on minimization of out-of-bag error estimates,
with maximum nodes and trees set to 10 and 1,000, respec-
tively. For the gradient-boosted machine classifier, the eta,
max_depth, and nrounds hyperparameters were selected
based on maximization of area under the receiver–operating
characteristic curve (AUC-ROC) in a grid search approach,
with the remaining hyperparameters left at default settings. In
random forest and gradient-boosted machine classifiers, the
predictive importance of each biomarker was ranked accord-
ing to Gini impurity and split-gain values, respectively.
Model development and internal validation. To optimize

parsimony, the two biomarkers with the consistently greatest
importance across random forest and gradient-boosted
machine classifiers were added to physiology-based clinical
risk models validated for prediction of severe infection-
related outcomes in resource-limited settings (Supplemental
Table 1). Clinical risk models included the quick Sepsis-
Related Organ Failure Assessment (qSOFA) score, the Modi-
fied Early Warning Score (MEWS), and the Universal Vital
Assessment (UVA) score.5 All clinical and clinical–biomarker
(i.e., clinicomolecular) models were adjusted for age, sex,

and prehospital illness duration—factors that may affect the
host response to severe infection and sepsis mortality risk.
For all adjusted clinical models (qSOFA, MEWS, and UVA),

we first determined the incremental predictive accuracy of
the corresponding clinicomolecular model using likelihood
ratio x2 tests, followed by computation of 10,000 bootstrap-
derived Brier scores and continuous net reclassification
improvement (NRI) indices (rms and Hmisc R packages).15–18

Discrimination and calibration of each adjusted clinical and
clinicomolecular model were evaluated further using AUC-
ROC and calibration curves generated via 100-times–repeated
10-fold cross-validation (caret and MLeval R packages). At
this stage, we performed three sensitivity analyses: one in
which clinicomolecular models were expanded to include the
three most important biomarkers identified across classifier
models, another in which all models were additionally adjusted
for HIV and malaria status, and one in which patients with
unknown 30-day vital status were considered deceased. After
selecting the best-performing clinicomolecular model based
on optimization of Brier score, NRI indices, AUC-ROC, and
calibration curve fit, we applied 100-times–repeated 10-fold
cross-validation to generate confusion matrices and related
metrics across probability cutoffs of 0.3 to 0.7 (caret R pack-
age). Using the probability cutoff that maximized accuracy, we
assigned patients to high- versus low-mortality risk groups.
Differential gene expression, biological pathway, and

immune cell type deconvolution analyses. Between patients
assigned to high- versus low-mortality risk groups, we per-
formed differential gene expression analysis of whole-blood
RNA sequencing data using the DESeq2 R package.19

Genes were considered differentially expressed based on a
log2-fold change$ |0.26| and a Benjamini–Hochberg-adjusted
P value # 0.05. Differentially expressed gene sets were
selected for biological pathway analyses (Ingenuity Pathway
Analysis, Qiagen), the results of which were examined to infer
functional differences between risk groups. To infer the relative
abundance of immune cell subsets across risk groups, we
performed digital cytometry deconvolution using the CIBER-
SORTx platform and LM22 hematopoietic gene signature ref-
erence matrix.20

Reporting statement. The Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis guidelines were used to report model develop-
ment and reporting.21

Statistical analyses. Analyses were performed using
R (v4.2.0, R Foundation for Statistical Computing, Vienna,
Austria) via the RStudio environment, with packages speci-
fied as above. Biological pathway analysis was performed
using Ingenuity Pathway Analysis (Qiagen, Hilden, Germany).

RESULTS

Of the 301 adults enrolled in the RESERVE-U study, 288
(95.6%) had soluble biomarkers quantified in serum samples.
Of these 288 patients, 30-day postdischarge vital status was
determined for 260 (90.3%), of whom 62 died (23.8%) (Table 1,
Supplemental Figure 1). Among adjusted clinical models, UVA
demonstrated optimal performance, with the lowest Brier score,
highest cross-validated AUC-ROC (0.70; 95% CI 0.62–0.78),
and best-fitting calibration curve (Figure 1A and B).
The concentrations of most biomarkers, with the exception

of Ang-1 and MIP-1a/CCL3, were greater in patients who died
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at 30 days compared with those who survived (Supplemental
Table 2). In random forest and gradient-boosted machine clas-
sifier models, sTNFR1 and Ang-2 demonstrated the greatest
importance for 30-day mortality prediction (Figure 2). The
addition of sTNFR1 and Ang-2 (individually and in combina-
tion) to each adjusted clinical model improved 30-day mortal-
ity prediction significantly (likelihood ratio x2 test, P , 0.01 for
all biomarker-inclusive models), with lower Brier scores and
improved net reclassification (Table 2). The UVA-based clini-
comolecular model including sTNFR1 and Ang-2 demon-
strated optimal performance, with the lowest Brier score,
highest AUC-ROC (0.76; 95% CI, 0.69–0.83) and best-fitting
calibration curve (Table 2, Figure 1C and D). The addition of
the third most important biomarker (soluble IL-2 receptor
alpha/soluble CD25) to clinicomolecular models including
sTNFR1 and Ang-2 did not improve performance metrics
(Supplemental Table 3). Our results were generally consistent
when patients with unknown 30-day vital status were consid-
ered deceased and when all clinical and biomarker-inclusive
models were additionally adjusted for HIV and malaria status
(Supplemental Tables 4 and 5).
For the UVA-based clinicomolecular model including sTNFR1

and Ang-2, a probability cutoff of 0.40 optimized predictive

accuracy (accuracy, 0.80; specificity, 0.90; sensitivity, 0.49;
negative predictive value, 0.85; positive predictive value, 0.62),
with 51 (19.6%) and 209 (80.4%) patients assigned to high-
versus low-mortality risk groups, respectively (Table 1 and Sup-
plemental Tables 6 and 7). Of these 260 patients, whole-blood
RNA sequence analysis was performed in 112 (43.1%), includ-
ing 23 of 51 (45.1%) and 89 of 209 (42.6%) patients in the high-
versus low-risk groups, respectively. A total of 2,209 genes
were expressed differentially across groups. Functionally, the
high-risk subgroup exhibited an immune profile characterized
by T-cell exhaustion, including downregulation of T-cell
receptor, inducible T-cell co-stimulator, IL-2, and IL-7 signal-
ing (Figure 3A). These findings were observed alongside the
upregulation of key proinflammatory innate immune path-
ways, including Toll-like receptor, nuclear factor-kappa B,
triggering receptor expressed on myeloid cells 1, and IL-1
signaling, as well as those related to necroptosis, apoptosis,
and production of reactive nitrogen and oxygen species. In
contrast, patients in the high-risk subgroup showed downre-
gulation of genes associated with the Ang-1/Tie2 axis, which
promotes endothelial stability and mitigates inflammation. In
the high-risk group, immune cell-type deconvolution inferred
significantly greater quantities of neutrophils, naive (M0)

TABLE 1
Patient characteristics stratified by UVA–based clinicomolecular risk groups including sTNFR1 and Ang-2

Variable All patients (N 5 260) High-risk group (n 5 51) Low-risk group (n 5 209)

Female sex, n/N (%) 154/260 (59.2) 25/51 (49.0) 129/209 (61.7)
Age, y; median (IQR) 32 (26–43) 43 (32–50) 32 (26–40)
Illness duration prior to hospitalization, d; median (IQR)* 4 (3–7) 6 (3–7) 4 (2–6)
Received antibacterial or antimalarial agent prior to

hospitalization, n/N (%)
97/260 (37.3) 21/51 (41.2) 76/209 (36.4)

Temperature $ 38�C, n/N (%) 95/260 (36.5) 21/51 (41.2) 74/209 (35.4)
Temperature , 36�C, n/N (%) 73/260 (28.1) 18/51 (35.3) 55/209 (26.3)
Heart rate, beats/min; median (IQR) 98 (87–108) 104 (95–121) 96 (86–107)
Respiratory rate, breaths/min; median (IQR) 22 (21–26) 24 (22–28) 22 (20–26)
Systolic blood pressure, mm Hg; median (IQR) 102 (91–117) 90 (85–110) 104 (95–118)
Oxygen saturation, %; median (IQR) 97 (95–98) 97 (91–98) 97 (96–98)
Encephalopathy, n/N (%)† 54/260 (20.8) 27/51 (52.9) 27/209 (12.9)
qSOFA score, points; median (IQR)‡ 1 (1–2) 2 (2–3) 1 (1–2)
qSOFA score $ 2, n/N (%)‡ 120/260 (46.2) 39/51 (76.5) 81/209 (38.8)
qSOFA score $ 1, n/N (%)‡ 229/260 (88.1) 49/51 (96.1) 180/209 (86.1)
MEWS, points; median (IQR) 3 (2–5) 5 (3.50–6.50) 3 (2–4)
UVA score, points; median (IQR) 3 (1, 4) 6 (3.50, 8) 2 (1, 4)
Shock, n/N (%)§ 39/260 (15.0) 16/51 (31.4) 23/209 (11.0)
Acute respiratory failure, n/N (%)jj 60/260 (23.1) 22/51 (43.1) 38/209 (18.2)
Severe anemia, n/N (%)¶ 53/260 (20.4) 22/51 (43.1) 31/209 (14.8)
Living with HIV, n/N (%) 139/258 (53.9) 45/51 (88.2) 94/207 (45.4)
WHO HIV clinical stage 3 or 4, n/N (%) 111/139 (79.9) 36/45 (80.0) 75/94 (79.8)
Receiving ART prior to hospitalization, n/N (%) 82/139 (59.0) 31/45 (68.9) 51/94 (54.3)
Receiving TMP-SMX prophylaxis prior to hospitalization, n/N (%) 85/139 (61.2) 31/45 (68.9) 54/94 (57.4)
Malaria RDT positive, n/N (%) 57/256 (22.3) 6/49 (12.2) 51/207 (24.6)
Microbiological TB positive, n/N (%)# 49/260 (18.8) 19/51 (37.3) 30/209 (14.4)
Urine TB-LAM positive, n/N (%)** 38/112 (31.7) 16/33 (48.5) 22/79 (27.8)
Influenza PCR positive, n/N (%) 16/235 (6.8) 2/46 (4.3) 14/189 (7.4)
Death in hospital or transfer, n/N (%) 38/260 (14.6) 23/51 (45.1) 15/209 (7.2)
Duration of hospitalization, d; median (IQR)†† 5 (3–8) 7 (4–10) 5 (3–7)
KPS # 70 at alive discharge, n/N (%) 16/220 (7.3) 6/28 (21.4) 10/192 (5.2)
Death at 30 days post-discharge, n/N (%) 62/260 (23.8) 33/51 (64.7) 29/209 (13.9)
Ang-2 5 angiopoietin 2; ART 5 antiretroviral therapy; IQR 5 interquartile range; KPS 5 Karnofsky Performance Status; LAM 5 lipoarabinomannan; MEWS 5 Modified Early Warning Score;

PCR5 polymerase chain reaction; qSOFA5 quick Sepsis-Related Organ Failure Assessment; RDT5 rapid diagnostic test; sTNFR15 soluble tumor necrosis factor receptor 1; TB5 tuberculosis;
TMP-SMX5 trimethoprim–sulfamethoxazole; UVA5 Universal Vital Assessment.
*Median value of 4 days imputed for one patient with unknown data.
†Anything other than “alert” on alert, responsive to voice, responsive to pain, unresponsive (AVPU) mental status assessment.
‡Systolic blood pressure# 100 mmHg, respiratory rate$ 22 breaths/min, and encephalopathy, with the latter defined using the AVPU scale.
§Systolic blood pressure# 90mmHg despite administration of$ 1 L intravenous fluid.
jjOxygen saturation# 90% or respiratory rate$ 30 breaths/min.
¶Hemoglobin, 9 g/dL or administration of blood transfusion.
#Positive result by sputum Xpert Ultra or smear or urine TB-LAM.
**Performed for patients living with HIV if urine sample obtainable.
††Unknown for 10 patients.
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macrophages, regulatory T cells, and gamma-delta T cells,
along with lower quantities of CD4 T cells (Figure 3B).

DISCUSSION

Using immune biomarker and physiological data from a
microbiologically diverse cohort of adults with suspected
sepsis in Uganda, we developed a novel clinicomolecular
risk index for 30-day mortality prediction. Our optimized

clinicomolecular model, integrating sTNFR1 and Ang-2 with
the UVA risk score, identified a high-risk, HIV-predominant
subgroup defined by T-cell exhaustion, innate immune acti-
vation, necroptosis, and pyroptosis, and differential expansion
of key immune cell subsets. Although hundreds of studies in
HICs have evaluated the utility of biomarker-driven patient
stratification in adult sepsis, to our knowledge this is the first
to apply a clinicomolecular approach to sepsis triage in
SSA.22,23

FIGURE 1. Receiver–operating characteristic (ROC) and calibration curves for (A, B) clinical and (C, D) clinicomolecular models including soluble
tumor necrosis factor receptor 1 (sTNFR1) and angiopoietin 2 (Ang-2). All curves were generated using 100-times–repeated 10-fold cross-
validation, and reflect models adjusted for age, sex, and illness duration prior to hospitalization. Area under ROC curves are presented with 95%
CIs in parentheses. MEWS 5 Modified Early Warning Score; qSOFA 5 quick Sepsis-Related Organ Failure Assessment; UVA 5 Universal Vital
Assessment.
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Results from our pilot study suggest that integrated use of
immune biomarkers and bedside physiological data could
enhance patient stratification and prognostic clinical trial
enrichment for sepsis in SSA and other high HIV-burden set-
tings.24 Furthermore, considering that HIC-derived, biologi-
cally agnostic treatment strategies have been associated with
poor clinical outcomes when implemented in SSA, future sep-
sis trials in the region must incorporate predictive enrichment
strategies rooted in locally relevant immunopathology—an
approach that biomarker-driven patient classification may
enhance.6–8,25–27 For example, our optimized clinicomolecular
model identified a high-risk, HIV-predominant subgroup

characterized by T-cell exhaustion and proinflammatory innate
immune activation, suggesting a possible role for synergistic
host-directed therapeutics targeting T-cell stimulation and
innate immune dampening.28,29 In addition, the importance of
necroptotic and pyroptotic pathways in the high-risk sub-
group suggests that these processes, the upregulation of
which have been associated with poor outcomes in animal
models of sepsis pathogenesis, may represent important
candidates for locally relevant enrichment strategies.30 Oper-
ationally, the relatively high specificity and moderately
impactful positive likelihood ratio of our optimized clinicomo-
lecular model (in its current iteration) suggest that it would be

FIGURE 2. Importance of immune biomarkers for 30-day mortality prediction in (A) random forest and (B) gradient-boosted machine classifier
models ranked according to Gini impurity and split-gain values, respectively. Ang-15 angiopoietin-1; Ang-25 angiopoietin-2; CCL35 chemokine
(C-C motif) motif ligand 3; CCL4 5 chemokine (C-C motif) ligand 4; IFN5 Interferon; IL5 Interleukin; IP-10/CXCL10 5 IFN-g-induced protein-10/
C-X-C motif chemokine 10; MIF5 macrophage migration inhibitory factor; MIP-1a 5 macrophage inflammatory protein-1-alpha; MIP-1b 5 macro-
phage inflammatory protein-1-beta; PAI-1 5 plasminogen activator inhibitor-1; sTNFR1 5 soluble TNF-receptor type 1; sIL-2RA/sCD25 5 soluble
IL-2 receptor alpha/soluble CD25; and TNF-a 5 tumor necrosis factor-alpha.

TABLE 2
Performance characteristics of clinical and clinicomolecular models for prediction of 30-day mortality (N 5 260)

Model* Likelihood ratio x2 P value† Optimism-corrected Brier score‡ NRI (95% CI) AUC-ROC (95% CI)§

qSOFA Reference 0.171 Reference 0.65 (0.57–0.73)
qSOFA 1 Ang-2 , 0.001 0.161 0.39 (0.11–0.67) 0.71 (0.63–0.79)
qSOFA 1 sTNFR1 , 0.001 0.160 0.50 (0.22–0.77) 0.73 (0.65–0.81)
qSOFA 1 Ang-2 1 sTNFR1 , 0.001 0.157 0.69 (0.42–0.96) 0.73 (0.65–0.81)
MEWS Reference 0.170 Reference 0.68 (0.60–0.76)
MEWS 1 Ang-2 0.002 0.163 0.40 (0.12–0.68) 0.72 (0.64–0.80)
MEWS 1 sTNFR1 , 0.001 0.161 0.38 (0.09–0.66) 0.74 (0.66–0.82)
MEWS 1 Ang-2 1 sTNFR1 , 0.001 0.159 0.60 (0.32–0.87) 0.74 (0.66–0.82)
UVA Reference 0.163 Reference 0.70 (0.62–0.78)
UVA 1 Ang-2 0.001 0.155 0.43 (0.15–0.71) 0.74 (0.66–0.82)
UVA 1 sTNFR1 , 0.001 0.150 0.53 (0.25–0.80) 0.76 (0.69–0.83)
UVA 1 Ang-2 1 sTNFR1 , 0.001 0.149 0.68 (0.41–0.95) 0.76 (0.69–0.83)
Ang-2 5 angiopoietin 2; AUC-ROC 5 area under the receiver–operating characteristic curve; MEWS 5 Modified Early Warning Score; NRI 5 net reclassification improvement; qSOFA 5 quick

Sepsis-Related Organ Failure Assessment; sTNFR15 soluble tumor necrosis factor receptor 1; UVA5 Universal Vital Assessment.
*All models adjusted for age, sex, and prehospital illness duration.
†P value reflects results of the likelihood ratio x2 test comparing each biomarker-inclusive (i.e., clinicomolecular) model against the reference clinical model (qSOFA, MEWS, UVA).
‡Optimism-corrected Brier scores generated using 10,000 bootstraps.
§AUC-ROC and 95% CIs generated using 100-times–repeated 10-fold cross-validation.
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most applicable to “rule in” high-risk patients with a more
dysregulated immune profile, thereby providing a subpopula-
tion target for candidate immunomodulatory agents. As rapid
quantification of blood-based biomarkers may be feasible in
resource-limited settings with emerging immunoassays,
clinicomolecular sepsis triage could conceivably be applied
in SSA.

Our study has limitations. First, the single-center nature
and limited size of our cohort mandates external validation
of our findings. Second, 30-day vital status was unknown for
approximately 10% of analyzed patients. However, in a sen-
sitivity analysis considering such patients as deceased, our
results were generally consistent. Third, although our opti-
mized clinicomolecular model had high specificity, sensitivity

FIGURE 3. (A) Ingenuity pathway analysis of canonical signaling gene sets enriched across Universal Vital Assessment–based clinicomolecular
risk groups including soluble tumor necrosis factor receptor 1 (sTNFR1) and angiopoietin 2 (Ang-2). Inferred pathway enrichment was based on dif-
ferentially expressed genes at a log2-fold change$ |0.26| and a Benjamini-Hochberg-adjusted P value# 0.05. Key immune pathways with activa-
tion Z-score$ |1.25| are presented. (B) Inferred abundance of immune cell subsets across the Universal Vital Assessment-based clinicomolecular
risk groups including sTNFR1 and Ang-2. Relative immune cell proportions were inferred using the CIBERSORTx platform. Presented cell subsets
reflect those with significantly different abundance across groups (P# 0.05, Wilcoxon rank-sum test). IL5 interleukin; NOS5 inducible nitric oxide
synthase; TREM5 triggering receptor expressed on myeloid cells.
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was low and AUC-ROC was modest, reinforcing the limita-
tions of its use in its current form and the need for further
refinement. Fourth, although biomarkers were included based
on immunopathological relevance, there may be other pro-
teins that better augment mortality prediction in SSA. Fifth,
biomarker-driven triage strategies are not immediately
implementable in much of SSA. However, accessibility to
rapid, point-of-need immunoassays in low-income settings is
increasing, and we applied minimally biased feature selection
methods to identify the most predictive biomarkers that
could be prioritized for such platforms. Next, whole-blood
RNA sequencing data was available from approximately 43%
of analyzed patients. However, the characteristics of these
patients were similar to the larger cohort.10 Last, we relied on
computational deconvolution analyses to infer quantities of
immune cell subsets because we were unable to isolate
peripheral blood mononuclear cells at our study site as a
result of resource limitations.
Clinicomolecular stratification of adults with suspected sep-

sis in Uganda enhanced 30-day mortality prediction and iden-
tified a high-risk subgroup with a therapeutically targetable
immunological profile. Further studies are needed to advance
biologically informed sepsis management strategies in SSA.
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