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Abstract

Introduction: Erectile dysfunction (ED) is a common disease among elderly men, and novel therapy methods are needed for drug-refractory ED.
As an extracellular vesicle, stem cell–derived exosomes displayed erectile function improvement in rat ED models in some preclinical studies.
However, the therapeutic efficacy has not been comprehensively evaluated.
Aim: To study the therapeutic effects of stem cell–derived exosomes on ED in preclinical studies and to investigate the potential mechanisms
responsible for the efficacy.
Methods: The systematic literature search was conducted in Web of Science, PubMed, and Embase to retrieve studies utilizing stem cell–
derived exosomes for ED treatment. We extracted data of intracavernous pressure/mean artery pressure (ICP/MAP), and cavernosum structural
changes in rat ED models before and after stem cell-derived exosome therapy. RevMan 5.3 was used to perform meta-analyses of ICP/MAP
and cavernosum microstructural changes. Publication bias was assessed with the Egger test and funnel plot by Stata 15.0 (StataCorp).
Main Outcome Measures: Outcomes included ICP/MAP, smooth muscle, and endothelial markers—such as the ratio of smooth muscle to
collagen and the expression of α-SMA (alpha smooth muscle actin), CD31 (cluster of differentiation 31), nNOS and eNOS (neuronal and endothelial
nitric oxide synthase), TGF-β1 (transforming growth factor β1), and caspase 3 protein-to evaluate erectile function and microstructural changes.
Forest plots of effect sizes were performed.
Results: Of 146 studies retrieved, 11 studies were eligible. Pooled analysis showed that stem cell–derived exosomes ameliorated damaged
ICP/MAP (standardized mean difference, 3.68; 95% CI, 2.64-4.72; P < .001) and structural changes, including the ratio of smooth muscle to
collagen and the expression of α-SMA, CD31, nNOS, eNOS, TGF-β1, and caspase 3 protein. Subgroup analysis indicated that exosome type and
ED model type made no difference to curative effects.
Conclusion: This meta-analysis suggests the therapeutic efficacy of stem cell–derived exosomes for ED. Exosomes may restore erectile function
by optimizing cavernosum microstructures.

Keywords: exosome; erectile dysfunction; intracavernous pressure/mean artery pressure; stem cell; structural changes; meta-analysis.

Introduction

Erectile dysfunction (ED) refers to the impotence to obtain
or maintain an erection enough to permit satisfactory
sexual intercourse.1 The incidence grows with age, especially
in men aged >40 years, and it affects quality of life,
causing physiologic and psychological problems.2 ED is an
important complication in men with diabetes mellitus for
its multifactorial pathophysiology, and more attention has
been focused on postradical prostatectomy ED due to the
growing incidence of prostate cancer in line with an increasing
male life expectancy.3 Many other factors are reported to be
involved with ED, such as cardiovascular diseases, metabolic

syndrome, neuropathic damage, lower urinary tract symp-
toms, Peyronie disease (PD), obstructive sleep apnea, and
psychiatric disorders.4–7 In animal models of ED, intracav-
ernous pressure measurement for penile erection induced
by electrical stimulation of the cavernous nerve has been
widely adopted by researchers for evaluation of erectile
function.8,9 It has been reported that ED was associ-
ated with decreased expression of endothelial markers
(VEGF, endothelial nitric oxide synthase [eNOS], cluster
of differentiation 31 [CD31], etc), smooth muscle markers
(α-actin, smoothelin, etc), and pericyte markers (CD146 and
NG2).10,11

https://creativecommons.org/licenses/by/4.0/
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In terms of therapies and management, oral phosphodi-
esterase type 5 inhibitors, such as sildenafil and tadalafil,12,13

were regarded as the first-line treatment of ED.4 Other
treatment modalities include intracavernous injection therapy,
testosterone therapy, vacuum constrictive devices, and
penile prostheses. In addition, some researchers utilized
low-intensity extracorporeal shock wave therapy and low-
intensity pulsed ultrasound therapy to improve erectile
function and penile hemodynamic by inducing neovascu-
larization and promoting tissue regeneration.14,15 However,
most of them are far from flawless. A certain proportion
of patients with ED do not respond to phosphodiesterase
type 5 inhibitors.16 Vacuum constrictive devices are expensive
and may induce unnatural erections, which cannot meet the
satisfaction of patients. Low-intensity extracorporeal shock
wave therapy costs too much, and the actual physiologic
changes of the penile tissue and the long-term risk of shock
waves are not fully elucidated. Therefore, there is still a great
need for more effective treatments that can provide long-
lasting improvement for ED.

Exosomes refer to a class of extracellular vesicles with a
diameter of 50 to 100 nm, which are secreted by almost
all cells.17 They usually encapsulate a complex payload
containing lipids, signaling proteins, and nucleic acids, thus
enabling cells to exchange information for multiple physio-
logic and pathologic functions.18 Accordingly, the beneficial
effects of exosomes on ED in rat models have been found
in recent experiments.19,20 Among these studies, exosomes
are mostly derived from stem cells, including bone marrow–
derived mesenchymal stem cells (BMSCs), adipose-derived
mesenchymal stem cells (ADSCs), and human urine–derived
stem cells. However, the value of stem cell–derived exosomes
in ED treatment has not been comprehensively interpreted. We
tried to explore whether exosomes derived from stem cells
have therapeutic effects on ED in rat models. Additionally,
we attempted to address the following problems: (1) Among
exosomes derived from different stem cells—ADSCs, BMSCs,
and human urine–derived stem cells, which have better
therapeutic efficacy? (2) Among different ED models—
diabetic mellitus, cavernous nerve injury, PD, artery injury,
and chronic intermittent hypoxia, which can be ameliorated
better by exosomes therapy?

Methods

Literature search strategy and selection criteria

This meta-analysis was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
analyses.21 Literature retrieval was conducted in PubMed,
Web of Science, and Embase for pertinent studies. We also
utilized preprint databases, including bioRxiv and medRxiv,
to find potential articles without peer review to avoid publi-
cation bias.

The keywords were as follows: (“stem cell” or “SC”)
and (“exosomes” or “extracellular vesicles”) and (“erectile
dysfunction” or “ED”). Additionally, we hand-searched the
references of all relevant articles if necessary. We did not apply
any language restrictions. Reviews, duplicates, conference
abstracts, and clinical trials were excluded. Abstracts were
screened for relevance, and the full texts were read when it
was unclear from the abstracts.

The inclusion criteria were as follows: randomized/nonran-
domized controlled animal experiment, rat/mouse model, and
the utilization of exosomes to treat ED.

Quality assessment

Two investigators were assigned to separately assess the
methodological quality of included studies. The ARRIVE
criteria22 and ESSM guidelines23 for reporting intracavernous
pressure/mean artery pressure (ICP/MAP) were applied in
assessment standards. There are 27 criteria, 1 point for each
(not mentioned or unclear, 0; yes, 1). Studies with a score ≥18
were considered high quality, and studies with a score <18
were considered moderate quality.

Data extraction

Data were extracted independently by 2 authors of our
team. The third author was involved when the 2 independent
authors disagreed and failed to reach consensus after referring
to the original articles. The following information from
each study was extracted: first author, year of publication,
source of exosomes, exosome indicators, ED model, species,
follow-up time, injection frequency, injection methods, dose
of exosomes injected, and molecular changes after exosome
therapy. ICP/MAP was the primary outcome. Structural
changes were also collected: the ratio of smooth muscle to
collagen (SM/collagen), CD31, alpha smooth muscle antibody
(α-SMA), eNOS, neural nitric oxide synthase (nNOS), the
apoptotic protein cleaved caspase 3, and transforming growth
factor β1 (TGF-β1).

The mean and SEM or SD were extracted from the included
article texts. The software Web Plot Digitizer (https://autome
ris.io/WebPlotDigitizer/) was used to extract numeric values
from charts if final results were displayed only as graphs and
we failed to receive a reply from the corresponding authors of
articles.

Statistical analyses

We used RevMan 5.3 software (The Nordic Cochrane Center)
to analyze extracted data. To show the difference of ICP/MAP
between the exosome therapy groups and the ED control
groups, we used standardized mean difference with 95% CIs,
which was also applied to structural changes in the corpus
cavernosum, including SM/collagen and the expression of
CD31, α-SMA, eNOS, nNOS, TGF-β1, and caspase 3 protein.
Heterogeneity was evaluated with the I2 statistic test. A
random effects model was adopted if I2 ≥ 50%, and a fixed
effects model would be applicable if I2 < 50%. Stata (version
15.0; StataCorp) was used to examine publication bias with
the Egger test24,25 and funnel plot. In addition, a P value <.05
in the Egger test was considered statistically significant for
publication bias.

Meanwhile, subgroup analysis was used to investigate the
possible source of heterogeneity among these studies. Sub-
group analysis of ICP/MAP was based on 2 factors:

Exosome source cell: ADSCs vs BMSCs vs human urine–
derived stem cells
ED model type: diabetic mellitus vs cavernous nerve
injury vs PD vs artery injury vs chronic intermittent
hypoxia resembling obstructive sleep apnea

https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
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Figure 1. Flowchart of study selection.

Results

Study selection and characteristics

As shown in Figure 1, 146 publications were identified after
the search. We eventually enrolled 11 studies as a result of
full-text review. The characteristics of eligible studies are
described in Table 1.

Exosomes derived from ADSCs were applied in 5 stud-
ies,26–30 and exosomes derived from BMSCs were used in
2 studies.19,31 Both parental cells were utilized in another
2 studies.20,32 The remaining 2 studies exploited exosomes
derived from human urine–derived stem cells.33,34

Regarding ED models, 5 studies26,28,30,32,34 injected strep-
tozotocin into animals to establish diabetic mellitus model, in
which 1 study constructed a type 2 diabetic mellitus model by
high-fat diet. Three studies19,20,29 constructed a neurogenic
ED model by damaging cavernous nerves surgically. Injection
of TGF-β1 into rat tunica albuginea was utilized in 1 study to
create a PD model,33 and 1 research utilized chronic intermit-
tent hypoxia to mimic obstructive sleep apnea–induced ED.27

Another study focused on artery injury–indued ED.31

Administration of exosomes by intracavernous injection
was used in 9 studies, while the other 2 studies used intratu-
nical or intravenous injection.

Quality assessment

The quality score of 6 studies was ≥18, and the other 5 studies
received <18 points. Details are shown in Table 2.

Meta-analysis

Intracavernous pressure/mean artery pressure

The pooled analysis showed that stem cell–derived exo-
some therapy ameliorated ICP/MAP significantly (n = 194;
standardized mean difference, 3.68; 95% CI, 2.64-4.72;
Z = 6.95, P < .01; χ2 = 45.61, I2 = 74%), which hints at the
improvement of erectile function (Figure 2A).

Subgroup analysis of ICP/MAP was conducted on the
basis of 2 factors: ED model and producer cell. First,
the analysis showed that in different ED model types,
an increase of ICP/MAP occurred after administration
of exosomes as compared with respective controls (dia-
betic mellitus, P < .01; cavernous nerve injury, P < .01;
obstructive sleep apnea, P < .01; artery injury, P < .01; PD,
P < .01). However, it showed no statistically significant
difference in growth among different ED models (χ2 = 0.96,
P = .92) (Figure 2A). Second, exosomes generated by dif-
ferent stem cells could all enhance ICP/MAP vs various
controls (ADSCs, P < .01; BMSCs, P < .01; human urine,
P < .01). However, no statistically significant difference
was observed in producer cell types (χ2 = 0.48, P = .79)
(Figure 2B).

Structural changes

To investigate the underlying mechanism of exosome therapy
for ED, structural changes were analyzed. Stem cell–derived
exosomes restored SM/collagen (n = 144, P < .01), CD31
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Figure 2. Forest plot for the ICP/MAP changes among different subgroups: (A) ED model type and (B) producer cell. ED, erectile dysfunction; ICP/MAP,
intracavernous pressure/mean artery pressure.

(n = 44, P < .001), α-SMA (n = 82, P < .006), nNOS (n =
82, P = .03), and eNOS (n = 58, P < .001) damaged by ED,
which indicated the amelioration of endothelium and smooth
muscle content of cavernosum. Furthermore, the decreases of

TGF-β1 (n = 38, P = .003) and caspase 3 (n = 32, P < .001)
were observed in the analysis, which meant that exosomes
might improve cavernosum structures by inhibiting fibrosis
and apoptosis (Table 3).
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Table 3. Analyses of structural changes.

Biomarker No. SMD 95% CI Z P value χ2 I2,%

SM/collagen 144 3.71 3.10, 4.32 11.92 <.001 12.91 38
CD31 44 5.32 3.86, 6.78 7.14 <.001 2.73 27
α-SMA 82 3.57 1.01, 6.14 2.73 .006 36.3 86
eNOS 58 3.27 2.39, 4.15 7.32 <.001 1.6 0
nNOS 82 2.12 0.22, 4.03 2.19 .03 41.75 88
TGF-β1 38 −4.3 −7.17, −1.43 2.94 .003 8.48 76
caspase 3 32 −4.42 −5.86, −2.99 6.04 <.001 0.56 0

Abbreviations: α-SMA, alpha smooth muscle actin; CD31, cluster of differentiation 31; eNOS, endothelial nitric oxide synthase; nNOS, neuronal nitric oxide
synthase; SM/collagen, ratio of smooth muscle to collagen; SMD, standardized mean difference; TGF-β1, transforming growth factor β1.

Figure 3. Publication bias test of ICP/MAP: (A) funnel plot and (B) Egger publication bias plot. ICP/MAP, intracavernous pressure/mean artery pressure.

Bias assessment

The funnel plot appeared to be asymmetrical, which indicated
that there was publication bias in the ICP/MAP analysis.
Furthermore, the Egger test was used to detect publication
bias, and its P value (t = 10.77, P < .05) showed bias from
small study effects (Figure 3).

Discussion

A total of 11 published preclinical studies were included in
our analysis. Overall, our analysis suggests that stem cell–
derived exosomes could ameliorate ED and structural changes
in various types of ED models.

Penile erection is a series of vascular events closely related
to the endothelium and smooth muscle cells of the corpus
cavernosum, which histologically form the basic structure
of sinusoids. When the smooth muscle is contracted, the
blood inflows through the cavernous artery restrictively,
but it outflows through the subtunical venular plexus freely,
resulting in a flaccid state of the penis.35 Upon sexual stimula-
tion, nonadrenergic noncholinergic nerve fibers release nitric
oxide (NO), which activates guanylyl cyclase to increase the
concentration of cGMP (cyclic guanosine monophosphate).
Furthermore, acetylcholine released from parasympathetic
cholinergic nerve fibers causes activation of adenylyl cyclase,
increasing the concentration of cAMP (cyclic adenosine
monophosphate). High levels of cGMP and cAMP decrease
intracellular Ca2+ levels and lead to smooth muscle cell
relaxation, followed by a normal erection. If any of these
processes are interrupted, ED may happen. For example,

cavernous nerve injury causes downregulation in the nerve
signaling of the corpora cavernosa, which reduces the NO
level in smooth muscle, increases apoptosis in the smooth
muscle and endothelium of blood vessels, and upregulates
fibrogenetic cytokines to form collagenization of the smooth
muscle. These functional and structural changes lead to veno-
occlusive dysfunction.36–38 Hypoxia can cause a decrease
in prostaglandin E1 levels of the corpora cavernosa, which
commonly inhibits profibrotic cytokines such as TGF-β1.39,40

These profibrotic cytokines enhance collagen deposition,
decrease the smooth muscle content, reduce the elasticity of
the penis, and impair the ability of the cavernosa to compress
the subtunical veins, causing veno-occlusive dysfunction.36

As reported, the mechanisms of diabetic ED observed in
rat models may include elevated glycation end products
and oxygen-free radical levels, which impaired synthesis of
nNOS and decreased cGMP-dependent kinase 1.41,42 In
a word, ED is a multifactorial condition with a complex
neurovascular process, which is strongly associated with the
loss and dysfunction of the corporal endothelium and smooth
muscle.

Clinically, refractory male ED shows resistance to drug
therapy. Facing this obstacle, stem cell therapy is recognized as
a promising novel method in ED treatment, and considerable
studies have proved its feasibility in animal models and clinical
trials,43,44 which may be attributed to their capability of
self-renewal, proliferation, and multipotential differentiation.
Moreover, the regenerative properties have been established
in tissue engineering and regenerative medicine research.45,46

Some studies recently considered that the beneficial effects
of transplanted stem cells could not be merely explained by
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engraftment or differentiation into specific cells.47 Scientists
have paid more attention to the paracrine secretion of stem
cells, including chemoattractant molecules, bioactive factors,
and extracellular vesicles.48,49 Exosomes are 50- to 100-
nm membrane-bound extracellular vesicles, in which content
varies depending on the original cells and the activation
status, including noncoding small RNAs, mRNAs, proteins,
and lipids.50 Exosomes have been proved to serve multiple
physiologic and pathologic functions via regulating intercel-
lular communication.51 Lai et al52 reported that exosomes
derived from mesenchymal stem cells (MSCs) exerted a pro-
tective effect on cardiac tissue following myocardial infarc-
tion. Zhang et al53 demonstrated that MSC-derived exosomes
effectively promoted functional recovery in rats after trau-
matic brain injury by facilitating endogenous angiogenesis
and neurogenesis. When compared with stem cell therapy,
exosomes have many advantages, such as greater stability
and ease of storage and management, preclusion of the risk
of tumor formation, and a lower likelihood of an immune
rejection.19,26

Similar to stem cell therapy for ED, our analysis showed
that stem cell–derived exosomes increased SM/collagen and
the expression of α-SMA, CD31, nNOS, and eNOS damaged
in ED. CD31 can be considered a biomarker of endothe-
lium contents,54 while α-SMA and SM/collagen indicated the
smooth muscle contents in the corpus cavernosum of rats.
This hints that exosomes could improve the tissue structure
of the corpus cavernosum to ameliorate erectile function.
Moreover, our study suggested the downregulated expression
level of TGF-β1 and caspase 3. As a kind of profibrotic
cytokine, TGF-β1 was recognized as a key factor related
to the formation and development of corporal fibrosis as
in PD.55 Kim et al reported that the activation of TGF-β1
signaling initiated collagen accumulation and deposition.56

The antifibrotic effect of exosomes has been demonstrated
by some studies in different diseases, such as liver and lung
fibrosis.57,58 The downregulation of TGF-β1 in our analysis
may hint that the exosomes can also have an antifibrotic
effect on ED. Activation of caspases was recognized as the
biochemical marker for apoptosis, which is widely used in
apoptotic signals examination.59 Vasculogenic ED induced by
artery injury was characterized as the ischemic and hypoxic
state of the corpus cavernosum, which may increase the release
of reactive oxygen species, leading to cell apoptosis.60,61 It is
reported that oxidative stress in penile ischemia is an impor-
tant factor in ED progress.60 In our analysis, the administra-
tion of stem cell–derived exosomes decreased the expression
level of caspase 3 and TGF-β1, which indicated that exosomes
possess the ability to inhibit fibrosis and apoptosis, ensuring
the functional endothelium and smooth muscle contents in
the corpus cavernosum. The NO/cGMP signaling pathway
was important to regulate penile erection, and downregula-
tion of this pathway contributed to ED.62 NO produced by
eNOS in cavernous endothelial cells and nNOS in cavernous
nerves induce erection by increasing the cGMP content in
the smooth muscle cells of the corpus cavernosum.35,63 Song
et al reported that exosomes derived from smooth muscle
cells regulated the NO/cGMP pathway to ameliorate ED.32

The levels of eNOS and nNOS significantly increased after
exosome therapy in our analysis, which indicated that stem
cell–derived exosomes might make functional changes in the
corpus cavernosum via the NO/cGMP signaling pathway.32

The outcome was consistent with the change of ICP/MAP.

In our meta-analysis, only 2 studies used exosomes gen-
erated from human urine–derived stem cells33,34; the oth-
ers used exosomes derived from ADSCs or BMSCs. In our
analysis, 3 kinds of exosomes showed no difference in the
therapeutic efficacy. Although exosomes can be generated by
most cells, the exosomes derived from MSCs were used in
most research to treat ED. MSCs can be isolated from several
tissues, such as bone marrow, adipose tissue, Wharton jelly
tissue, umbilical cord blood, and neonatal teeth.64 Among
them, adipose-derived stem cells and bone marrow–derived
stem cells were exploited the most. Noncoding RNAs, such
as miRNA, snoRNA, and tRNA, enriched in the exosomes
produced by stem cells, may exert important biological func-
tions by conveying properties of parental cells. For example,
tRNAs accounted for >50% of the total small RNAs in the
exosomes derived from ADSCs, as opposed to merely 23%
to 25% in BMSC-derived exosomes.65 Interestingly, some
specific tRNAs were more abundant in exosomes than the
source cells. It has been proved that miRNAs were the major
content of cellular small RNA in MSCs, and the discrepancy
might suggest preferential sorting and release.50,65 Moreover,
even exosomes originating from the same parental cells might
exhibit heterogeneity of content.66–68 The subcellular origin
and cell activation status were responsible for the molecu-
lar heterogeneity of exosomes.69,70 Due to the limitation of
exosome isolation methods, bulk isolates rather than pure
exosome population isolates were used in a majority of studies
upon evaluation of their therapeutic efficacy.50 Exosomes iso-
lated from urine also contained substantial noncoding small
RNAs, such as tRNA and rRNA, while the exact functions
need further study. The research on exosome-mediated com-
munication mostly focused on well-known RNA species, such
as miRNAs and mRNAs, for the sake of detection sensitivity
and specificity of exosome contents.50 Zhu et al30 found that
ADSC-derived exosomes contained some microRNAs with
proangiogenic (miR-126, miR-130a, and miR-132) and antifi-
brotic (miR-let7b and miR-let7c) functions. Simultaneously,
proteins on the membrane of and in the vesicles get involved in
inter- and intracellular signaling mediation. Wang et al28 used
the transmembrane serine protease corin in ADSC-derived
exosomes to improve ED in diabetic rats and suggested that
it may play a role through the ANP/NO/cGMP signaling
pathway.

To the best of our knowledge, this is the first meta-analysis
providing comprehensive insights into the effects of stem cell–
derived exosomes on ED in rats. The value of a system-
atic review of experimental animal studies has been steadily
understood.71,72 The consistent results of exosome therapy
efficacy across various ED models in our study could provide
reassurance that human beings might also respond in the
same way.

There are still several limitations in this study. A high degree
of heterogeneity remains in ICP/MAP outcome after sub-
group analysis. This may be attributed to the methodological
heterogeneity of the studies. Specifically, the exosome types,
extraction methods, and animal models used in studies were
quite different. Given the limited number of included studies, a
persuasive subgroup analysis cannot be performed. Moreover,
different software (eg, SPSS, GraphPad Prism, and Stata) was
applied across the studies, which may cause high statistical
heterogeneity.

The Egger test shows publication bias in the analysis, which
may be attributed to the fact that articles with negative
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conclusions are less likely to be published and retrieved. How-
ever, we tried our best to retrieve animal intervention studies
on exosome treatment for ED, including preprint databases
such as bioRxiv and medRxiv, but failed to find more rele-
vant research, perhaps because exosome therapy for ED is a
relatively new topic. Despite the existence of publication bias,
our analysis still shows the therapeutic effects of exosomes
on ED.

Conclusion

This meta-analysis reveals the therapeutic effects of stem cell–
derived exosomes on ED rat models. Exosome administration
may improve erectile function by activating the NO/cGMP
signaling pathway, ameliorating endothelium, and inhibiting
the fibrosis and apoptosis of cavernosum. Stem cell–derived
exosomes have great potential to afford a novel cell-free ther-
apy for ED. However, further studies are needed to identify
the functional components of exosomes, and clinical trials
may be worthwhile to demonstrate the actual effects on the
human body.
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