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WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Fat accumulation in the liver contributes to the development of chronic liver 

disease and is implicated in adverse cardiometabolic outcomes
 ⇒ Several metabolic, lifestyle, and pharmacological factors have been 

implicated in the accumulation of liver fat, however, evidence for their causal 
effects is limited

WHAT THIS STUDY ADDS
 ⇒ Genetic evidence supports causal effects of increased adiposity, type 2 

diabetes (including raised fasting insulin levels), systolic blood pressure, 
smoking, alcohol consumption, and sedentary time watching television on 
increasing liver fat

 ⇒ Genetic evidence supports protective effects on liver fat of higher low density 
lipoprotein cholesterol and high density lipoprotein cholesterol levels, but 
detrimental effects of higher triglyceride levels

 ⇒ No strong genetic evidence to support effects of lipid lowering drug targets 
on liver fat, but some evidence supports blood pressure lowering through β 
blocker and calcium channel blocker antihypertensive drugs might reduce 
liver fat

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE, OR POLICY
 ⇒ The findings complement existing epidemiological associations, further 

provide mechanistic insight, and support a potential role for drug 
interventions in reducing the burden of hepatic steatosis and related disease

 ⇒ Further clinical study is now warranted to investigate the relevance of these 
genetic analyses for patient care

ABSTRACT
OBJECTIVE To investigate the effects of metabolic 
traits, lifestyle factors, and drug interventions 
on liver fat using the mendelian randomisation 
paradigm.
DESIGN Mendelian randomisation study.
SETTING Publicly available summary level data from 
genome- wide association studies.
PARTICIPANTS Genome- wide association studies 
of 32 974 to 1 407 282 individuals who were 
predominantly of European descent.
EXPOSURES Genetic variants predicting nine 
metabolic traits, six lifestyle factors, four lipid 
lowering drug targets, three antihypertensive 
drug targets, and genetic association estimates 
formagnetic resonance imaging measured liver fat.
MAIN OUTCOME MEASURES Mendelian 
randomisation analysis was used to investigate the 
effects of these exposures on liver fat, incorporating 
sensitivity analyses that relaxed the requisite 
modelling assumptions.
RESULTS Genetically predicted liability to obesity, 
type 2 diabetes, elevated blood pressure, elevated 
triglyceride levels, cigarette smoking, and sedentary 

time watching television were associated with 
higher levels of liver fat. Genetically predicted lipid 
lowering drug effects were not associated with liver 
fat; however, β blocker and calcium channel blocker 
antihypertensive drug effects were associated with 
lower levels of liver fat.
CONCLUSION These analyses provide evidence of 
a causal effect of various metabolic traits, lifestyle 
factors, and drug targets on liver fat. The findings 
complement existing epidemiological associations, 
further provide mechanistic insight, and potentially 
supports a role for drug interventions in reducing 
the burden of hepatic steatosis and related disease. 
Further clinical study is now warranted to investigate 
the relevance of these genetic analyses for patient 
care.

Introduction
The accumulation of fat in the liver contributes 
to the development of chronic liver disease and 
is implicated in various adverse cardiometabolic 
outcomes.1 2 Hepatic steatosis, which is defined by 
a liver fat content of more than 5.5%, has an esti-
mated prevalence of 25% globally, with rates rapidly 
increasing as the burden of diabetes and obesity also 
rises.3 Several metabolic, lifestyle, and pharmacolog-
ical factors have been associated in the accumulation 
of liver fat. The most commonly encountered comor-
bidities are obesity, type 2 diabetes mellitus, hyper-
lipidaemia, and hypertension.4 In terms of lifestyle 
factors, alcohol consumption, cigarette smoking, 
physical inactivity, and caffeine consumption have 
most closely been linked with development of liver 
fat.5 Consensus guidance advocates alcohol cessa-
tion, weight loss, and specific drug treatments for 
reducing liver fat and the associated risk of hepatic 
steatosis.6 However, broader evidence of the causal 
effects of metabolic traits, lifestyle factors, and 
drug treatments on liver fat is limited. Furthermore, 
conventional epidemiological studies investigating 
these areas are limited in their ability to draw causal 
inferences because of the potential for spurious asso-
ciations arising due to environmental confounding 
or reverse causation.

Use of mendelian randomisation leverages 
randomly allocated genetic variants as instru-
mental variables for investigating the effect of 
modifying an exposure on the risk of an outcome.7 
The random distribution of genetic variants means 
that their associations with disease risk are not 
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subject to confounding from environmental factors. 
Furthermore, the allocation of genetic variants 
at conception means that their associations with 
disease outcomes are unlikely to be attributable to 
reverse causation. In this study, we use two sample 
summary data mendelian randomisation to investi-
gate the effects of metabolic traits, lifestyle factors, 
and lipid lowering and antihypertensive drug inter-
ventions on liver fat. The independent roles were 
explored by use of multivariable mendelian randomi-
sation analysis for traits with genetic correlations. By 
identifying modifiable causal risk factors for hepatic 
steatosis, we offer insight into potential therapeutic 
strategies for lowering the burden of liver disease 
and related adverse cardiometabolic outcomes.

Methods
Study design
This study is a two sample, mendelian randomisa-
tion study based on publicly available summary level 
data for nine metabolic traits, six lifestyle factors, 
four lipid lowering drug targets, three antihyperten-
sive drug targets, and liver fat measured by magnetic 
resonance imaging. Figure 1 shows the study design 
and three key assumptions of mendelian randomi-
sation analysis: the genetic variants used as instru-
mental variables should be strongly associated with 
the exposure; the genetic variants for the exposure 
should not be associated with any confounders in 
the association between the exposure and outcome 
(independence assumption); and the genetic variants 
affect the outcome merely through their effects on 
the exposure, but not via other alternative pathways 

(exclusion restriction assumption). All studies that 
we used had been approved by corresponding ethical 
review committees.

Genetic instrument selection
We selected single nucleotide polymorphisms asso-
ciated at genome- wide significance (P<5×10–8) 
with nine metabolic traits (body mass index, waist- 
to- hip ratio, type 2 diabetes, fasting insulin, fasting 
glucose, systolic blood pressure, high density choles-
terol (HDLC) and low density lipoprotein cholesterol 
(LDLC), and triglycerides) and six lifestyle factors 
(smoking initiation, alcohol, coffee and caffeine 
consumption, strenuous sports, and television 
watching) from corresponding genome- wide asso-
ciation studies (table  1). Linkage disequilibrium 
among these single nucleotide polymorphisms was 
estimated based on the 1000 Genomes European 
reference panel.8 Single nucleotide polymorphisms 
in linkage disequilibrium (r2>0.01) were removed 
and the single nucleotide polymorphisms with the 
smallest P value for the genetic association were 
retained. Three additional smoking related traits 
(age of smoking initiation, cigarettes per day, and 
lifetime smoking index9) with selected single nucle-
otide polymorphisms based on the same approach 
as mentioned previously were included to further 
explore the smoking association. These smoking 
related traits were considered as supplementary 
exposures because of sample overlap in the popu-
lation used to measure them with the liver fat 
outcome, and their smaller explained phenotypical 

Genetic variants Exposure Liver fat percentage

Confounder

Univariable MR analysis
• Inverse-variance weighted method
• Weighted median method
• MR-Egger method
• MR-PRESSO method
• Contamination mixture method
Multivariable MR analysis
Mediation analysis

Assumption 1

Assumption 2

✓

✗

✗
Assumption 3

MR analysisMetabolic factors
• Body mass index
• Waist-to-hip ratio
• Type 2 diabetes
• Fasting insulin
• Fasting glucose
• Systolic blood pressure
• Lipids
Lifestyle factors
• Cigarette smoking
• Alcohol consumption
• Coffee consumption
• Caffeine consumption
• Physical activity
• Sedentary behaviour
Drug targets
• Lipid lowering targets
• Antihypertensive
   targets

Figure 1 | Directed acyclic graph and key assumptions of mendelian randomisation (MR) design. For details of 
assumptions, please refer to the study design part in the manuscript. MR- PRESSO=Mendelian Randomization 
Pleiotropy Residual Sum and Outlier
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variance as compared with the analysis consider 
smoking initiation, which could potentially intro-
duce bias or reduce statistical power. We followed 

the same criteria for instrumental variable selection 
in multivariable mendelian randomisation analysis, 
first combining single nucleotide polymorphisms 

Table 1 | Data sources on metabolic and lifestyle factors and drug targets

Exposure
Instrumental 
variables Unit

Participants included in 
analysis

Sample 
overlap (%) Adjustments

Metabolic factor
Body mass index33 312 SD 806 834 individuals of Euro-

pean descent
4.1 Age, sex, and genetic 1- 5 

principal components
Waist- to- hip ratio33 581 SD 697 734 individuals of Euro-

pean descent
4.7 Age, sex, and genetic 1- 5 

principal components
Type 2 diabetes34 497 One unit in log- 

transformed odds
228 499 type 2 diabetes cas-
es and 1 178 783 non- cases 
of multi- ancestries

0.0 Age, sex, and the first 10 ge-
netic principal components

Fasting insulin35 38 log pmol/L Up to 196 991 individuals of 
European descent

0.0 BMI, study specific covariates, 
and principal components

Fasting glucose35 71 mmol/L Up to 196 991 individuals of 
European descent

0.0 BMI index, study specific 
covariates, and principal 
components

Systolic blood 
pressure36

228 10 mm Hg Up to 1 006 863 individuals 
of European descent

3.3 Age, sex, BMI, genotyping 
chips

HDL cholesterol37 473 SD 403 943 individuals of Euro-
pean descent

8.2 Age, sex, and genotyping chips

LDL cholesterol37 199 SD 440 546 individuals of Euro-
pean descent

7.5 Age, sex, and genotyping chips

Triglycerides37 392 SD 441 016 individuals of Euro-
pean descent

7.5 Age, sex, and genotyping chips

Lifestyle factor
Smoking initiation38 314 SD in log- transformer 

odds
1 232 091 individuals of 
European descent

2.7 Age, sex, and the first 10 ge-
netic principal components

Age of smoking 
initiation38

7 SD Up to 262 990 individuals of 
European descent

12.5 Age, sex, and the first 10 ge-
netic principal components

Cigarettes per day38 19 SD Up to 263 954 individuals of 
European descent

12.5 Age, sex, and the first 10 ge-
netic principal components

Lifetime smoking 
index9

126 SD change of lifetime 
smoking index

462 690 individuals of Euro-
pean descent

7.1 Genotyping chip and sex

Alcohol drinking38 84 SD increase of log- 
transformed alcoholic 
drinks/week

941 280 individuals of Euro-
pean descent

3.5 Age, sex, and the first 10 ge-
netic principal components

Coffee consump-
tion39

12 50% change 375 833 individuals of Euro-
pean descent

8.8 Age, sex, BMI, total energy, 
proportion of typical food in-
take, and 20 genetic principal 
components

Caffeine consump-
tion40

24 SD 362 316 individuals of Euro-
pean descent

9.1 Age, sex, genotyping array, and 
the first 30 genetic principal 
components

Strenuous sports41 6 ≥ 2–3 v 0 days/week 350 492 individuals of Euro-
pean descent

9.4 Age, sex, genotyping chip, first 
10 genomic principal compo-
nents, centre, and season

Television watch-
ing42

112 Hours/day 422 218 individuals of Euro-
pean descent

7.8 Age squared, age, sex, age- sex 
interaction, the first 30 princi-
pal components

Drug target
Lipid lowering 
target10

One for 
HMGCR,
two for LDLR,
one for 
NPC1L1,
two for PCSK9

10 mg/dL LDL choles-
terol

80 959 to 295 826 individu-
als of European descent

0 Age, sex, study sample, and 
five principal components

Antihypertensive 
target11

One for ACEi,
six for β 
blockers,
23 for CCBs

10 mm Hg systolic 
blood pressure

757 601 individuals of Euro-
pean descent

4.4 Age squared, age, sex, BMI, 
genotyping chips

Sample overlap was calculated by the sample size of the outcome (n=32 974) divided by the sample size of the exposure whose data sources included UK 
Biobank. ACEi=angiotensin converting enzyme inhibitor; BMI=body mass index; CCBs=calcium channel blockers; HDL=high density lipoprotein; LDL=low 
density lipoprotein; SD=standard deviation.
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associated with either exposure at P<5×10–8 and then 
removing single nucleotide polymorphisms in high 
linkage disequilibrium.

Genetic variants proxying the effects of lipid 
lowering and antihypertensive drug treatments 
were obtained by use of approaches similar to 
previous mendelian randomisation studies.10 11 For 
lipid lowering drugs, single nucleotide polymor-
phisms associated with LDLC concentrations at 
the genome- wide significance level (P<5×10–8) 
and located in gene regions corresponding to four 
drug targets (HMGCR (3- hydroxy- 3- methyl- glutary
l- coenzyme A reductase), LDLR (low density lipo-
protein receptor), NPC1L1 (Niemann- Pick C1- like 
1), and PCSK9 (proprotein convertase subtilisin/
kexin type 9)) were obtained from the Global Lipids 
Genetics Consortium.10 For antihypertensive drugs, 
genes encoding drug targets for ACEi (angiotensin 
converting enzyme inhibitor), β blockers, and calcium 
channel blockers were identified in DrugBank.11 
Single nucleotide polymorphisms in identified gene 
regions associated with systolic blood pressure at 
the genome- wide significance level (P<5×10–8) were 
obtained from the International Consortium of Blood 
Pressure.11 Single nucleotide polymorphisms with 
r2<0.01 were selected as instrumental variables.11 
Details for data sources are displayed in table  1 
and information about genetic instruments online 
supplemental table 1.

Outcome data source
Summary level data for hepatic fat measured by 
abdominal magnetic resonance imaging were 
obtained from a genome- wide association analysis of 
32 974 generally healthy adults of European descent 
in the UK Biobank study.12 The UK Biobank study is 
an ongoing cohort study collecting phenotypic and 
genetic data from more than 500 000 individuals 
since its initiation in 2006- 10.13 The genetic associa-
tions with liver fat were scaled to one standard devi-
ation (SD) of liver fat percentage and one SD increase 
equals about 4.25 unit increase of absolute liver fat 
percentage points.12 The characteristics of the popu-
lation are described in online supplemental table 
2. Liver fat was quantified by a machine learning 
algorithm trained on a small subset (n=4511) with 
previously quantified liver fat values.12 Single nucle-
otide polymorphismsassociated with liver fat were 
adjusted for sex, year of birth, age at time of MRI, age 
at time of MRI squared, genotyping array, MRI device 
serial number, and the first 10 principal components 
of genetic variation. These adjustments were likely 
made in the original study to account for potential 
population stratification and confounding effects.12

Statistical analysis
We harmonised all variants serving as instrumental 
variables between the exposure and outcome data 
by effect allele. Given that a few single nucleotide 

polymorphisms were unavailable in the outcome 
data, we did not find proxies to replace missing 
single nucleotide polymorphisms. We calculate F 
statistic for metabolic and lifestyle factors in univar-
iable mendelian randomisation analysis.14 Similarly, 
conditional F statistic was estimated to inform the 
instrument strength in multivariable mendelian 
randomisation analysis.

The inverse variance weighted mendelian rando-
misation method was used as the main analysis. 
The model under the multiplicative random effects 
was used for the traits with at least three single 
nucleotide polymorphisms and that model under 
the fixed effects was used for the traits with one or 
two single nucleotide polymorphisms. The weighted 
median,15 mendelian randomisation- Egger,16 
mendelian randomisation pleiotropy residual sum 
and outlier (MR- PRESSO),17 and contamination 
mixture,18 are mendelian randomisation sensi-
tivity analysis methods that were used to examine 
the robustness of the mendelian randomisation 
associations to pleiotropic variants that might be 
biasing the underlying assumptions of mendelian 
randomisation. The weighted median method can 
provide a robust mendelian randomisation esti-
mate if 50% of the genetic instruments are valid.19 
Mendelian randomisation- Egger regression can 
detect horizontal pleiotropy (violation of the exclu-
sion restriction assumption that single nucleotide 
polymorphisms affect fat liver not merely through the 
exposure) by its intercept test and generate corrected 
mendelian randomisation estimates after adjusting 
for pleiotropic effects, although with a relatively low 
level of precision.16 MR- PRESSO can identify variants 
outlying in their mendelian randomisation estimates 
and provide a corrected estimate after removal of 
such outlier variants.17 The contamination mixture 
method can generate accurate mendelian randomi-
sation estimates when a large number of variants 
are available, even if a proportion are invalid.18 To 
additionally minimise the direct influence of vari-
ants selected as instruments on the outcome, we 
performed a sensitivity analysis where we excluded 
single nucleotide polymorphisms that were associ-
ated with liver fat at the loci- wide significance level 
(P<1×10–5). We also conducted a Steiger direction-
ality test to examine the possible reverse causality.19 
Cochran’s Q value was used to assess heterogeneity 
among single nucleotide polymorphism estimates as 
an indicator of their pleiotropic effects.20

We performed multivariable mendelian randomi-
sation analysis for the metabolic traits, with adjust-
ment for genetically predicted body mass index. 
This analysis had two aims: to minimise potential 
pleiotropic effects from body mass index on the 
associations between metabolic factors and liver 
fat, and to examine for potential mediating roles 
of metabolic factors in the association between 
body mass index and liver fat. Network mendelian 
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randomisation was used to estimate the proportion 
of the total effect of body mass index on liver fat 
that is mediated through other metabolic factors.21 
Given correlations across three lipid biomarkers and 
correlation between smoking and alcohol consump-
tion, we also conducted multivariable mendelian 
randomisation analyses with mutual adjustments 
for these sets of traits. The Benjamini- Hochberg 
false discovery rate correction was used to account 
for multiple testing.22 All tests were two sided and 
done using the TwoSampleMR,23 MR- PRESSO,17 and 
MendelianRandomization,19 packages in the R soft-
ware (version 4.0.2).

Patients and public involvement
No patients or members of the public were involved 
in the design or reporting of this study. On publica-
tion, the study findings will be disseminated to the 
public through the authors’ institutional research 
media offices.

Results
Sample overlap was 0- 12.5% between the expo-
sures and the outcome data sources (table  1). All 
estimated F statistics were more than 10, which 
indicated limited bias caused by sample overlap 
(online supplemental table 3). For eight of the nine 
metabolic factors and three of the six lifestyle factors 
considered, significant associations with hepatic 
fat were noted (figure  2). All associations persisted 
after the false discovery rate correction for multiple 
testing (online supplemental table 4). The change of 
liver fat was 0.32 SD units (95% confidence interval 

0.26 to 0.39) per one SD increase in genetically 
predicted body mass index, 0.51 (0.45 to 0.57) per 
one SD increase in waist- to- hip ratio; 0.15 (0.12 to 
0.19) per one unit increase in log- transformed odds 
ratio of type 2 diabetes; 0.75 (0.43 to 1.07) per one 
log- transformed pmol/L increase in fasting insulin 
levels; 0.10 (0.03 to 0.16) per 10 mm Hg increase 
in systolic blood pressure; −0.13 (−0.19 to –0.07), 
−0.11 (−0.20 to –0.02), and 0.15 (0.09 to 0.22) per 
one SD increase in levels of HDLC, LDLC, and triglyc-
erides, respectively; 0.13 (0.07 to 0.18) per one SD 
increase in log- transformed odds ratio of smoking 
initiation; 0.33 (0.08 to 0.58) per one SD increase 
in log- transformed alcoholic drinks per week; and 
0.36 (0.22 to 0.50) per one hour increase in televi-
sion watching time. No strong associations with fat 
liver were recorded with genetically predicted fasting 
glucose concentrations, coffee consumption, caffeine 
(either from coffee or tea) consumption, or strenuous 
sports (figure 2). We observed an inverse association 
of genetically predicted age of smoking initiation 
and a positive association of genetically predicted 
lifetime smoking index with liver fat (figure  1). 
However, genetically predicted cigarettes smoked 
per day showed no strong association with liver fat 
(figure  1). The association for genetically predicted 
alcohol consumption did not remain significant after 
excluding single nucleotide polymorphisms in the 
ADH1B gene region (figure 2).

The associations for genetically predicted meta-
bolic and lifestyle factors were overall consistent 
in sensitivity analyses, although with wider 95% 
confidence interval with the weighted median and 

Metabolic factor

  Body mass index

  Waist-to-hip ratio

  Type 2 diabetes

  Fasting insulin

  Fasting glucose

  Systolic blood pressure

  HDL cholesterol

  LDL cholesterol

  Triglycerides

Lifestyle factor

  Smoking initiation

  Age of smoking initiation

  Cigarettes per day

  Lifestime smoking index

  Alcohol drinking

  Alcohol drinking (without ADH1B)

  Coffee consumption

  Caffeine consumption

  Strenuous sports

  Television

0.32 (0.26 to 0.39)

0.51 (0.46 to 0.57)

0.15 (0.12 to 0.19)

0.75 (0.43 to 1.07)

-0.06 (-0.19 to 0.07)

0.10 (0.03 to 0.16)

-0.13 (-0.19 to -0.07)

-0.11 (-0.20 to -0.02)

0.15 (0.09 to 0.22)

0.13 (0.07 to 0.18)

-0.33 (-0.56 to -0.11)

0.03 (-0.05 to 0.10)

0.27 (0.15 to 0.40)

0.33 (0.08 to 0.58)

0.15 (-0.12 to 0.42)

0.02 (-0.19 to 0.23)

0.06 (-0.07 to 0.19)

-0.64 (-1.37 to 0.10)

0.36 (0.22 to 0.50)

-1 -0.5 0.5 10

Exposure Beta
(95% CI)

Beta
(95% CI)

SD

SD

Log odds ratio

Log pmol/L

mmol/L

10 mm Hg

SD

SD

SD

SD

SD

SD

SD

SD

SD

50% increase

SD

≥2-3 v 0 days per week

Hours per day

Unit

<0.001

<0.001

<0.001

<0.001

0.383

0.005

<0.001

0.019

<0.001

<0.001

0.003

0.482

<0.001

0.010

0.281

0.854

0.401

0.090

<0.001

P value

Figure 2 | Associations of genetically proxied metabolic and lifestyle factors with hepatic fat. The x axis unit is 
standard deviation (SD) change in liver fat percentage. One SD increase is approximately a 4.25 unit increase 
of absolute liver fat percentage points. CI=confidence interval; HDL=high density lipoprotein; LDL=low density 
lipoprotein
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mendelian randomisation- Egger regression anal-
yses (online supplemental table 5). Moderate to 
high heterogeneity was observed in the analyses of 
waist- to- hip ratio, type 2 diabetes, the three lipid 
biomarkers, alcohol and coffee consumption, stren-
uous sports, and television watching (online supple-
mental table 5). We observed evidence of bias in the 
mendelian randomisation- Egger intercept test for 
type 2 diabetes, lipids, and alcohol consumption (P 
for intercept test<0.05). One to 15 outliers were iden-
tified in MR- PRESSO analyses; however, all observed 
associations remained consistent after removal of 
outliers (online supplemental table 5). The associa-
tions were also consistent in the sensitivity analysis 
after removing single nucleotide polymorphisms that 
were strongly associated with liver fat (online supple-
mental table 6). However, Steiger directionality tests 
indicated possible reverse causality for the associa-
tions of alcohol consumption and strenuous sports, 
respectively, with liver fat (online supplemental table 
3).

Conditional F statistics for traits included in multi-
variable mendelian randomisation analysis were 
more than 10 except for smoking initiation in the 
multivariable mendelian randomisation analysis 
with mutual adjustment for smoking initiation and 
alcohol consumption. The association attenuated for 
genetically predicted body mass index in a multivar-
iable analysis that adjusted for genetically predicted 
levels of other metabolic factors (figure  3). Among 
five possible mediators, liability to type 2 diabetes 
appeared to mediate almost half (47% (95% confi-
dence interval 18% to 77%)) of the effect of body 
mass index on liver fat. Adjustment for genetically 
predicted levels of other metabolic factors resulted 
in relatively little attenuation of the association for 
genetically predicted body mass index (table  2). 
Similarly, the pattern of the mendelian randomisa-
tion associations for lipid biomarkers only changed 
slightly in the multivariable model with mutual 
adjustment (table  2). The associations for genet-
ically predicted smoking initiation and alcohol 

None

Waist-to-hip ratio

Type 2 diabetes

Systolic blood pressure

HDL cholesterol

LDL cholesterol

Triglycerides

0.32 (0.26 to 0.39)

0.10 (0.03 to 0.16)

0.17 (0.08 to 0.26)

0.31 (0.25 to 0.38)

0.26 (0.17 to 0.34)

0.31 (0.21 to 0.40)

0.27 (0.18 to 0.36)

0 0.5

Adjustment Beta
(95% CI)

Beta
(95% CI)

<0.001

0.006

<0.001

0.001

<0.001

<0.001

<0.001

P value

-

-

47 (18 to 77)

3 (-24 to 30)

20 (-10 to 51)

5 (-29 to 39)

17 (-15 to 48)

Mediation
(%)

Figure 3 | Associations of genetically predicted body mass index with hepatic fat, with and without adjustment for 
other metabolic factors. CI=confidence interval; HDL=high- density lipoprotein; LDL=low- density lipoprotein

Table 2 | Multivariable associations of genetically proxied metabolic and lifestyle factors with hepatic fat

Exposure Adjustment

Without adjustment With adjustment

Beta (95% CI) P value Beta (95% CI) P value

Waist- to- hip ratio Body mass index 0.51 (0.46 to 0.57) <0.001 0.49 (0.42 to 0.55) <0.001
Type 2 diabetes Body mass index 0.15 (0.12 to 0.19) <0.001 0.14 (0.11 to 0.17) <0.001
Systolic blood pressure Body mass index 0.10 (0.03 to 0.16) 0.005 0.10 (0.04 to 0.15) 0.001
HDL cholesterol Body mass index −0.13 (−0.19 to 

−0.07)
<0.001 −0.11 (−0.16 to 

−0.06)
<0.001

LDL cholesterol Body mass index −0.11 (−0.2 to −0.02) 0.019 −0.11 (−0.18 to 
−0.04)

0.002

Triglycerides Body mass index 0.15 (0.09 to 0.22) <0.001 0.14 (0.08 to 0.21) <0.001
HDL cholesterol LDL cholesterol and triglycerides −0.13 (−0.19 to 

−0.07)
<0.001 −0.11 (−0.18 to 

−0.04)
0.004

LDL cholesterol HDL cholesterol and triglycer-
ides

−0.11 (−0.20 to 
−0.02)

0.019 −0.13 (−0.20 to 
−0.06)

0.001

Triglycerides LDL and HDL cholesterol 0.15 (0.09 to 0.22) <0.001 0.16 (0.07 to 0.24) 0.001
Smoking initiation Alcohol drinking 0.13 (0.07 to 0.18) <0.001 0.09 (0.02 to 0.15) 0.009
Alcohol drinking Smoking initiation 0.33 (0.08 to 0.58) 0.010 0.18 (0.01 to 0.35) 0.036
Alcohol drinking (without 
ADH1B)

Smoking initiation 0.15 (−0.12 to 0.42) 0.281 −0.04 (−0.24 to 0.15) 0.659

The unit for liver fat was standard deviation of liver fat percentage. HDL=high density lipoprotein; LDL=low density lipoprotein.
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consumption also attenuated only slightly after 
mutual adjustment (table 2).

Genetically proxied β blocker and calcium channel 
blocker effects, but not lipid lowering or ACEi anti-
hypertensive drug effects, were associated with lower 
levels of liver fat (figure 4). In genetically predicted 
systolic blood pressure via β blocker, a change in 
liver fat of −0.31 (95% confidence interval −0.60 to 
–0.02) per 10 mm Hg decrease was observed and 
via calcium channel blocker effect, −0.17 (−0.30 
to –0.04) was observed. The associations were 
consistent in sensitivity analyses and unlikely to be 
biased by horizontal pleiotropy (online supplemental 
table 5). However, the association for genetically 
proxied β blockers did not pass the false discovery 
rate correction (online supplemental table 4).

Discussion
Principal findings
This mendelian randomisation analysis identified 
evidence supporting causal effects on increasing liver 
fat of increased adiposity, type 2 diabetes (including 
raised fasting insulin levels), systolic blood pressure, 
smoking, alcohol consumption, and sedentary time 
watching television. Additionally, genetic evidence 
supports the protective effects on liver fat of higher 
LDLC and HDLC concentrations, but detrimental 
effects of higher triglyceride levels. No strong evidence 
supported the effects of lipid lowering drug targets on 
liver fat but some evidence showed that blood pres-
sure lowering through β blocker and calcium channel 
blocker antihypertensive drugs might reduce liver 
fat. Our findings are consistent with existing under-
standing on the determinants of fat accumulation in 
the liver; namely, increased uptake of free fatty acids 
into the liver, impaired metabolism within the liver, 
and increased de novo lipogenesis.24 In this way, 
the findings that genetically predicted higher LDLC 

and HDLC concentrations are associated with lower 
liver fat levels might be explained by their role in 
lipid cycling. Regarding our novel genetic evidence 
for a potential protective effect of β blocker and 
calcium channel blocker antihypertensive drugs on 
liver fat, the point estimates are consistent with the 
mechanism being through blood pressure reduction. 
Although the relation between blood pressure and 
liver fat is complicated and can be mediated through 
insulin resistance,25 the mendelian randomisation 
approach leveraged here supports a causal effect, 
which warrants further evaluation in clinical studies.

Strengths
These findings make important advances in our 
understanding of hepatic steatosis and related 
diseases.6 Firstly, the mendelian randomisation 
paradigm strengthens the evidence for causal effects 
of these risk factors, rather than only an association, 
which could also be attributable to environmental 
confounding factors and reverse causation. This 
factor is particularly important for identifying ther-
apeutic targets that reduce disease risk and burden. 
Secondly, our findings offer novel mechanistic 
insight. For example, the evidence for a causal effect 
of insulin resistance on liver fat supports that this 
mediating mechanism is likely underlying the effect 
of type 2 diabetes. Previous work has used mende-
lian randomisation to find evidence supporting an 
effect of higher liver fat on increasing type 2 diabetes 
mellitus risk, supporting potential bi- directional 
effects in this relation.26 Similarly, the incorporation 
of multivariable mendelian randomisation provides 
evidence that effects of smoking on liver fat occur 
independently of alcohol consumption, and further 
evidence that body mass index is having direct 
effects even after accounting for its effects on other 
cardiometabolic risk factors, such as diabetes and 

Lipid lowering target

  HMGCR

  LDLR

  NPC1L1

  PCSK9

Antihypertensive target

  Angiotensin converting enzyme inhibitor

  β blockers

  Calcium channel blockers

-0.04 (-0.10 to 0.02)

-0.01 (-0.05 to 0.03)

0.10 (-0.04 to 0.24)

-0.03 (-0.11 to 0.05)

-0.05 (-0.61 to 0.50)

-0.31 (-0.60 to -0.02)

-0.17 (-0.30 to -0.04)

-0.5 0.5

Drug target Beta
(95% CI)

Beta
(95% CI)

0.270

0.441

0.146

0.442

0.856

0.038

0.009

P value

0

Figure 4 | Associations of genetically proxied lipid lowering and antihypertensive therapies with hepatic fat. The 
associations for genetically proxied lipid lowering target was scaled to a decrease of 10 mg/dL low density lipoprotein 
cholesterol concentrations. The associations for genetically proxied antihypertensive target was scaled to a decrease 
of 10 mm Hg systolic blood pressure. The x axis unit is standard deviation (SD) change in liver fat percentage. 
One SD increase is approximately a 4.25 unit increase of absolute liver fat percentage points. CI=confidence 
interval; HMGCR=3- hydroxy- 3- methyl- glutaryl- coenzyme A reductase; LDLR=low density lipoprotein receptor; 
NPC1L1=Niemann- Pick C1- like 1; PCSK9=proprotein convertase subtilisin/kexin type 9
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blood pressure. The mendelian randomisation medi-
ation analysis supported that approximately half of 
the effect of body mass index on liver fat was occur-
ring through increased liability to type 2 diabetes 
mellitus, while around a fifth of the effect of body 
mass index can be mediated through dyslipidaemia. 
Thirdly, this work is consistent with safety of lipid 
lowering drugs, given that we did not identify any 
strong evidence for an effect on increasing liver fat. 
For the β blocker and calcium channel blocker anti-
hypertensive drugs, evidence suggested that these 
agents might potentially be reducing liver fat, likely 
through their effects on lowering blood pressure.

Comparison with other studies
Our current work is largely consistent with previous 
epidemiological and genetic analyses. Existing 
epidemiological investigation has identified strong 
associations of fatty liver disease with obesity, 
type 2 diabetes, hyperlipidemia, hypertension, 
and metabolic syndrome.27 Considering lifestyle 
factors, observational associations have also previ-
ously been established for alcohol consumption, 
smoking, and physical activity, consistent with the 
pattern of our current findings.5 Although evidence 
for a role of lipid lowering drugs in non- alcoholic 
fatty liver disease has been mixed, we did not iden-
tify any strong support in clinical studies,28 which 
is consistent with the findings of our genetic anal-
yses. This finding might be explained by these 
drugs primarily targeting homeostasis of lipid levels 
in the blood and periphery, rather than liver fat. A 
previous mendelian randomisation analysis consid-
ering the outcome of non- alcoholic fatty liver disease 
similarly found associations for obesity traits, type 
2 diabetes liability, blood pressure, and smoking 
similar to those associations observed in our current 
work considering liver fat as the outcome,29 thus 
supporting its conclusions. Our estimates for type 2 
diabetes mediating approximately half of the effect of 
body mass index on liver fat are also similar to those 
obtained when using the mendelian randomisation 
paradigm to explore the mediating effects of type 
2 diabetes for body mass index on cardiovascular 
disease outcomes.30 Our current mendelian randomi-
sation investigation into the effects of drugs is novel 
and supports further investigation into the notion of 
β blocker and calcium channel blocker antihyper-
tensive drug treatment for reducing liver fat, thus 
highlighting the possibility of interventions beyond 
lifestyle modification, which might also be difficult 
to implement and maintain in practice.31

Limitations
The main advantage of the mendelian randomisation 
approach taken in this work is that the analyses is 
time and cost efficient by use of pre- existing, large 
scale genetic association data. The random alloca-
tion of genetic variants at conception means that the 

approach is less susceptible to the bias from envi-
ronmental confounding and reverse causation that 
can hinder causal inference in a traditional epide-
miological study design. However, this approach 
also has weaknesses. Firstly, the analyses were 
largely restricted to individuals of European genetic 
ancestry, thus limiting generalisability to other 
ancestry groups. Secondly, the mendelian randomi-
sation paradigm explores the effects of small, life-
long changes in the genetically predicted levels of a 
risk factor on an outcome, in this case liver fat. This 
differs from estimating the effect of a clinical inter-
vention, which might have a larger magnitude but 
over a shorter period of life. Similarly, our approach 
could not inform on the dose- response association 
between these risk factors and levels of liver fat. 
Thirdly, the mendelian randomisation approach is 
susceptible to bias from variants that maybe having 
pleiotropic effects on the outcome through path-
ways unrelated to the exposure being considered. 
Although we incorporated a range of sensitivity anal-
yses to prevent confounding affecting our conclu-
sions, this possibility cannot be entirely excluded. 
Fourthly, we considered the outcome of liver fat in 
this work, which in itself, might not directly cause 
disease. Additionally, we quantified liver fat was 
by use of a machine learning algorithm,12 and the 
potential for misspecification with this approach 
should be acknowledged. Further work is required 
to investigate the relation between high levels of 
liver fat and consequent liver and cardiometabolic 
disease risk. Fifthly, even though around 10% of 
sample overlapped for certain exposures with the 
outcome, which might inflate type one error rate, F 
statistics for these associations were more than 10, 
which indicated that the bias caused by this mild 
sample overlap should have been limited. However, 
conditional F statistic for smoking initiation was less 
than 10, which might introduce weak instrument 
bias in multivariable analysis of smoking initiation 
and alcohol consumption in relation to liver fat. 
Sixthly, use of genetic instruments from the genome- 
wide association studies with additional adjustment 
except for age, sex, and population structure factors 
(eg, body mass index) might introduce collider bias 
in mendelian randomisation analysis.32 Thus, the 
associations for fasting insulin and glucose, coffee 
consumption, strenuous sports, and antihyper-
tensive drugs need to be verified. Seventhly, one in 
four individuals were defined as excessive alcohol 
consumption according to the UK criteria in the 
outcome study,12 which might drive the observed 
associations specific to alcohol- related liver fat 
accumulation. However, the genetic associations for 
liver fat appeared to be largely unrelated of alcohol 
consumption with consistent findings in two supple-
mentary liver fat genome- wide association analyses 
where individuals who reported having stopped 
drinking alcohol or who reported excessive alcohol 
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intake were removed and where the self- reported 
number of alcoholic drinks consumed per week were 
adjusted for.12 Finally, a priori sample size calcula-
tions were not performed in this study. Instead, the 
statistical power of the various analyses can be inter-
preted through the confidence intervals of the point 
estimates.

Conclusion
In conclusion, we provided a wide angled investi-
gation into the effects of metabolic traits, lifestyle 
factors, and pharmacological interventions on liver 
fat. The findings largely support the existing evidence 
on the role of cardiometabolic traits on hepatic stea-
tosis, and further identify potential mediating mech-
anisms and pharmacological strategies for reducing 
the burden of related disease. Further work is now 
warranted to explore these findings in a clinical 
setting.
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