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Circular RNAs: implications of signaling pathways 
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ABSTRACT	 Circular RNAs (circRNAs) form a class of endogenous single-stranded RNA transcripts that are widely expressed in eukaryotic 

cells. These RNAs mediate post-transcriptional control of gene expression and have multiple functions in biological processes, such 

as transcriptional regulation and splicing. They serve predominantly as microRNA sponges, RNA-binding proteins, and templates 

for translation. More importantly, circRNAs are involved in cancer progression, and may serve as promising biomarkers for tumor 

diagnosis and therapy. Although traditional experimental methods are usually time-consuming and laborious, substantial progress 

has been made in exploring potential circRNA-disease associations by using computational models, summarized signaling pathway 

data, and other databases. Here, we review the biological characteristics and functions of circRNAs, including their roles in cancer. 

Specifically, we focus on the signaling pathways associated with carcinogenesis, and the status of circRNA-associated bioinformatics 

databases. Finally, we explore the potential roles of circRNAs as prognostic biomarkers in cancer.
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Introduction

Circular RNAs (circRNAs) are an emerging class of endoge-

nous RNAs abundantly expressed in eukaryotic cells. These 

molecules are generated from precursor mRNAs through 

non-canonical splicing and are widely expressed in diverse 

species. circRNAs include exonic circRNAs, exon-intron cir-

cRNAs (EIciRNAs), and circular intronic RNAs (ciRNAs)1,2. 

circRNAs function mainly as microRNA (miR) sponges and 

RNA-binding protein (RBP) scaffolds, and they encode novel 

proteins that regulate gene transcription or protein transla-

tion3. Recent studies have indicated that circRNAs are involved 

in miR inhibition, epithelial-mesenchymal transition (EMT), 

and tumorigenesis. Furthermore, circRNAs expression can 

be tissue specific, and evidence indicates that some circRNAs 

are translated4. In contrast to linear RNAs, circRNAs form a 

covalently closed loop structure without a 5′ cap or 3′ tail, and 

have much longer half-lives5,6. Advances in high-throughput 

sequencing technology and novel bioinformatics algorithms 

have facilitated the systematic detection of circRNAs, most 

of which are stable, abundant, and conserved, and show an 

incredible diversity of tissue-specific expression. Studies have 

indicated that circRNAs are associated with many clinical 

characteristics and thus may provide important guidance for 

the accurate diagnosis and treatment of cancer7.

Signaling pathways play key roles in carcinogenesis. For 

example, the Wnt pathway is an evolutionarily conserved 

pathway8,9 that is divided into 3 classes: Wnt/β-catenin sig-

naling, Wnt/planar cell polarity signaling, and Wnt/Ca sign-

aling. Wnt/β-catenin signaling plays critical roles in embry-

onic development, tissue renewal, and regeneration10, and 

is significantly correlated with several types of cancers, such 

as lung cancer11, gastric cancer (GC)12, colorectal cancer 

(CRC)13, bladder cancer14, glioma15, and chronic lymphocytic 

leukemia16. Similarly, aberrant activation of the other signa-

ling pathways has been found to significantly correlate with 

various cancers. Accumulating evidence indicates that circR-

NAs are associated with various cancer processes, including 
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cancer initiation, progression, and metastasis, via signaling 

pathways17.

Traditional experimental approaches have been impor-

tant in exploring the biological functions and characteris-

tics of molecules as well as cancer pathogenesis. However, 

these methods can be time-consuming and laborious. With 

the discovery of large numbers of circRNAs, an urgent need 

exists to use in silico methods to reveal their characteristics, 

and guide the rational design of expensive and laborious 

clinical trials2.

In this review, we summarize current understanding of the 

biological characteristics and functions of circRNAs, with a 

focus on signaling pathways associated with carcinogenesis. 

This information should provide insights into potential new 

targets for the treatment of cancers. Finally, we discuss the cur-

rent status of circRNA bioinformatics databases, and explore 

the potential roles of circRNAs as prognostic biomarkers and 

therapeutic targets in cancer.

RNA circularization and circRNA 
biogenesis

circRNAs are derived from pre-messenger RNAs (pre-mR-

NAs) and originate from exons, introns, antisense RNAs, and 

intergenic regions. Under non-pathological conditions, circR-

NAs control gene expression by regulating gene transcription, 

RNA splicing, and scaffold assembly18,19. In addition, some 

circRNAs encode functional peptides. Four mechanisms of 

circularization have been confirmed: intron base-pairing-

driven circularization (Figure 1A), RBP-driven circulariza-

tion (Figure 1B), GU/C-rich sequence-driven circularization 

(Figure 1C), and pre-tRNA-mediated generation of tRNA 

intronic circular RNA (tricRNA) (Figure 1D)2. Recent stud-

ies have revealed that chromosomal translocations lead to 

the generation of fused circRNA20. The most common types 

of circRNA are ciRNAs, EIciRNAs, and exonic circRNAs, 

which account for the largest proportion (85%). EcircRNAs 

are distributed mainly in the cytoplasm, whereas ciRNAs and 

EIciRNAs exist mainly in the nucleus21,22.

In eukaryotes, pre-mRNAs are generally processed to gen-

erate linear mRNAs through canonical splicing, whereas 

circRNAs are formed through alternative “head-to-tail” 

back-splicing events20, in a process involving the formation of 

a covalently closed loop through reverse ligation of a down-

stream-splice donor site to an upstream-splice acceptor site. 

circRNA circularization is promoted by RBP-mediated bridg-

ing of relevant intronic sequences in RNA1,20,22. Studies on 

circRNA biogenesis have expanded the understanding of the 

complexity of RNA transcriptional regulation; however, the 

mechanism of the back-splicing events that generate circRNAs 

remains to be fully elucidated.

Potential functions of circRNAs in 
cancer

Interactions with proteins as regulators and 
scaffolds

Transcription and splicing
Some circRNAs interact with RNA polymerase II (Pol II), and 

consequently regulate the transcription and splicing of paren-

tal genes. In the nucleolus, EIciRNAs and ciRNAs enhance 

parental gene transcription by interacting with the U1 small 

nuclear ribonucleoprotein or binding the Pol II promoter5. 

Similarly, ci-ankrd52 and ci-sirt7 localize to and interact 

with the elongating Pol II complex. Depletion of these ciR-

NAs decreases the transcription levels of the ankyrin repeat 

domain 52 (ANKRD52) or sirtuin 7 (SIRT7) genes23. Circ-

DNMT1 promotes the nuclear translation of p53 and acts 

on AU-rich element RNA-binding protein 1 (AUF1), thereby 

resulting in cellular autophagy and target Dnmt1 mRNA sta-

bility in breast cancer24. Thus, circRNAs compete with spliced 

pre-mRNAs by triggering transcription, and consequently 

balance the levels of circRNAs and corresponding mRNAs 

(Figure 1E).

Protein recruitment and scaffolding
Some circRNAs serve as scaffolds that promote protein 

recruitment and assembly. A recent report has demonstrated 

that circndufb2 functions as a scaffold that binds the IGF2BP 

proteins with TRIM25, a positive regulator of tumor progres-

sion and metastasis in non-small cell lung cancer (NSCLC)25. 

The circRNA FECR1, which is generated from the Friend leu-

kemia virus integration 1 (FLI-1) oncogene, recruits TET1 to 

the promoter of FLI-1 and promotes breast cancer metasta-

sis26. Some circRNAs also facilitate reaction kinetics by bind-

ing enzymes and substrates. Circ-Foxo3 halts cell cycle pro-

gression by forming a ternary complex with cyclin-dependent 

kinase 2 and its inhibitor p2127. Thus, circRNAs can act as scaf-

folds that mediate complex formation by specific enzymes and 

substrates involved in carcinogenesis (Figure 1F).
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Figure 1  Biogenesis, mechanisms, and functions of circRNAs in cancer. (A) Intron base-pairing-driven circularization. (B) RBP-driven circu-
larization. Looping of the introns (containing the splice donor site and splice acceptor site) flanked by exons is required for back-splicing. This 
looping can be facilitated by base-paring of complementary sequences between inverse-repeat Alu elements (A) or by RBP dimerization (B). 
RBPs bind intron-flanking introns and promote circularization of the pre-mRNA (or lariat), thus generating circRNAs. (C) GU/C-rich sequence-
driven circularization. Pre-mRNAs comprising a 7-nucleotide (nt) GU-rich element and an 11-nt C-rich element consensus motif facilitate the 
generation of circRNAs. (D) Pre-tRNAs generate tricRNAs. An intron-containing pre-tRNA is cleaved by the tRNA spicing endonuclease (TSEN) 
complex, thus generating a tricRNA at the bulge-helix-bulge (BHB) motif; the intron termini then ligate and form a tricRNA. (E) circRNAs 
interact with Pol II, thereby regulating parental gene transcription and splicing. Competition between linear splicing and back-splicing of the 
pre-mRNA influences the balance between the 2 types of splicing. (F) circRNAs interact with proteins in several ways. circRNAs act as scaffolds 
that facilitate interactions between enzymes with their substrates. circRNAs can also recruit proteins to specific loci and promote protein 
assembly. (G) circRNAs function as miR and protein sponges. circRNAs containing miR response elements (MREs) can regulate miR-target 
mRNA expression through miR sequestration (or “sponging”). A highly expressed circRNA with many MREs is likely to function as an miR 
sponge and to positively regulate target mRNA translation. circRNAs containing binding motifs for RBPs might sponge these proteins and 
regulate their functions. (H) m6A and IRES-driven circRNA translation. A subset of circRNAs containing IRES and/or m6A modifications can 
serve as templates for translation and give rise to circRNA-specific peptides with the ORF crossing the back-splicing junctions. (I) circRNA 
transport via exosomes. circRNAs can be loaded into exosomes, thereby forming exo-circRNAs, which function as messengers in intercellular 
communication through the horizontal transfer of their cargo molecules to recipient cells.
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miRs and protein sponges

circRNAs inhibit the functions of miRs by competitive bind-

ing or “sponging” through the formation of stable comple-

mentary interactions. The circRNA-miR-mRNA axis is also 

involved in various cancer-associated pathways with both ago-

nistic and antagonistic effects on carcinogenesis. CIRS-7, the 

first circRNA identified as an miR sponge, inhibits circRNA-7, 

through more than 70 conventional miR-7 binding sites, and is 

associated with cancer progression28,29. Moreover, circRUNX1 

promotes papillary thyroid cancer (PTC) progression and 

metastasis by sponging miR-296-3p and regulating DDHD2 

expression30. The circRNA UBE2Q2 promotes malignant pro-

gression of GC by regulating the miR-370-3p/STAT3 axis31. 

CircORC5 suppresses GC progression by sponging miR-30c-

2-3p and regulating AKT1S132. However, the miR sponge 

model is becoming increasingly controversial, because most 

circRNAs do not show strong sponging effects on miR-bind-

ing sites33. Furthermore, the circRNA-miR axis regulates the 

activity of the corresponding linear mRNA. Thus, the mech-

anisms through which circRNAs act as miR sponges, and 

consequently regulate gene and protein expression, require 

further investigation. In another model, the biological func-

tion of circRNAs depends on interactions with RBPs, which 

have various roles in circRNA splicing, processing, folding, 

stabilization, and localization4,34. RBPs interact with circRNAs 

and form RNA-protein complexes, which in turn regulate the 

circularization of circRNAs, such as SCD-circRNA and circP-

CNX, in cancers35,36. RBPs also interact with circRNAs, and 

hide or expose certain regions in a process essential for the 

correct splicing, localization, and translation of cellular com-

ponents34. Thus, sponging of circRNAs by miRs or proteins is 

a key mechanism through which circRNAs perform multiple 

functions in cancer (Figure 1G).

circRNA translation

circRNAs initially lack a 5′-cap and 3′-tail, and are therefore 

classified as non-coding RNAs; however, a small fraction of 

circRNAs (< 1%) are translated into functional proteins or 

micropeptides via one of 2 mechanisms: N6-methyladenosine 

(m6A)-driven or internal ribosome entry site (IRES)-driven 

translation. The m6A motif in the 5′-untranslated region (5′-
UTR) is a major mechanism37-39 (Figure 1H). Yang et  al.39 

have shown that m6A directly recruits the initiation fac-

tor eIF4G2 for formation of the 43S complex, which in turn 

promotes the initiation of circRNA translation in human 

cells. IRES elements within the 5′-UTRs of the upstream open 

reading frames (ORFs) function as RNA regulatory elements 

that initiate circRNA translation independently of the 5′ cap 

structure40-48. Xia et  al.41 have suggested that circ-AKT3 is 

generated by the circularization of exons 3–7 of AKT3, which 

contain both an ORF and an IRES sequence, and have specu-

lated that the 5′-UTR of circ-AKT3 is structurally folded into 

the IRES and encodes the AKT3-174 aa protein. Interestingly, 

circ-EGFR forms a polymetric novel protein complex known 

as rolling-translated EGFR48. We believe that this model pro-

vides a new understanding of circRNAs that blurs the defini-

tion of non-coding RNAs. Thus, circRNA-encoded peptides 

stand to become a new resource for anti-tumor protein drug 

screening of early tumor biomarkers, precise therapeutics, and 

molecules to aid in prognostication.

Exosome-circRNAs (exo-circRNAs) in cancer

Exosomes are small extracellular vesicles (EVs) of endocytic ori-

gin that are secreted by most cell types. During carcinogenesis, 

exosomes function as messengers for intercellular communi-

cation. Moreover, circRNAs can be loaded into exosomes, thus 

forming exo-circRNAs, which communicate with neighboring 

or distant cells through horizontal transfer of their cargo mole-

cules to recipient cells49 (Figure 1I). Exo-circRNAs influence 

cancer progression and metastasis by altering biological sign-

aling pathways. A recent report has indicated that circLPAR1 

is encapsulated in exosomes and is diminished in CRC tissues. 

Furthermore, in plasma exosomes, circLPAR1 expression is 

markedly downregulated in CRC development but recov-

ers after surgery50. Currently, 2 hypotheses may explain the 

function of exo-circRNAs: cell communication and circRNA 

clearance51,52. Huang et al.51 have reported that exosomal cir-

cRNA-100338 enhances the metastatic ability of hepatocellular 

carcinoma (HCC) cells by transferring circRNA-100338 encap-

sulated in EVs to recipients. Alternatively, Lasda and Parker52 

have hypothesized that exosomes eliminate endogenous cel-

lular circRNAs via extracellular vesicles, because circRNAs are 

more enriched than linear forms in EVs. However, Alhasan 

et al.53 have proposed that circRNA enrichment in exosomes 

results from the presence of exosomal exonucleases. Regardless 

of the mechanism, exosomes are readily accessible and protect 

RNAs from degradation in various human biofluids. Together, 

these findings implicate exo-circRNAs as valuable biomarkers 

and therapeutic targets in human diseases.
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Multiple signaling pathways of 
circRNAs in cancers

Multiple signaling pathways are closely associated with car-

cinogenesis. The complexity of signals and their functional 

roles are crucial for the development and growth of cancers, 

as well as other diseases. Signaling pathway dysregulation has 

been recognized in a variety of human cancers8,54-56. In addi-

tion, some signaling pathways induce EMT, a crucial driver of 

cancer progression. During this process, which is considered a 

trigger of cancer metastasis, epithelial cells lose their polarity 

and differentiated state, and acquire a mesenchymal-like phe-

notype. Some circRNAs have been found to act as competing 

endogenous RNAs (ceRNAs) for miRs involved in EMT sign-

aling pathways, thus leading to tumor progression57, although 

the underlying mechanisms are uncertain. In this review, we 

dissect the roles of signaling pathways in malignant carcino-

mas, focusing on molecular mechanisms and prospects for 

future intervention (Table 1).

circRNAs and the PI3K/AKT/mTOR signaling 
pathway

The PI3K/AKT/mTOR signaling pathway is highly activated 

in various cancers, and is mediated by upstream oncopro-

teins receptor tyrosine kinases, RAS oncogenes, or G-protein-

coupled receptors (Figure 2). Dysregulation of the PI3K/AKT/

mTOR signaling pathway is associated with tumorigenesis. 

Therefore, studies of the interactions between circRNAs and 

the PI3K/AKT signaling pathway have become a major research 

focus58,59. circRNAs commonly act as ceRNAs for miRs in 

tumor progression. On the basis of the ceRNA mechanism, 

downstream pathways are activated or repressed by spong-

ing miRs. In CRC, for example, circCDYL58, circ_000131359, 

hsa_circRNA_00214460, and circIL4R61 regulate the PI3K/

AKT signaling pathway via the ceRNA mechanism, thereby 

promoting or inhibiting tumor progression. CircNRIP1 

serves as an miR-149-5p sponge that promotes GC progres-

sion via the AKT1/mTOR pathway62. In NSCLC, circFGFR3 

regulates both the AKT and ERK1/2 signaling pathways by 

sponging miR-22-3p63. Elevated circRNA-100338 activates the 

mTOR signaling pathway in HCC via the circRNA-100338/

miR-141-3p/RHEB axis and is associated with poor progno-

sis in patients with hepatitis B-associated HCC64. Shi et al.65 

have indicated that circ_0014359 sponges miR-153, and 

consequently regulates p-AKTser473 expression and acceler-

ates glioma progression. CircPLEKHM366 and circKDM4B67 

also sponge miRs, thus promoting or inhibiting the AKT sign-

aling pathway in ovarian cancer and breast cancer, respectively. 

Moreover, circRNAs have been found to modulate tumor pro-

gression via epigenetic modification events. For example, circ-

0124554 (circ-LNLM) promotes CRC hepatic metastasis by 

blocking AKT ubiquitination68. In addition, circ_0067934 and 

circ_0007059 influence malignant cell behavior by phospho-

rylating AKT/mTOR in oral squamous cell carcinoma (OSCC) 

and thyroid carcinoma, respectively69,70. A recent study has 

indicated that circ-ANAPC7 regulates the CREB-miR-373-

PHLPP2 feed-forward loop via the PHLPP2-AKT-TGF-β sig-

naling axis, thus inhibiting tumor growth and muscle wast-

ing in pancreatic cancer71. Interestingly, circRNAs encoding a 

novel protein have been found to affect tumor development 

via the PI3K/AKT/mTOR signaling pathway. For instance, a 

tumor suppressor protein encoded by circ-AKT3 RNA inhibits 

glioblastoma tumorigenicity by competing with active phos-

phoinositide-dependent kinase-141. These findings indicate 

that circRNAs not only function as oncogenic promoters but 

also participate in protein modification.

circRNAs and the Wnt signaling pathway

The activity of the canonical Wnt signaling pathway is posi-

tively associated with carcinogenesis. In brief, β-catenin, axin, 

glycogen synthase kinase-3 (GSK-3), adenomatous polypo-

sis coli (APC), and casein kinase 1 form a destruction com-

plex that initially phosphorylates and subsequently ubiquiti-

nates β-catenin in the cytoplasm (Figure 3). The formation 

of this complex is blocked by the presence of Wnt ligands. 

Consequently, the main protein β-catenin is transferred from 

the extracellular environment to the nucleus, where it acti-

vates Wnt-targeted downstream proteins72-74. On the basis of 

the ceRNA mechanism, downstream pathways are activated or 

repressed by sponging of miRs75-77. In the cytoplasm, circR-

NAs affect Wnt activation by interacting with proteins within 

the destruction complex. APC, a key protein in the destruc-

tion complex, negatively regulates the Wnt/β-catenin signal-

ing pathway. Geng et al.72 have revealed the tumor suppressive 

function of hsa_circ_0009361 as well as its ability to sponge 

miR-582 and consequently increase the expression of APC2, 

which in turn affects Wnt/β-catenin signaling in CRC. In 

the Wnt signaling pathway, Wnt ligands bind Frizzled (FZD) 

receptors, the lipoprotein-related protein (LRP) or the Wnt 
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antagonist Dickkopf-1 (Dkk1) at the cell surface, thus acti-

vating or suppressing downstream pathways78. DKK1 specif-

ically binds LRP5/6, thereby interfering with formation of the 

Wnt-LRP5/6-FZD complex and inhibiting the downstream 

Wnt signaling pathway. In CRC and glioma, circ_100290, hsa_

circ_0000177, and hsa_circ_0000523 regulate these surface 

proteins and are involved in the Wnt pathway13,15,79.

When β-catenin enters the nucleus, some circRNAs interact 

with the genes downstream of the Wnt pathway. CircMTCL1 

promotes advanced laryngeal squamous cell carcinoma pro-

gression by inhibiting C1QBP ubiquitin degradation and medi-

ating β-catenin accumulation in the cytoplasm and nucleus80. 

In endometrial carcinoma, the hsa_circ_0002577/miR-197/

CTNND1 axis affects the expression of β-catenin, cyclin D1, 

and c-Myc, thus activating the Wnt signaling pathway81. In 

PTC, Bi et al.82 have demonstrated that circRNA_102171 inter-

acts with CTNNBIP1 and subsequently blocks its interaction 

with the β-catenin/TCF3/TCF4/LEF1 complex, thus activating 

the Wnt/β-catenin signaling pathway. Some circRNAs encode 

novel proteins that affect the Wnt pathway12,74,83,84. Our group 

has demonstrated that the AXIN1-295 aa protein encoded by 

circAXIN1 competitively interacts with APC, thus leading to 

dysfunction of the “destruction complex” in GC12. In HCC, 

circβ-catenin encodes a novel protein, circβ-catenin-370 aa, 

which stabilizes β-catenin and leads to activation of the Wnt 

signaling pathway74. Moreover, hsa_circ_0007059 appears to 

hinder the interaction between Wnt3a and β-catenin, and 

consequently inhibit EMT in lung cancer85. circRNAs have 

also been shown to form a feedback loop that regulates can-

cer development. Guo et al.76 have reported that circ-ZNF652 

interacts with miR-203 and miR-502-5p, which target Snail, 

thus promoting metastasis in HCC. In turn, Snail upregulation 

increases circ-ZNF652 expression by binding its promoter, 

thereby forming a positive feedback loop in HCC. CircESRP 

forms a positive feedback loop regulating cancer progression 

via EMT86. Thus, studies have confirmed the critical roles of 

circRNAs in the circRNA/Wnt/β-catenin signaling pathway; if 

these findings are further validated, they may have potential 

novel therapeutic applications for cancer.

circRNAs and the Notch and Hippo signaling 
pathways

The Notch signaling pathway is responsible for neurogenesis, 

angiogenesis, and overall cell survival and proliferation. Notch 

receptors (NOTCH1, NOTCH2, NOTCH3, and NOTCH4) TG
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are transmembrane proteins that bind specific ligands, thus 

resulting in the activation of a series of biochemical events 

(Figure  4)87. circRNAs in Notch signaling generally serve as 

ceRNAs that sponge miRs, and activate pathways through 

directly affecting receptors and/or its ligands88-94. Abnormal 

Notch signaling is usually associated with genetic mutations 

of crucial factors, particularly NOTCH1. Xu et al.88 have found 

that circNFIX sponges miR-34a-5p and targets NOTCH1, 

thereby activating the Notch signaling pathway in glioma. 

Circ-MTO1 has also been identified as a tumor suppressor 

that functions as part of the circ-MTO1/miR-17/QKI-5 feed-

back loop in inhibiting lung adenocarcinoma progression 

by inactivating the Notch signaling pathway89. Circ-ASH2L 

promotes tumor progression by sponging miR-34a and con-

sequently regulating Notch1 in pancreatic ductal adenocarci-

noma91. On the basis of these findings, circRNAs involved in 

Notch signaling have been implicated as a novel strategy to 

prevent cancer progression.
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circFGFR3/miR-22-3p
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Figure 2  The molecular roles of circRNAs in the PI3K/AKT/mTOR signaling pathway. The PI3K/AKT/mTOR pathway is the most commonly 
activated pathway in human cancers. Receptor tyrosine kinase activation and tyrosine phosphorylation of its cytosolic domain or its scaffold-
ing adaptors create binding sites that recruit the lipid kinase PI3K—a regulator of signaling and intracellular vesicular trafficking and cellular 
processes such as proliferation, survival, and protein synthesis—to the plasma membrane. circRNAs commonly act as ceRNAs of miRs in tumor 
progression, thus inhibiting the functions of miRs. Nine upregulated and 6 downregulated circRNAs are indicated; 12 circRNAs regulate the 
PI3K/AKT/mTOR pathway through ceRNA effects. Red: upregulated circRNAs; blue: downregulated circRNAs.
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The Hippo signaling pathway comprises several tumor-sup-

pressors and oncogenes. When the Hippo signaling pathway is 

inactivated, the Yes-associated protein (YAP) and PDZ-binding 

motif are activated and translocate into the nucleus, where they 

promote cell proliferation95-97 (Figure 5). Various studies have 

shown the involvement of circRNAs in the Hippo signaling 

pathway, with dominant mechanisms including ceRNA com-

petition98-100, novel protein translation96, a feedback loop101, 

and nuclear accumulation of YAP102. YAP derived circ-LECRC 

functions as a “brake signal” that suppresses hyperactivation 

of oncogenic YAP signaling in CRC101. Louis and Coulouarn54 

have found that circACTN4 upregulates YAP1 expression by 

sponging miR-424-5p, and recruits Y-box binding protein 1 

(YBX1), thus initiating FZD7 transcription and promoting 

intrahepatic cholangiocarcinoma progression. Wu et al.95 have 

reported that circYap halts the initiation of Yap translation in 
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Figure 3  Molecular roles of circRNAs in the Wnt/β-catenin signaling pathway. The Wnt pathway is critical for various cellular functions, such 
as ensuring cell polarity, movement, and proliferation; this pathway is also often involved in cancer progression. A destruction complex initially 
phosphorylates and then ubiquitinates β-catenin in the cytoplasm, and subsequently inhibits Wnt signaling. circRNAs regulate the β-catenin 
destruction complex, thereby activating or suppressing the nuclear downstream targets of Wnt signaling. circRNA competition with the endog-
enous RNAs (ceRNAs) of miRs is their main mechanism of regulating the Wnt signaling pathway. The IRES-driven translation of novel proteins 
from circRNAs is another crucial mechanism of circRNAs in Wnt signaling. Eleven upregulated and 5 downregulated circRNAs are shown; 8 of 
these circRNAs regulate the Wnt pathway through ceRNA effects. Red: upregulated circRNAs; blue: downregulated circRNAs; β-cat: β-catenin.
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breast cancer cells by binding Yap mRNA, eIF4G, and PABP. 

CircPPP1R12A encodes a novel peptide, circPPP1R12A-73 aa, 

that promotes CRC progression by activating the Hippo-YAP 

signaling pathway96. In GC, Liu et al.98 have shown that YAP1 

inhibits circRNA-000425 transcription, thereby promoting 

the oncogenic function of miR-17 and miR-106. Overall, this 
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Figure 4  The molecular roles of circRNAs in the Notch signaling pathway. The Notch pathway is responsible for neurogenesis, angiogenesis, 
and cell proliferation, and it directly couples events at the cell membrane with the regulation of transcription. Notch receptors bind specific 
ligands, thus resulting in sequential cleavage of the Notch receptor and the release of the Notch intracellular domain (NICD) into the signal-re-
ceiving cell. The NICD containing the nuclear localization sequence translocates to the nucleus. The NICD interacts with the CBF-1/Su(H)/
LAG1 (CSL) transcription factor and subsequently induces the recruitment of the transcriptional co-activator (Co-A) Mastermind-like (MAML) 
and other transcriptional Co-As. All 4 receptors (Notch1–4) mediate canonical signaling by activating CSL-dependent transcription and are 
involved in cancers. Six upregulated and one downregulated circRNAs are shown; 7 circRNAs regulate the Notch pathway through ceRNA 
effects. Red: upregulated circRNAs; blue: downregulated circRNAs.
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evidence suggests that circRNAs play roles in the function of 

the Hippo/YAP pathway function by acting as miR sponges or 

interacting with proteins, thus further influencing tumor-as-

sociated signaling pathways.

circRNAs and the p53/Bcl-2 signaling pathway

Tumor protein 53 (p53) participates in regulating the cell 

cycle and apoptosis through various pathways (Figure 6). In 

addition, the p53 signaling pathway is regulated by circRNAs, 

such as circVANGL1, circ-BRIC6, circ_0021977, circPVT1, 

hsa_circ_0002874, hsa_circ_006100, and circ-0001785, via the 

ceRNA mechanism103-109. Wild type p53 protein (wt-p53) is a 

homo-tetrameric transcription factor that serves as a tumor 

suppressor regulating the transcription of downstream target 

genes110-112. Mutant p53 (mut-p53) loses its tumor suppres-

sive functions and gains tumor-promoting activities, known 

as gain-of-function (GOF) activities. Efficient mut-p53 GOF 
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Figure 5  Molecular roles of circRNAs in the Hippo signaling pathway. The Hippo pathway is an evolutionarily conserved signaling pathway 
with key roles in various diseases, most notably cancer. The Hippo kinase cascade converges on its nuclear effector YAP/TAZ and regulates 
gene expression programs. YAP/TAZ phosphorylation by Hippo signaling inactivates YAP/TAZ transcriptional coactivators by excluding them 
from the nucleus and promotes YAP/TAZ degradation. When Hippo signaling is low, YAP/TAZ enters the nucleus, where it drives gene expres-
sion. Five upregulated and 3 downregulated circRNAs are indicated; 4 circRNAs regulate the Hippo pathway through ceRNA effects. Red: 
upregulated circRNAs; blue: downregulated circRNAs.
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activity requires high mut-p53 protein expression levels in 

cancer cells. The formation of a hetero-tetrameric mut-p53/

wt-p53 complex inhibits the tumor suppression function of 

the remaining wt-p53, thus leading to tumor cell prolifera-

tion, survival, migration, and invasion. Interestingly, cross-

talk between mut-p53 and circRNA has been reported113. For 

example, circPVT1106 and circ-Ccnb1114 are activated by mut-

p53. In a cohort of 115 patients with head and neck squamous 

cell carcinoma (HNSCC), circPVT1 and mut-p53 have been 

found to be over-expressed in tumor tissues compared with 

normal tissues. Mechanistically, the mut-p53/YAP/TEAD com-

plex has been proposed to enhance circPVT1 transcription106. 

In breast cancer cells, wt-p53 enhances circ-Ccnb1 expression, 

whereas wt-p53 repression or mut-p53 expression suppresses 

circ-Ccnb1 expression. Circ-Ccnb1 dissociates the CyclinB1/

Cdk1 mitotic complex, thereby suppressing cell invasion and 

tumorigenesis114. Mechanistically, a direct interaction between 

p53 and circRNAs has been speculated to prevent the destruc-

tion of p53, and this interaction may inhibit ubiquitination 

by E3 ubiquitin ligases (such as MDM2) and subsequent 

degradation of p53113. Binding of the circRNA CDR1as to 

p53 disrupts the p53/MDM2 complex, thus leading to p53 

stabilization in glioblastoma110. In contrast, binding of circ-

DNMT1 to p53 promotes the nuclear translocation of both 
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Figure 6  The molecular roles of circRNAs in the p53/Bcl-2 signaling pathway. p53 is a common tumor suppressor gene that regulates the cell 
cycle and apoptosis through various pathways. A direct interaction between p53 and circRNAs preserves p53 by preventing its ubiquitination 
by E3 ubiquitin ligases (such as MDM2). circRNAs also affect the downstream targets of p53, such as Bcl-2 or Bcl-2/caspase, which mediates 
apoptosis and is involved in tumor development. Nine upregulated and 5 downregulated circRNAs are indicated; 7 circRNAs regulate the p53/
Bcl-2 signaling pathway through ceRNA effects. Red: upregulated circRNAs; blue: downregulated circRNAs.



Cancer Biol Med Vol 20, No 2 February 2023� 119

p53 and AUF1, which in turn upregulates DNMT1 expression 

and leads to the inhibition of p53 expression in breast can-

cer24. circRNAs also affect Bcl-2, a downstream target of p53, 

and consequently mediate apoptosis in NSCLC, HCC CRC, 

and GC cancer cells103-105, 108,115. Moreover, hsacirc_0055538, 

circ_0001785, and circ_0007534 regulate the Bcl-2/caspase 

axis, and consequently induce or inhibit apoptosis in OSCC 

and osteosarcoma109,112,116. Notably, the formation of feedback 

loops is a novel mechanism of regulation in the p53 signal-

ing pathway. In glioma, the FMR1/circCHAF1A/miR-211-5p/

HOXC8 feedback loop regulates proliferation and tumorigen-

esis via MDM2-dependent p53 signaling117. Carcinogenesis 

is most frequently driven by p53 mutations or inactivation, 

whereas p53/MDM2 complex formation controls p53 stability. 

Therefore, p53 has become one of most attractive therapeutic 

targets in cancer.

circRNAs and the TGF-β/Smad signaling 
pathway inducing EMT

TGF-β1 canonical signaling is activated through receptor-reg-

ulated Smad (R-Smad), which elicits transcriptional responses 

by binding Smad binding elements in cell nuclei, thus repress-

ing epithelial gene expression118. TGF-β1-induced EMT is an 

initiating and sustained step that plays a central role in can-

cer metastasis (Figure 7). circRNAs are also involved in the 

mechanism through which the TGF-β/Smad pathway posi-

tively regulates the growth and metastasis of various cancers. 

Wang et al.119 have demonstrated that circPTK2 is significantly 

downregulated in NSCLC cells and negatively correlates with 

TGF-β-induced EMT. In triple negative breast cancer (TNBC), 

circANKS1B interacts with miR-148a-3p and miR-152-3p, 

thus increasing the expression of upstream transcription fac-

tor 1 (USF1), which then binds TGF-β1120. Both circPTK2 and 

circANKS1B promote or suppress EMT in carcinogenesis via 

the ceRNA mechanism. CeRNA mechanism also applies to the 

function of circRIP2121 in bladder cancer and circANKS1B122 

in OSCC. CircPTEN1 binds the MH2 domain of Smad4, dis-

rupts its interaction with Smad2/3, and consequently sup-

presses the expression of its downstream genes associated 

with TGF-β-induced EMT123. In addition, the TGF-β/Smad 

signaling pathway has been found to be regulated by feed-

back loops formed by circRNAs such as circ-DOCK5124 and 

circUHRF1125.

Herein, we have focused on the canonical pathway asso-

ciated with tumorigenesis and cancer progression. However, 

circRNAs also interact with other signaling pathways, such as 

the MAPK and JAK/STAT pathways in carcinogenesis126. Any 

aberrant interplay between such pathways can lead to break-

throughs in cancer progression. Together, these findings indi-

cate that circRNAs have crucial roles in modulating the hall-

marks of cancer cells.

The landscape of circRNA databases

Initially, RNA-seq algorithms were inefficient in distinguishing 

back-splicing junctions from the corresponding circular struc-

tures. However, advances in high-throughput RNA sequenc-

ing have led to the rapid establishment of circRNA databases. 

These databases facilitate in-depth research to elucidate the 

biological functions of circRNAs as well as the underlying 

mechanisms. Increasing data resources specifically designed 

for circRNAs are now emerging. In this section, we discuss 

these databases and tools, which are classified into 3 groups: 

circRNA annotation databases, functional analysis databases, 

and human disease databases (Table 2).

Annotation databases

CircBank127, CircBase128, CircAtlas129, CIRCpedia v2130, and 

deepBase v2.0131 consolidate published circRNA articles and 

integrated RNA sequencing data. These tools provide compre-

hensive annotation information of circRNAs across species, 

including circRNA ID, genomic length, transcripts, genomic 

symbol, and relevant annotation. CircBank127 also collects data 

on circRNA conservation, circRNA protein-coding potential, 

m6A modification, miR-binding sites, and circRNA muta-

tions. Furthermore, CircBank has established a novel nomen-

clature system based on the host gene name, start position, 

and end position. This system is based on the different search 

criteria used to obtain functional information for circRNAs. 

CircAtlas provides information on circRNA-miR interactions 

or circRNA-RBP interactions in 7 vertebrate species (humans, 

macaques, mice, rats, pigs, chickens, and dogs). CIRCpedia v2 

provides circRNA annotations and expression features in vari-

ous cell types and tissues related to 6 species130.

Functional analyses databases

Evidence suggests that circRNAs play critical regulatory roles 

at the transcriptional and post-transcriptional levels by acting 

as miR/protein sponges, RBP-binding molecules, regulators of 
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transcription, templates for translation, and components of 

exosomes132. Although most of their functional patterns remain 

undocumented, many databases that collect experimentally 

supported or putative circRNA-associated interactions are 

publicly available. CircFunBase is a web-accessible database 

providing a convenient visualized representation of circR-

NA-associated miRs/RBP interaction networks133 in the con-

text of the genome. CirclncRNAnet is an integrated web-based 

Ligand
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Figure 7  Molecular roles of circRNAs in the TGF-β/Smad signaling pathway. TGF-β signaling occurs via membrane-bound heteromeric ser-
ine-threonine kinase receptor complexes that are activated by TGF-β ligands and the subsequent phosphorylation of Smad family members. 
Smad members accumulate in the nucleus and act as transcription factors regulating target gene expression. Activation of canonical TGF-β 
signaling represses epithelial gene expression, and the resulting TGF-β-induced EMT has a central role in cancer metastasis. Three upregu-
lated and 4 downregulated circRNAs are indicated; 4 circRNAs regulate the TGF-β/Smad pathway through ceRNA effects. Red: upregulated 
circRNAs; blue: downregulated circRNAs.
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resource that maps functional networks of long non-coding 

RNAs (lncRNAs) on the basis of uploaded NGS-based matrix 

data134. CircInteractome is a comprehensive knowledgebase 

that can be used to predict the potential RBP-binding sites of 

circRNAs, identify potential IRESs, and design siRNAs and 

primers135. CircInteractome predicts circRNA-RBP interac-

tions on the basis of CLIP-seq data from starBase v2.0, whereas 

CircFunBase uses the RBP-circRNA interactions predicted 

directly by CircInteractome. TRCirc provides transcriptional 

regulatory information on circRNAs, including expression 

and methylation levels, H3K27ac signals in regulatory regions, 

and super-enhancers associated with circRNAs136. Although 

circRNAs were once classified as non-coding RNAs, the poten-

tial for circRNA translation is becoming increasingly clear. As 

such, circRNADb focuses on protein-coding annotations and 

provides genomic information, mass spectrometry evidence, 

and putative IRES and ORF sites137. CircCode is a Python 

3-based framework that can be used to investigate the trans-

lational potential of circRNAs in humans and Arabidopsis 

thaliana138. CircPro can be used to predict the protein-coding 

potential of circRNAs and identify junction reads according to 

Ribo-seq data. CircNet provides information such as circRNA 

expression profiles, circRNA-miR sponge regulatory networks, 

and circRNA-gene-miR regulatory networks139. In addition, 

circRNAs may play roles in paracrine or endocrine regula-

tion via exosomes140. ExoRBase contains details on circRNAs 

in human blood exosomes, and contributes to the study of 

exo-circRNAs and diseases141.

Databases associated with human diseases

The application of databases for use in bioinformatics meth-

ods is important in identifying novel circRNA-disease asso-

ciations. The systematic collection and management of cir-

cRNA-disease association data are critical for exploration of 

the clinical importance of circRNAs. The tissue-specific cir-

cRNA database (TSCD) contains information relating to the 

systematic analysis of tissue-specific circRNAs, and can be 

used to identify novel biomarkers of organogenesis and dis-

ease development142. The circR2Disease database provides a 

platform to investigate the pathological mechanisms of dis-

ease-associated circRNAs identified experimentally143. The 

cancer-specific circRNA database (CSCD) was constructed 

from RNA-seq datasets from tumor and normal tissue samples 

to serve as a resource for functional studies of cancer-specific 

circRNAs144. This database can be used to identify potential 

functions and predict candidate circRNAs with the potential 

for translation via metal responsive elements (MREs), RBPs, 

and ORFs. The MiOncoCirc database, which was estab-

lished on the basis of exosome capture sequencing of clinical 

human cancer samples, provides comprehensive data includ-

ing circRNAs from metastases, primary tumors, and very 

rare cancer types145. Circ2Traits focuses on the construction 

of circRNA-miR-mRNA networks, and is used to infer inter-

actions between circRNAs and disease-associated miRs146. 

Circ2Disease contains 725 experimentally supported associa-

tions between 100 diseases and 661 circRNAs147. The Circad 

database is a collection of experimentally confirmed associ-

ations between circRNAs and diseases148. In addition, it con-

tains circRNA annotation details, including the name, genome 

locus, and associated disease.

The rapid development of computational algorithms has 

facilitated the construction of novel computational models 

for the prediction of circRNA-disease associations, which can 

aid in the diagnosis and treatment of diseases2. For example, 

Locality-Constrained Linear Coding can be used to predict cir-

cRNAs associated with human diseases by integrating known 

circRNA-disease association, circRNA semantic similarity 

network, disease semantic similarity network, reconstructed 

circRNA similarity network, and reconstructed disease sim-

ilarity network data149. Identification of circRNAs associated 

with diseases can contribute to a better understanding of the 

pathogenesis, diagnosis, and treatment of diseases.

Conclusions and perspectives

In this review, we outlined current knowledge regarding the 

key roles of circRNAs in tumorigenesis. Complex circRNA 

regulatory networks have important implications in tumori-

genesis and progression, as well as the development of novel 

treatments. circRNAs are enriched in the PI3K/AKT/mTOR, 

Wnt/β-catenin, Notch, Hippo, p53/Bcl-2, and TGF-β/Smad 

signaling pathways, and are abnormally expressed in different 

tumor types. Moreover, the interactions between circRNAs and 

signaling pathways show great potential for identifying novel 

therapeutic targets and diagnostic biomarkers17,150. Treatments 

based on nucleic acids represent a major breakthrough in the 

pharmaceutical field. Indeed, exogenous circRNAs can be used 

as miR sponges to prevent or enhance target mRNA expres-

sion, through placement of a series of MREs after a reporter 

gene. In addition, circular carriers have specialized secondary 

structures that form more durable and stable miR sponges 
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than their linear counterparts. Furthermore, recent studies 

have shown that exogenous circRNAs promote therapeutic 

effects by activating the immune system151,152.

Collective biomedical databases and tools have been devel-

oped for deciphering circRNA-associated activities and their 

underlying mechanisms. Therefore, we focused on the circR-

NA-associated databases in this review. Each of these resources 

has unique aspects and strengths. However, the reliability 

and accuracy of their sources must be considered, given the 

variations in some results, possibly because of differences in 

experimental results, sample specificity, and the diversity of 

sequencing methods used to obtain the data. In addition, clear 

differences in sensitivity and precision exist among the vari-

ous algorithms used in the different databases. Therefore, uni-

fied standards should be established to compensate for such 

differences and address these deficiencies. In addition, rapid 

advances in computational prediction algorithms have led to 

the generation of many computational models, such as scor-

ing function-based models, which have been developed for the 

prediction of potential non-coding RNA-disease associations. 

Consequently, thousands of non-coding RNA-disease associ-

ations with non-coding RNAs, including circRNAs, lncRNAs, 

and miRs, have now been identified in eukaryotic organ-

isms149,153,154. For example, Chen et al.155 have recently pub-

lished the Neighborhood Constraint Matrix Completion for 

miR–Disease Association prediction model to predict poten-

tial miR–disease associations. According to Chen et  al.153, 

analysis of available lncRNA–disease associations and predic-

tion of potential human lncRNA–disease associations have 

become important bioinformatics projects. Comprehensive 

knowledge of non-coding RNA-disease associations would 

aid in understanding of human complex disease mechanisms; 

identification of disease biomarkers; and disease diagnosis, 

treatment, prognostication, and prevention.

The roles of circRNAs in mediating gene expression at the 

post-transcriptional level are a new focus of research on gene 

regulation in cancer. However, despite the rapid advances in 

the biological characterization of circRNAs, the mechanisms 

underlying their functions remain to be fully elucidated. 

For example, whereas circRNAs are now known to be ret-

ro-transcribed in vivo, and inserted back into the genome, 

thereby generating pseudogenes156, the underlying molecular 

mechanisms are unclear. Although molecular expression and 

function are often coupled and coordinated to some extent, 

the balance between circRNAs and their linear isoform tran-

scripts, and the factors that dictate the dynamic generation and 

degradation rate is as yet undefined. The topological structures 

of circRNAs and their mechanisms of binding miRs/proteins 

are also unclear. Although some circRNAs can be translated 

into peptides, the underlying mechanism and the identity of 

peptide modulators is another area for future research. With 

the development of RNA sequencing techniques, improve-

ments in databases, and continued research efforts in this area, 

some of these questions may be answered, and may ultimately 

enable the identification of novel cancer biomarkers and ther-

apeutic targets.
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