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Abstract

Objective—Data harmonization is essential to integrate individual participant data from multiple 

sites, time periods, and trials for meta-analysis. The process of mapping terms and phrases 

to an ontology is complicated by typographic errors, abbreviations, truncation, and plurality. 

We sought to harmonize medical history (MH) and adverse events (AE) term records across 

21 randomized clinical trials in pulmonary arterial hypertension and chronic thromboembolic 

pulmonary hypertension.

Methods—We developed and applied a semi-automated harmonization pipeline for use with 

domain-expert annotators to resolve ambiguous term mappings using exact and fuzzy matching. 

We summarized MH and AE term mapping success, including map quality measures, and 

imputation of a generalizing term hierarchy as defined by the applied Medical Dictionary for 

Regulatory Activities (MedDRA) ontology standard.

Results—Over 99.6% of both MH (N = 37,105) and AE (N = 58,170) records were successfully 

mapped to MedDRA low-level terms. Automated exact matching accounted for 74.9% of MH and 

85.5% of AE mappings. Term recommendations from fuzzy matching in the pipeline facilitated 

annotator mapping of the remaining 24.9% of MH and 13.8% of AE records. Imputation of the 

generalized MedDRA term hierarchy was unambiguous in 85.2% of high-level terms, 99.4% of 

high-level group terms, and 99.5% of system organ class in MH, and 75% of high-level terms, 

98.3% of high-level group terms, and 98.4% of system organ class in AE.

Conclusion—This pipeline dramatically reduced the burden of manual annotation for MH and 

AE term harmonization and could be adapted to other data integration efforts.
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Introduction

The power of statistical and machine-learning analyses is ultimately limited by sample size.1 

Biomedical studies and clinical trials enroll a sample size based on the power of detecting 

clinically important differences between groups.2 Particularly in rare diseases, individual 

participant data meta-analysis can increase the power and generalizability of both the main 

and secondary aims.3 The analysis of data can be standardized and performed appropriately 

across all studies. Outcomes of interest which are not presented in the publications of the 

individual studies can be examined. Prognostic models can be derived and/or validated in 

the combined study samples. The effect of a drug (or class of drugs) can be studied in 

a subgroup of patients, to determine if there is a “responder” population or, conversely, a 

population which suffers a particularly high rate of side effects.4

Individual participant data meta-analyses also pose distinct challenges outside of standard 

analytical challenges such as considering potential confounders. Harmonizing many 

thousands of data fields between multiple studies is extremely work intensive.5 Distinct data 

sources can vary at the global level (e.g., included variables, how named and organized) or 

local variable level (e.g., feature values encoded differently, different units of measurement, 

and text that does not always correspond to a standardized semantic mapping). Several 

strategies, tools, and pipelines have been proposed to address data harmonization at different 

levels, phases of data collection and processing, and that target different data domains. 

Examples include global harmonization of detailed clinical models for clinical study data 

standards,6 a pipeline to facilitate the collection of standardized medical metadata rather 

than deal with posthoc harmonization,7 a flexible platform to facilitate the basic, high-level 

harmonization of individual patient data for meta-analysis relying on well-defined domain-

specific data dictionaries,8 and a variety of other efforts designed primarily to facilitate 

generalized data harmonization at the global level.9,10 Data harmonization efforts like these 

seek to produce an integrated file with unified semantics for all features and feature values.

Beyond these global efforts, “term” harmonization of text (e.g., words, and phrases) at the 

local variable level is challenged by typographical errors, spelling errors, abbreviations, 

multiple languages, slang, truncation, plurality, phrasing differences, and terms that are 

missing from the target terminology standard. Numerous efforts to overcome these problems 

have largely focused on ontology development with the goal of mapping terms to a 

standard vocabulary that enforces syntactic and semantic harmonization between two 

or more heterogeneous sources of data. Several prominent initiatives have addressed 

harmonization through the establishment of common data models including the Patient-

Centered Clinical Research Network,11 the Observational Medical Outcomes Partnership, 

the common data model used in the Observational Health Data Sciences and Informatics 

network,12 the Informatics for Integrating Biology and the Bedside,13 and the Fast 

Healthcare Interoperability Resources specification14 which includes a modular approach 
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to data standardization. The Clinical Data Interchange Standards Consortium (CDISC)15 

also supports a variety of tools for standardizing the planning, collection, organization, and 

analysis of clinical trial data.16–19 However, none of these alone specifically address the 

logistical demands of harmonizing text-based variables in complex clinical trial data. Time-

consuming manual effort from trained experts is typically required to map heterogeneous 

terms in the target data to a terminology standard. However, this process can be facilitated 

with the application of text-matching strategies, including approximate, i.e., “fuzzy,” string 

matching methodologies20 as well advanced machine-learning approaches that require prior 

training for specific use cases.21

Objectives

In this project, we established a procedure to standardize and automate the process of 

term harmonization across multiple data sources applied here to 21 randomized clinical 

trials (RCTs) of medical treatment for pulmonary arterial hypertension (PAH) or chronic 

thromboembolic pulmonary hypertension (CTEPH), and a subset of open-label (OL) 

extensions. We focused on term harmonization for adverse events (AEs) and medical history 

(MH) data since the nature of these variables provided the best opportunity and need for 

automated harmonization within the larger task of harmonizing all data types across the 

RCTs. Specifically, mapping these terms (or sequence of multiple terms) was challenging 

due to (1) inconsistency of documentation across centers, trials, and calendar time, (2) errors 

from manual data entry transcription from natural language text, (3) the inconsistent use of 

a specific terminology/ontology standard across studies, (4) a large variety of values existing 

for both AE and MH, and (5) the selected term/ontology standard, i.e., Medical Dictionary 

for Regulatory Activities (MedDRA)22 including over 70,000 possible specific terms at the 

lowest level of the term hierarchy.

We present the AE and MH term harmonization procedure distinguishing all aspects 

automated by our pipeline and show the results after applying this harmonization procedure 

to the 21 RCTs of PAH, highlighting lowest level term (LLT) mapping success rates, quality 

scores, and imputation evaluation statistics for preferred term (PT), high level term (HLT), 

high level group term (HLGT), and system organ class (SOC).

Methods

Here we (1) summarize the target RCT data and ontological standard, (2) summarize the 

data model and global plan for variable harmonization, (3) detail the pipeline steps for 

mapping the LLT for AE or MH, and (4) detail the pipeline steps for imputing and mapping 

the respective term hierarchy (i.e., PT, HLT, HLGT, and SOC).

Target Data and Ontological Standard

This project focused on the harmonization of 21 (mostly phase 3) RCTs of patients with 

PAH and CTEPH completed at different sites throughout the world between 2000 and 

2015. A total of 11 candidate treatments were examined across the 21 trials. Additionally, 

seven of these trials include their respective OL extensions, yielding a total of 28 studies 

for harmonization. These studies are detailed in supplementary Table S1 (available in the 
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online version only) along with a study ID, a unique trial name, phase (i.e., 2, 3, or OL), 

treatment, and associated publications.23–46 The data from these trials were provided to 

us by the Cardiorenal Division of the Food and Drug Administration and are not publicly 

available. From the perspective of term harmonization, these studies were heterogeneous 

with respect to (1) what variables were collected, (2) how they were organized, (3) units of 

measurement, (4) use of slang or abbreviations, (5) which terminology standards or versions 

(if any) were applied in documenting the values for certain variables, (6) whether raw or 

analyzable datasets were available, and (7) the overall data model used to organize the 

respective database. More generally, these studies were also heterogeneous in many other 

ways including the PAH-specific background therapy (i.e., treatment naive vs. double or 

even triple therapy), time frame of studies, and definition of AE per study.

We focused this analysis on the term harmonization of AEs and MH records often with 

a “one-to-many” patient-record mapping. In some (but not all) of the 28 studies, an 

unspecified version of MedDRA was applied in documenting AE and MH values for 

LLT, and in some studies and subjects, PT, HLT, HLGT, and SOC were also documented. 

MedDRA is a rich and highly specific standardized medical terminology and ontology 

that includes terms at varying degrees of generality related to diseases, diagnoses, signs, 

symptoms, medical/surgical procedures, family history, and therapeutic indications.22 

MedDRA is also widely used and regularly updated. In the present project, we utilized 

terms defined as “current” within MedDRA v21.0 as our mapping standard.

Global Data Model and Harmonization

The overall harmonization of these trials adopted the standard data tabulation model, a 

CDISC standard,47 that is well documented and accepted by the pharmaceutical industry, 

pharmacoepidemiology, and other clinical research areas. It provides excellent foundational 

domains and variable names; however, it provides no standards for coding quantitative or 

categorical variable values, or terminology standards as needed to harmonize AE and MH.

Term Harmonization Pipeline Overview

This semi-automated term harmonization pipeline included (1) data preprocessing, (2) exact 

matching, (3) fuzzy matching, and (4) integration and quality control (QC) of expert manual 

annotations. This was first completed for the most specific LLT as defined by the MedDRA 

standard,22 and then using a combination of imputation and term mapping for each of the 

more general term levels in the MedDRA hierarchy, i.e., PT, HLT, HLGT, and SOC. We 

also applied a mapping quality metric to track the quality and fidelity of term harmonization 

when there was any ambiguity.

Lowest Level Term Harmonization

The first part of the term harmonization pipeline focused on harmonizing the most specific 

AE or MH term/phrase available, referred to by MedDRA as the LLT. For simplicity, here 

we will primarily focus on describing MH mapping; however, this procedure is identical 

for both MH and AE except for how variables are named, and the availability of certain 

accessory variables in mapping the respective variable categories.
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Preprocessing—The first stage of LLT harmonization was to generate a combined file 

containing the MH data from all 28 studies where each record represents a target MH 

term (referred to here as the “primary term” [PRT]) attributed to a given subject from 

each study. Additional subject and study information was preserved in this file for future 

reference including any other higher level MH term information associated with the PRT 

that may have been collected whether it was in line with the MedDRA term hierarchy or 

not. For a limited number of records in the combined clinical file, LLT, PT, HLT, HLGT, 

and SOC term information was also available. However, different versions of MedDRA term 

standards had been used which may have led to a marginal number of inconsistencies, and 

often errors were found in records making these preliminary mappings unreliable.

Next, we conducted exploratory analyses of the combined file, assessing the number of 

total and unique terms to be mapped, as well as variable missingness. Any records missing 

a study-derived PRT were dropped from further consideration (i.e., unmapped). We began 

with 37,105 MH records, reduced to 37,083 after dropping records with no PRT, which 

included a total of 21,452 unique MH entries to be mapped. For AE, we began with 59,084 

records, reduced to 58,170 after dropping records with no PRT, which included a total 

of 20,824 unique AE entries to be mapped. To reduce the mapping effort required, we 

temporarily dropped all but one of each unique PRT record but included all records in the 

final mapped file as reflected in the results below.

Next, we conducted exploratory analysis of the respective standard terminology files (i.e., 

MedDRA term files for LLT, PT, HLT, HLGT, and SOC). LLT included a total of 78,808 

terms. Filtering out terms that were not “’current” (as defined by MedDRA22) yielded 

69,531 unique LLTs to which our MH or AE terms would be mapped. Similarly, PT 

included 23,088 unique terms, HLT included 1,737 unique terms, HLGT included 337 

unique terms, and SOC included 27 unique terms.

Exact Matching—The second stage of LLT harmonization involved identifying records 

with terms that exactly matched any term/phrase found in MedDRA’s LLTs. These yielded 

mapped terms with the highest confidence, and further reduced the amount of computing 

and manual annotation time required for downstream. Python’s “casefold” method was 

applied to conduct “caseless” exact text matching. Exact matching was initially applied to 

terms in the PRT column, and then subsequently to any available LLT information in the 

combined file to increase the chances of identifying an exact match. If an exact match was 

still not found, we similarly checked for exact MedDRA LLT matches using any additional 

term information that may have been available for that record. If an exact match was found, 

the corresponding standardized MedDRA term was added to a new “mapped term” column, 

and the corresponding MedDRA term code similarly added to a “mapped term code” 

column. These codes were critical to imputing the term hierarchy later in this procedure.

During this and later stages of mapping, we also added a “map quality score” column to 

the file. For MH, a match received a quality score of 0 if the exact match was found using 

both the PRT and LLT columns (consensus found). Score 1 was assigned if the exact match 

occurred in the PRT column alone, score 2 was assigned if it was in the LLT column alone, 

and score 3 was assigned if it occurred in the accessory term column. Similar quality scores 
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could be customized to the needs of a given term harmonization task, and they allowed 

for a more detailed level of map-quality evaluation as well as improved confidence and 

reproducibility in the mapping procedure.

Fuzzy Matching—The third stage of LLT harmonization addressed mapping of any terms 

unresolved by the exact matching stage. Given the unique constraints of our MH and AE 

harmonization problem, there was no reliable strategy to completely automate the mapping 

of terms that did not exactly match. This was because even a single-letter difference had the 

potential to completely change the underlying meaning of a given text value. It was also due 

to the many text mapping challenges outlined above, including there being a large number 

of possible terms to be mapped to. Other harmonization tasks may be easier to completely 

automate.

Our pipeline adopted a specific form of fuzzy matching. Fuzzy matching generally involves 

estimating the degree of match between individual words or sentence level segments of text. 

Fuzzy matching can rely on a variety of distance metrics. For example, Levenshtein distance 

estimates distance between two words based on the minimum number of single-character 

edits required to change one word into the other. Differently, phonetic algorithms such 

as SoundX48 can be effective at detecting homophones, but can oversimplify matching in 

complex, large-scale text matching. Fuzzy matching distances can also be applied in ways 

that directly compares (1) all text, i.e., simple, (2) the best matching length-m substring, 

i.e., partial, (3) all text, after sorting all words alphabetically, i.e., token sort, and (4) all 

text, after first sorting words found in both alphabetically and then adding any other words 

alphabetically, i.e., token set. Preliminary testing of performance and computational time 

led us to adopt the “fuzzywuzzy” Python package which uses the Levenshtein distance,49 

and the “simple” approach. Specifically, in all fuzzy matching evaluations, the fuzzywuzzy 

“extract” method was applied which outputs the top five simple MedDRA LLTs for each 

unresolved term instance. These potential matches and their scores were added to the 

mapping file.

Manual Mapping by Domain Expert(s)—The fourth stage of LLT harmonization 

required manual inspection and mapping. The preceding fuzzy matching stage was 

not always reliable (particularly in large-scale complex mapping tasks), making manual 

mapping a necessity to maintain high mapping accuracy. However, fuzzy matching 

facilitated this process by presenting medically trained mappers with the top five matching 

MedDRA terms as recommendations. If none of these options were accurate, the mapper 

resorted to applying their own knowledge and searched for an appropriate term in MedDRA 

manually.

During this process, the mappers could either select the best of the five terms selected by 

the fuzzy match process (identified by their index number 1 to 5), or copy an appropriate 

MedDRA term into the “mapped term” column. They also assigned the “map quality score,” 

e.g., for MH, a quality score of 4 was assigned for “high-confidence” fuzzy mappings, and 

5 for “medium-confidence” fuzzy mappings. A score of 6 was assigned to indicate that the 

term had been examined but no clear match had been found.
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Two clinical research coordinators, nurses, or physician fellows conducted a first pass of 

mapping on respective, random, and approximately equal record subsets. An attending 

physician conducted a second pass of all records, verifying or correcting terms given a score 

of 5 and attempting to add mappings of terms given a score of 6. This process of manual 

mapping benefited from multiple passes to improve the overall coverage and quality of term 

harmonization. We provided standardized documentation and training for mappers before 

their review (refer Supplementary Materials, available in the online version only).

Annotation Merging and Quality Control Checks—The fifth stage of LLT 

harmonization began by merging the manually mapped files (if they had been split into 

subsets to accommodate multiple mappers in the preceding stage). Next, our pipeline 

automated QC procedures. This included checking that: (1) the “mapped term” either 

included copied text that exactly matched a term in MedDRA LLTs or a mapper-selected 

fuzzy term index (1–5), (2) only records with a quality code of 6 were missing a mapped 

term entry, and (3) all term quality scores were valid (i.e., 0–6). During this process, 

fuzzy term indexes (1–5) previously placed in the “mapped term” column were replaced 

with the respective MedDRA LLT term, and the corresponding MedDRA term code was 

added. Following a round of QC, flagged records with issues were addressed by an expert, 

and a subsequent QC round applied to confirm success. If needed, another cycle of fuzzy 

matching (with a different algorithm), manual annotation, and QC checks could be applied 

to minimize the number of terms left unresolved.

Term Hierarchy Mapping

The last phase of the term harmonization pipeline shifted from LLTs to mapping the more 

general terms of the MedDRA hierarchy (i.e., PT, HLT, HLGT, and SOC) allowing the 

consolidation of possible states/values for analyses. Consider that within the original MH 

LLTs from the drug trials, 21,452 of the 37,083 were unique. With each term occurring 

less than twice on average, it would be difficult to leverage these more specific terms to 

characterize the populations in the trials. It may be easier to phenotype patient subsets using 

more general term categories than more specific ones.

With the LLT-mapped terms and codes in place, this phase sought to either impute (if 

no MedDRA hierarchy information was available) or apply exact/fuzzy matching (if it 

was available) to map the four increasingly general MedDRA term categories. MedDRA 

includes ontology files defining the term connections between each level of the hierarchy 

(i.e., LLT/PT, PT/HLT, HLT/HLGT, and HLGT/SOC). These are captured using the 

aforementioned term codes. The first level of imputation, i.e., LLT/PT, is a simple direct 

mapping, i.e., each LLT is connected to a single PT. This mapping was completely 

automated and deterministic. The corresponding PT term and term code were added to 

the map file. For the remaining levels, there could be one or more possible term connections 

to choose from (i.e., branches, or “secondary SOC”). Whenever only a single branch was 

present, that corresponding term was automatically chosen. When multiple branches were 

available, the pipeline attempted to use any available term hierarchy information from the 

original study data to pick the matching or closest matching option (discussed below). If no 
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term hierarchy information was available from the original study, our pipeline selected the 

first branch found.

Assuming term hierarchy information was available, mapping of the best HLT, HLGT, 

or SOC branch proceeded similarly to the process described for LLTs. Specifically, exact 

matching was first attempted, followed by fuzzy matching identification of the five best 

matches if exact matching failed. As before, fuzzy matching was followed by manual 

selection of the best option by a mapper. If no best match could be identified manually, 

the first branch was selected. Notably, exact and fuzzy matching was no longer conducted 

against all MedDRA terms, but only using terms identified as candidate branches, making it 

much faster. The overall process of imputing and mapping PT, HLT, HLGT, and SOC across 

all instances must be completed sequentially.

Similar to LLT mapping, each term hierarchy mapping included automatic or manual 

expert annotation of map quality scores. Here, the highest quality score of 1 indicated a 

deterministic mapping to a single branch. Score 2 indicated resolution with an exact match, 

score 3 indicated fuzzy match resolution, score 4 indicated default selection of the first 

available branch, and score 5 indicated that no term could be chosen (when the preceding 

more specific term was unavailable).

Next, this phase underwent a similar merging and QC check before yielding a final 

map file, linking the original data records to standard LLT MedDRA terms, along with 

the corresponding term hierarchy and map quality scores for each. Lastly, the pipeline 

outputted mapping summary statistics for all term levels as reported in the Results 

section. The entirety of the MH semi-automated harmonization pipeline is implemented 

as a set of Python-based Jupyter notebooks available at: https://github.com/UrbsLab/

auto_term_harm_pipe.

Ethical Considerations

Studies using this dataset have been determined to be exempt from review by the 

Institutional Review Board of the University of Pennsylvania.

Results

In this section we present the results of applying this harmonization pipeline to both MH 

and AE terms. Table 1 summarizes the total, exact, fuzzy, and unmapped counts across 

the 28 studies. Less than 0.4% remained unmapped for both MH and AE terms following 

application of this term harmonization pipeline (including records dropped in the first pass). 

Unmapped records included both those removed for having no PRT and those where no 

clear MedDRA term mapping could be determined. Closer inspection of these unmapped 

records confirmed that they were nearly all partial words or unintelligible phrases. Tables 

2 and 3 break down these term mappings further based on the automatically or manually 

assigned quality codes. Keeping in mind that exact matches were completely automated, 

but fuzzy matches required manual annotation, the “high,” “medium,” or “unmapped” 

confidence scores for fuzzy matching reflect the success of the manual efforts that were 
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facilitated by automated fuzzy matching. For both MH and AE, the vast majority of terms 

were exactly matched or manually mapped after fuzzy matching with a high confidence.

Lastly, Table 4 breaks down the counts and quality scores for the term hierarchy mapping. 

PT is not included in this table because all PT terms were mapped deterministically from the 

mapped LLTs (i.e., they all have an imputation quality score of 1). For MH, 85.2% of HLTs, 

99.4% of HLGTs, and 99.5% of SOCs were mapped without ambiguity, i.e., exact or fuzzy 

matching was able to be completed based on available information in the original studies. 

For AE, these statistics were 75% for HLTs, 98.3% for HLGTs, and 98.4% for SOCs. These 

values allowed us to gauge reliability of these mappings.

Notably, the automated elements of this pipeline (run in stages) took roughly 3 to 4 days of 

compute time on a single PC workstation with 3.49 GHz processor and 64 GB of RAM for 

both AE and MH, respectively.

Discussion

This work sought to illustrate a rigorous procedure and offer publicly available code that 

can be adapted to automate the process of term harmonization in other domains where 

an ontological standard is available. This pipeline successfully automated exact matching 

of 75 to 85% of MH or AE terms respectively, which eliminated the need for manual 

checks of these terms. There is no reason this step should be completed manually, as it 

is an obvious time waste. Fuzzy matching and manual annotation on the remaining terms 

can be relatively expensive in both computing and expert mapping time, where saving the 

latter is our primary concern. While it was impractical to reproduce the tedious process of 

harmonization without fuzzy matching to compare mapping times, we can extrapolate the 

estimated time savings by examining high versus medium confidence fuzzy matching in 

Tables 2 and 3 (MH and AE, respectively). High confidence matches occurred when the 

manual annotator was able to quickly and easily select a “best” matching term from the five 

top matches identified by fuzzy matching. Our annotators estimated this took an average 

of 4 seconds per term. Medium confidence matches indicate that the annotator found none 

of the proposed fuzzy matches to be appropriate. At this point the annotator would apply 

their own expertise to search MedDRA manually for an appropriate match. Our annotators 

conservatively estimated this to take an average of 30 seconds per term. Therefore, we 

estimate that MH harmonization of remaining (i.e., not exactly matched) LLTs took 10.5 

hours of manual annotation time with automated fuzzy matching, but would have taken 77 

hours without. For AE terms we similarly estimate it took 16.9 hours with fuzzy matching 

and would have taken 68.8 hours without. Furthermore, manually copying and pasting 

terms between the MedDRA standard and the harmonized file leaves greater opportunity for 

errors than annotators being able to select an appropriate option from a list of five on the 

same worksheet. Overall, application of this pipeline greatly reduced the manual workload 

required for this MH and AE harmonization task, as well as ensured fidelity of our final 

mapping through the use of automated QC checks.

The semi-automated pipeline developed for this study provides an adaptable example of 

how to conduct term harmonization with exact matching, fuzzy matching (with subsequent 
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manual annotation), and generation of a term hierarchy (if such a hierarchy is available 

within the target ontology). However, this approach still has some limitations. First, while 

we believe we have automated this procedure as much as is possible, a significant amount 

of manual effort may still be required to apply this pipeline to other tasks, particularly if 

the frequency of exact matches in a given harmonization task is significantly lower than in 

the present study. Second, this pipeline is only practical for application to single words or 

a relatively small sequence of words, as defined by a target ontology. It is not applicable to 

full sentences or other larger groups of text. Third, when information was not available in 

the records to facilitate selection of the most appropriate branch in the hierarchy mapping 

(section “Lowest Level Term Harmonization”), the first option was selected by default, 

which likely leads to some bias in the assignment of these more general terms. Lastly, with 

respect to the MedDRA ontology, not all laboratory tests can be adequately represented by 

the binary MedDRA categorization (i.e., normal vs. abnormal) or other LLT or PT codes. 

While not an issue in this study, this could be a considerable limitation in other areas.

Future work will (1) extend this pipeline to harmonize concomitant medications using 

RxNorm as our terminology standard, (2) explore the reliability of our manual annotation 

procedure by comparing mappings with a different group of mappers, and ultimately (3) 

leverage the larger sample size of the fully harmonized database to conduct statistical and 

machine-learning analyses of target subject outcomes.

Clinical or Public Health Implications

This new method for harmonizing MH and AE data from multiple RCTs performed over 

several years could facilitate individual participant data meta-analyses in other areas.

Conclusions

In this project, we have proposed an efficient procedure for conducting term harmonization 

for integrating MH and AE variables across 21 RTCs including a total of 28 studies. 

In the process we developed a freely available semi-automated harmonization pipeline 

implemented over a set of Python-based Jupyter notebooks. This procedure included map 

quality scores to trace the ultimate mapping success and allow downstream investigators that 

use this harmonized database to go back and estimate data reliability. We reported summary 

statistics breaking down the frequency with which we were able to rely on exact matching, 

fuzzy matching combined with manual mapping, and unmappable terms. We found evidence 

of high fidelity in our resulting MH and AE term harmonization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Summary LLT mapping counts for all MH and AE data records

Instances n (%) MH n (%) AE

Total 37,105 (100) 58,170 (100)

Exact matches 27,777 (74.9) 49,910 (85.5)

Fuzzy matches 9,244 (24.9) 8,047 (13.8)

Unmapped 84 (0.2) 213 (0.37)

Abbreviations: AE, adverse event; LLT, lowest level term; MH, medical history.
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Table 2

MH LLT mapping quality summary

MH map quality score n (%)

0: Exact match (data PRT and LLT) 5,375 (14.49)

1: Exact match (data PRT) 4,934 (13.3)

2: Exact match (data LLT) 15,286 (41.2)

3: Exact match (other) 2,182 (5.9)

4: Fuzzy match (high confidence) 9,210 (24.8)

5: Fuzzy match (medium confidence) 34 (0.1)

6: Unmapped 84 (0.2)

Abbreviations: LLT, lowest level term; MH, medical history; PRT, primary term.
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Table 3

AE LLT mapping quality summary

AE map quality score n (%)

0: Exact match (data PRT and LLT) 18,414 (31.7)

1: Exact match (data PRT) 11,300 (19.4)

2: Exact match (data LLT) 14,434 (24.8)

3: Exact match (other 1) 4 (0.007)

4: Exact match (other 2) 5,758 (9.9)

5: Fuzzy match (high confidence) 6,824 (11.7)

6: Fuzzy match (medium confidence) 1,223 (2.1)

7: Unmapped 213 (0.37)

Abbreviations: AE, adverse event; LLT, lowest level term; PRT, primary term.
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