Skip to main content
. 2023 Mar 2;57(5):653–665. doi: 10.1007/s43465-023-00845-2

Table 5.

Nine-variable multivariable generalized linear regression model for AI comfort level

Predictor Beta coeff. (95% CI) p value
Age (continuous) 0.0084 (− 0.0036, 0.020) 0.1708
Gender 0.0260
 Female Reference
 Male 0.50 (0.13, 0.88) 0.0085
Other/Unknown − 0.18 (− 1.52, 1.16) 0.7957
Education 0.8069
 Less than HS/unknown − 0.31 (− 1.11, 0.49) 0.4503
 High school/equivalent Reference
 Associate degree − 0.24 (− 0.84, 0.36) 0.4256
 Bachelor’s degree 0.046 (− 0.45, 0.54) 0.8564
 Graduate degree − 0.12 (− 0.61, 0.38) 0.6395
Experience with AI/ML 0.6608
 Work(ed) in a field relevant/directly related to AI/ML 0.27 (− 0.49, 1.04) 0.4819
 Understand how AI/ML function 0.38 (− 0.12, 0.88) 0.1379
 Have researched terms 0.10 (− 0.47, 0.67) 0.7358
 Have heard of terms Reference
 Unknown/do not know what AI/ML mean 0.055 (− 0.40, 0.51) 0.8129
Perceived impact of AI in orthopaedic care  < .0001
 Positive Reference
 Negative − 4.01 (− 4.75, − 3.27)  < .0001
 Not sure/Unknown − 2.02 (− 2.42, − 1.62)  < .0001
Perceived impact of AI on healthcare costs 0.2275
 Increase Reference
 Decrease 0.37 (− 0.12, 0.86) 0.1367
 Not sure/unknown 0.28 (− 0.11, 0.67) 0.1623
Would refuse AI if increased healthcare costs 0.0002
 Yes Reference
 No 1.02 (0.53, 1.52)  < .0001
 Not sure/unknown 0.37 (− 0.061, 0.79) 0.0930
Acceptable for doctor to sell health data to third party for building intelligent computers for healthcare 0.2045
 Yes 0.40 (− 0.047, 0.84) 0.0793
 No Reference
 Not sure/unknown 0.20 (− 0.22, 0.61) 0.3515
Survey format 0.0001
 REDCap Reference
 Tablet − 1.52 (− 2.22, − 0.82)  < .0001
 Paper − 0.053 (− 0.86, 0.76) 0.8968