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Abstract

The joint analysis of the genome, epigenome, transcriptome, proteome 
and/or metabolome from single cells is transforming our understanding 
of cell biology in health and disease. In less than a decade, the field 
has seen tremendous technological revolutions that enable crucial 
new insights into the interplay between intracellular and intercellular 
molecular mechanisms that govern development, physiology and 
pathogenesis. In this Review, we highlight advances in the fast-
developing field of single-cell and spatial multi-omics technologies 
(also known as multimodal omics approaches), and the computational 
strategies needed to integrate information across these molecular 
layers. We demonstrate their impact on fundamental cell biology 
and translational research, discuss current challenges and provide  
an outlook to the future.
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Single-cell genomics-plus-transcriptomics
Soon after the establishment of single-cell DNA sequencing (scDNA-
seq) and single-cell RNA sequencing (scRNA-seq) protocols2,5, meth-
ods for genome-plus-transcriptome sequencing of individual cells 
were developed (Fig. 1) that rely on one of the four basic principles for 
multi-ome analysis (Fig. 2).

A first set of methods applies physical separation of DNA and 
RNA before sequencing library preparation (Fig. 2a). In G&T-seq6,7 
(Supplementary Fig. 1a), oligo-dT bead-mediated precipitation of 
polyadenylated (poly(A)) RNA molecules enables their physical sepa-
ration from the remaining molecules in the cell’s lysate, including 
the nuclear and mitochondrial DNA, either manually or robotically. 
Captured transcripts are then on-bead primed for full-length cDNA 
amplification through reverse transcription (RT), template switching 
and PCR using a Smart-seq2-like reaction8, allowing for both short-
read and long-read sequencing7. Long-read sequencing is preferred for 
transcript isoform detection. The genomic DNA (gDNA) in the collected 
supernatant is subjected to whole-genome amplification (WGA) using 
a method of choice: multiple displacement amplification (MDA), PCR 
or displacement preamplification followed by PCR (DA-PCR). Single-
cell transcriptogenomics applies a similar principle as G&T-seq and is 
compatible with targeted DNA exome sequencing following MDA9. The 
freedom of choice for downstream processing of the separated poly(A) 
RNA and gDNA presents a major advantage. Indeed, WGA is not error-
free, and different WGA methods present different biases, making some 
more suitable for the detection of specific classes of genetic variants, 
as reviewed previously10,11. Similarly, different scRNA-seq methodolo-
gies present different performances in sensitivity, transcript coverage 
and throughput12.

As alternatives to oligo-dT bead-based separation of poly(A) RNA 
and gDNA, multiple methods partition cytosolic RNA from nuclear 
DNA using a two-step cell lysis (Fig. 2b). In SIDR-seq13 (Supplementary 
Fig. 1b), single cells are first subjected to hypotonic lysis, enabling the 
nucleus to be isolated from the supernatant containing RNA using 
antibody-conjugated magnetic microbeads. Then, the nucleus is lysed 
and subjected to MDA-based scDNA-seq, and the supernatant RNA is 
subjected to Smart-seq2-based scRNA-seq. In DNTR-seq14 (Supplemen-
tary Fig. 1c), the nuclei of single cells are precipitated by centrifugation 
after cell membrane lysis. While the supernatant cytosol is isolated 
for Smart-seq2-like scRNA-seq, the nuclear DNA is subjected to direct  
tagmentation. The latter enables direct PCR-based library preparation 
for scDNA-seq, thereby circumventing the classic approach of WGA 
before scDNA-seq library preparation and in part the resulting artefacts 
associated with it14,15. However, these nuclear–cytosolic partitioning 
methods are less amenable to comprehensive characterization of mito-
chondrial DNA and nuclear RNA, and they are confined to the use of intact 
cells as input. Furthermore, plate-based assays such as G&T-seq, tran-
scriptogenomics, SIDR-seq and DNTR-seq are inherently low through-
put and, despite (partial) automation on liquid-handling robotics, still  
require up to a few days’ time6. To circumvent this, integrated on-chip 
microfluidics approaches have been devised that enable separation 
and parallel processing of cytosolic RNA and nuclear DNA16,17. Such 
systems largely avoid the introduction of operator bias, can miniaturize 
the reactions and hence reduce reagent costs, and have the capacity to 
increase throughput, although this remains to be shown.

Another set of methods relies on a preamplification-and-split 
approach for uncoupling DNA and RNA molecular analytes (Fig. 2c). 
In DR-seq18 (Supplementary Fig. 1d), poly(A) RNA-derived first-strand 
cDNA is subjected to quasilinear amplification together with the gDNA 

Introduction
Humans and many other Eukaryota are composed of billions of cells, 
belonging to vastly heterogeneous cell types and functional cell states 
determined by both cell-intrinsic and cell-extrinsic factors. Intrinsically, 
there is a complex interactive molecular hierarchy of the different 
‘omics’ layers within a cell: from genome and epigenome to transcrip-
tome, proteome and metabolome, and back. Extrinsically, the func-
tional state of a cell can be modulated by its neighbouring cells through 
direct physical interaction (such as receptor–ligand interactions), 
through signalling molecules secreted by one cell that can act through 
receptors on remote cells (such as morphogen signalling pathways), 
or by other microenvironmental factors (such as chemical compound 
gradients)1. Consequently, investigating how multicellular organisms 
develop from a totipotent single cell and subsequently function, age 
and develop disease, necessitates single-cell and spatial multi-omics 
approaches (also known as multimodal omics approaches).

Robust technologies for unimodal (mono-omics) measurements of 
individual cells, such as single-cell RNA sequencing (scRNA-seq) meth-
ods2, have already evolved to revolutionize the discovery and under-
standing of cell types as well as their different functional cell states, cell 
plasticity upon exposure to external stimuli and drugs, and cell differen-
tiation or reprogramming trajectories3. The power of these technolo-
gies is underscored by the instigation of the Human Cell Atlas (HCA)1,4 
and other consortium-based resources afterwards, which are primarily 
aimed at creating cellular reference maps of organisms, including the 
position, function and characteristics of every cell type. However, to 
develop fundamental understanding of the molecular hierarchy from 
genome to phenome in individual cells, multi-omics methodologies at 
single-cell and spatial resolution are necessary. They enable investiga-
tion of the intermolecular dynamics between gene regulation on the 
epigenome level and gene expression on the transcriptome and/or 
proteome levels unambiguously in the same single cells across devel-
opment, ageing and disease. Additionally, these technologies enable 
investigating the impact of acquired genetic variation in the genome 
of single cells on their own function and phenotypic features, as well 
as (surrounding) tissue function and more, as exemplified throughout 
this Review. In recent years, this field has advanced phenomenally and is 
rapidly maturing both technologically and computationally, enabling 
broad applications to understand cell biology (Fig. 1).

In this Review, we discuss the fundamental technological and 
computational principles, state of the art and applicative value of 
modern single-cell and spatial multi-omics. We focus on methods 
that provide a comprehensive ‘omics’ view of at least one molecular 
analyte, and for single-cell multi-omics are based on next-generation 
sequencing (NGS), whereas for spatial multi-omics we highlight both 
NGS-based and imaging-based methods. Although many algorithms 
have been tailored to analyse the individual molecular layers, here we 
primarily focus on computational techniques for the integration of 
information across the different data modalities to maximally lever-
age the potential of these multi-omics technologies. We end with an 
outlook to the future.

Single-cell multi-omics methods
Multi-ome measurements from single cells are enabled by different 
methodological approaches, which can be categorized according to 
whether the distinct molecular analytes are uncoupled before, dur-
ing or after sequencing library preparation. As described in Fig. 2 and 
further below for specific methods, each of these different principles 
comes with specific advantages and limitations.
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in a single tube. This reaction is then split, with both aliquots containing 
preamplified cDNA and gDNA. In one, the preamplified gDNA is further 
PCR-amplified and converted to a sequencing library, with the caveat 
that contaminating cDNA will be co-amplified and sequenced into reads 
indistinguishable from the gDNA sequences. In the sister reaction, the 
cDNA is further amplified using in vitro transcription (IVT), followed 
by RT and PCR. Because only the cDNA is tagged with T7 promoter  
sequence for IVT, gDNA will not be co-amplified, resulting in a 3′-end 
scRNA-seq library. In the more recently developed TARGET-seq19,  
a method for targeted mutation detection and parallel transcriptome 
characterization of the same single cells, poly(A) cDNA is co-amplified 
with a mutation of interest targeted by cDNA primers and gDNA primers 
in a single reaction. This pot is then split to prepare the genotyping and  
transcriptome sequencing libraries separately. Although DR-seq 
and TARGET-seq minimize the risk of losing (deoxy)ribonucleic acids in  
comparison to above-described methods relying on physical separation 
of DNA and RNA, they can suffer from RNA-derived reads contaminating 
the gDNA analysis, and are also plate-based and low throughput.

Instead, scONE-seq20 (Supplementary Fig. 1e) follows the prin-
ciple of seq-split (Fig. 2d) and differentially barcodes gDNA and RNA 
through, respectively, tagmentation with a 6-nucleotide DNA-barcode-
containing adaptor and reverse transcription with a 6-nucleotide 
RNA-barcode-containing RT-primer. Differentially labelled gDNA and 
cDNA is then co-amplified and converted to a sequencing library in a 
single-tube reaction. Following NGS, gDNA-derived and RNA-derived 
reads are distinguished by their barcode sequence. This methodology 
hampers sequencing RNA-seq and DNA-seq libraries separately to 
optimal depths and is plate-based and low throughput, but indicates 
that relatively simple one-tube reactions are possible for multi-omics 
measurements of single cells.

Recently, a highly scalable plate-based technology was established 
based on the principle of single-cell combinatorial indexing (Fig. 2e) 
with a three-level indexing scheme and combined with linear IVT-based 
amplification of the cells’ genome and transcriptome (Supplemen-
tary Fig. 1f). This sci-L3-RNA/DNA co-assay enables analysis of at least 
tens of thousands of single nuclei, with the possibility to increase the 
throughput to more than 1 million cells profiled per experiment21. 
Proof of concept of sci-L3-RNA/DNA was presented on mixtures of 
male mouse and female human cell lines, proving that the single-cell 
transcriptomes were organized into the two expected cell clusters 
and that the matching single-cell genomes were of the correct sex, 
although high-sensitivity and high-resolution profiling per cell was 
not demonstrated.

The study of both the genome and the transcriptome of the same 
cell enables one to unambiguously investigate the impact of acquired 
DNA mutations, such as DNA copy number aberrations, on gene 
expression in the same cell. This has important applications for under-
standing intratumoural heterogeneity, enabling the investigation of  
the development of different phenotypic cancer cell states among the 
different genetic subclones that arise, or even within a single genetic  
subclone. For instance, DNTR-seq identified minor subclones hav-
ing genetic copy number alterations with associated transcriptional 
perturbations in paediatric acute lymphoblastic leukaemia14. Addi-
tionally, transcriptional signatures of the WNT pathway activation 
learned from scRNA-seq could be explained by mutations detected in 
the scDNA-seq data from the same cells17. Furthermore, using tumour 
model systems exposed to treatment, or direct longitudinal sampling 
of patient tumour specimens before and during treatment, and ana-
lysing them by single-cell genome-plus-transcriptome sequencing 

will allow investigation of which genetic subclones are more fit to 
tolerate the drug selection. Additionally, it will allow the study of how 
cells within these genetic subclones putatively apply cell plasticity to 
change their gene expression repertoire and accommodate different 
phenotypic cancer cell states able to withstand drug treatment and, 
eventually, acquire resistance22. In turn, these approaches might enable 
the identification of potential cancer cell vulnerabilities, such as drug-
gable molecular players involved in the acquisition of drug tolerance.

Beyond the field of oncology, these multi-omics methods are 
important for understanding the pathogenesis of other disorders in  
which somatic genetic variation plays a putative role, including in neuro
logical disorders such as Alzheimer disease, Parkinson disease and  
others23–25. With the recent discovery that normal tissues are also sub-
jected to an extraordinary amount of mutation, technologies enabling 
the analysis of the genome and transcriptome of the same single cells 
will be important to study the role or impact of acquired mutations on 
phenotypic and functional cellular states, and how these in turn impact 
development26, cellular competition between normal and genetically 
aberrant cells27, tissue homeostasis, normal phenotypic variation and 
ageing28. The power of multi-omics methods in this respect is illustrated 
by the detection of different transcriptional responses to acquired 
DNA copy number aberrations6,7,14,18 and other forms of mutations9. 
For instance, it was shown using DNTR-seq that structural DNA imbal-
ances lead to both linear and nonlinear transcriptional dosage effects, 
whereby several genes important for cancer cell growth, such as MYC 
and TCF7L2, demonstrated strong dosage compensation and were 
shown to be mostly unaffected by copy number alterations14.

Single-cell genome-plus-transcriptome sequencing is also a valu-
able tool to study the efficacy and safety of genome editing in germline 
therapy. CRISPR–Cas9 genome editing has potential as a therapeutic 
tool for the correction of disease-causing mutations. Genome editing 
of human embryos or germ cells provides the means for introducing 
heritable genetic alterations, which may reduce the burden of genetic 
disease in specific familial situations29. Its use is currently a hot topic 
of international debate around ethics, safety and efficacy. Single-cell 
genome-plus-transcriptome sequencing approaches will be pivotal 
to assess on-target and off-target genome edits plus cell phenotypic 
consequences, as only a few cells are available for analysis from the 
treated and subsequently in vitro-cultured human embryo. Recently, 
OCT4 (also known as POU5F1) CRISPR–Cas9-targeted and control 
human preimplantation embryos were investigated using single-cell 
G&T-seq30,31 as well as single-cell or low-input mono-omics DNA-seq. 
Regions of loss of heterozygosity in genome-edited cells that spanned 
beyond the OCT4 on-target locus, as well as segmental loss and gain of 
the OCT4-containing chromosome 6, were detected in the genomic 
data, which collectively resulted in unintended genome edits being 
identified in ∼16% of the human embryo cells analysed. The transcrip-
tome data suggested that the loss of heterozygosity does not lead to 
the misexpression of other genes adjacent to the OCT4 locus.

Furthermore, genome-plus-transcriptome sequencing 
approaches allow genetic variation detected in DNA sequences to be 
confirmed in the RNA sequences of the same cell, increasing the reli-
ability of the genotyping call7,9,13. This principle has been shown for the 
detection of single nucleotide variants contained within expressed 
genes, forms of structural variation resulting in the expression of 
fusion genes, and copy number variants resulting in gene expres-
sion dosage effects. The genomic and mitochondrial DNA variants 
detected by genome-plus-transcriptome sequencing approaches, 
considering potential imperfections15, can furthermore be leveraged 
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for the construction of a genetic lineage tree of the cells, which can  
be annotated with cell type and functional phenotypic states of cells 
using the RNA sequencing data of the same cells. As an alternative to 
analysing naturally occurring somatic mutations, high-throughput 
methods relying on CRISPR-scarring are available in model sys-
tems32, which through recent improvements may enable accurate 
lineage recording as well as the capturing of ancestral transcriptional 
states33,34. In combination with scRNA-seq readouts, these promise to 
revolutionize our understanding of cellular differentiation trajectories.

Single-cell epigenomics-plus-transcriptomics
Advances in the past few years have also moved the mark for meth-
ods that can profile a cell’s epigenome and transcriptome in parallel 
(Fig. 1). As with methods analysing the genome and transcriptome, their 
original designs relied on the physical separation of RNA from DNA 
or the nucleus, and the subsequent profiling of these separated frac-
tions. More recently, methods for the differential marking of RNA and 
epigenetic information encoded in DNA have been described, relying 
on the separation of reads originating from both through restriction 
digestion, PCR or molecular barcoding. These later methods do not 
require upfront separation and are therefore more readily parallel-
ized in higher throughput, via preamplification and split, seq-split or 
combinatorial indexing principles (Figs. 2 and 3).

Most known layers of epigenetic information, including DNA meth-
ylation, chromatin accessibility, histone modifications, and binding 
of transcription factors (TFs) and chromatin remodelling complexes, 
can be recovered from single cells in parallel to the transcriptome. 
Such methods abound but range in sensitivity, specificity and ease of 
use (Fig. 1). The presence of epigenetic modifications can be read either 
directly from the DNA sequence, as is the case for DNA methylation, or 
indirectly by first encoding them in the sequence through DNA meth-
ylation and/or tagmentation. We discuss the latter approach first, as 
this strategy is most widely used.

Tagmentation-based methods come in a wide range of types. 
Most common are methods that jointly profile the transcriptome and 
chromatin accessibility (Fig. 3). Here, accessible DNA is recovered as 
transposon-insertion-flanked regions using an assay for transposase-
accessible chromatin (ATAC). Examples include scCAT-seq35 and 
Smart3-ATAC36, which are plate-based; sci-CAR-seq37, SHARE-seq38, 
SNARE-seq239 and Paired-seq40 (Fig. 3a,b), which rely on combinatorial 
indexing; SNARE-seq39,41, ASTAR-seq42 and the commercially available 
10x Genomics Multiome technology, which rely on microfluidics for 
cell barcoding (Fig. 3c); and ISSAAC-seq, which is amenable to both 
plate-based and microfluidics-based cell barcoding43,44. scGET-seq rep-
resents an unusual type of such methods, profiling both accessible and 
inaccessible chromatin but not the transcriptome45. Important features 
to be considered in tagmentation-based method selection include the 
ease of use of commercially available methods, the higher throughput 
of combinatorial indexing-based methods, the typical lower cost (but 
difficulty of establishment) of non-commercial, laboratory-developed 
methods, and the coverage, sensitivity and specificity obtained across 
cellular modalities. A systematic benchmark of these methods is 

unfortunately currently lacking. In most methods, transcriptome and  
accessible chromatin libraries are prepared in a common reaction  
and separated after indexing using magnetic beads, restriction enzymes 
or specific PCR primers (Fig. 3). A key advantage of the joint profiling 
of transcriptome and chromatin accessibility is that the link between 
gene expression and TF binding is more readily evaluable. In hair follicle 
cells, for example, SHARE-seq analyses of differentiation trajectories 
revealed TFs becoming expressed, with their activity being revealed 
in ATAC profiles later in pseudotime as binding sites became accessi-
ble, before expression of the associated target genes38. As such, these 
multi-omic analyses in dynamic systems enable TF activity to be read-
ily assigned to target genes. The ease of use of some of these methods 
has spearheaded their application in biomedicine and other domains.

However, the aforementioned methods quantify open chromatin 
without addressing the causes of accessibility changes, such as shifts 
in histone post-translational modifications (PTMs) or TF binding. To 
tackle this limitation, other methods have been developed in which 
tagmentation is not randomly targeting accessible regions but directed 
towards specific histone PTMs or TFs. Conjugating the transposase to  
specific antibodies enables joint profiling of transcriptome and 
epitopes. Cell and modality barcoding can also occur through DNA–
RNA separation, preamplification and split, seq-split or combinatorial 
indexing principles (Fig. 2), with transcriptome and DNA libraries being 
separated by restriction enzymes, PCR or beads. Examples of such 
methods include scPCOR-seq46, coTECH47, Paired-Tag (Fig. 3b)48 and 
scSET-seq49. scCUT&Tag2for150 and scMulti-CUT&Tag51 are distinct vari-
ations on these methods, involving two epitopes being targeted using 
different antibody-conjugated transposases. The distribution of both 
epitopes in a single cell can be learned from their different genomic dis-
tributions (for example, broad or narrow peaks) in scCUT&Tag2for150, 
or from epitope-specific barcoding enabled by transposases loaded 
with different oligonucleotides in scMulti-CUT&Tag51. A potent illus-
tration of these methods was the profiling of mouse brain cells for 
both transcripts and different histone modifications using Paired-Tag, 
which identified distinct categories of genes each regulated by different 
epigenetic mechanisms48.

Epigenetic information can also be read through DNA methyla-
tion profiling, relying either on 5-methylcytosine (5mC) or N6-meth-
yladenine (6mA) (Fig. 4). 5mC is a prevalent endogenous epigenetic 
modification of DNA, found almost exclusively in a CpG context, that 
represses ectopic and heterochronic gene transcription initiation. 
In the most basic approach, endogenous 5mC DNA methylation is 
quantified in single cells by bisulfite sequencing. Key issues precluding 
more widespread adoption of single-cell 5mC analyses are the costs 
associated with library preparation and whole-genome sequencing, 
as well as the technical complexity. Indeed, bisulfite treatment of DNA 
causes its denaturation and fragmentation, and comes with a need 
for purification, leading to DNA losses. Library preparation can occur 
either through random-priming-based methods, such as post-bisulfite 
adapter tagging (PBAT), which is costly but yields genome-wide profiles 
covering 5–50% of the genome, or through reduced-representation 
bisulfite sequencing (RRBS), which is more cost-effective but only 

Fig. 1 | Timeline of single-cell and spatial multimodal methods. In addition  
to the year of publication, other key features of the methods are indicated.  
For single-cell multi-omics assays, this includes the nature of molecular analytes  
they analyse as well as the method used for cell barcoding. For spatial multi-omics 
assays, this includes the resolution, sample type, order and number of analytes 

that can be profiled simultaneously. FFPE, formalin-fixed paraffin-embedded; 
IVT, in vitro transcription; MATQ, multiple annealing and dC-tailing-based 
quantitative single-cell RNA-seq; STRT: single-cell tagged reverse transcription 
sequencing; RT, reverse transcription; TdT, terminal deoxynucleotidyl 
transferase; TELP, tailing extension ligation and PCR.
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covers 1–3% of the genome. Recent evolutions in less destructive 
DNA methylome analytics and target capture may serve to develop 
more attractive workarounds52,53. DNA methylation profiled on its 
own through single-cell DNA sequencing enables concomitant chro-
mosomal copy number profiling. More often, DNA methylomes are 
profiled together with a cell’s transcriptome, chromatin structure 
and/or chromatin accessibility.

Methods that produce transcriptome profiles alongside targeted 
DNA methylome profiles — as in scMT-seq, scTrio-seq and Smart-RRBS — 
or genome-wide DNA methylome profiles — as in scM&T-seq and scTrio-
seq2 — have been established54–58. These typically involve physical 
separation of DNA and RNA (Fig. 2a,b).

Endogenous CpG DNA methylation is often assessed in conjunction 
with chromatin accessibility. For this, a GpC methyltransferase is added 
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to isolated nuclei where it can methylate open-chromatin-associated 
accessible DNA (Fig. 4a,b). Subsequent bisulfite sequencing can disclose 
the methylated GpC dinucleotides that mark these accessible regions, 
in addition to the endogenous methylation that in most cell types is 
nearly exclusive to CpG dinucleotides. GpC methylase-based meth-
ods show higher coverage per promoter than ATAC-based methods59, 
albeit at substantially higher sequencing cost per cell, and make it easier 
to distinguish open from truly closed regions, which are not directly 
detected in the sparse scATAC-seq signals. A limitation relative to regular 
DNA methylome analyses is that at cytosines flanked on both sides by a 
guanine, methylation can be attributed to endogenous as well as exog-
enous processes. These are discarded from analyses. Relevant methods 
include scCOOL-seq60, iscCOOL-seq61 and scNOME-seq62, which jointly 
profile accessibility and DNA methylation, and trimodal methods such 
as scNMT-seq59, scNOMeRe-seq63, scChaRM-seq64 and snmCAT-seq65, 
which in addition uncover gene expression profiles from the same cell 
(Fig. 4a,b). All are plate-based assays and based on DNA–RNA separation, 
apart from snmCAT-seq, which is seq-split based (Fig. 2d; Fig. 4b).

Noteworthy alternatives that do not profile transcriptomes are 
snm3C-seq66 and scMethyl-HiC67, as they profile the DNA methylome in 
parallel to higher-order chromatin structure (Fig. 4c). Here, a 3C or HiC-
like single-cell method to capture nuclear organization is combined 
with bisulfite conversion, to enable joint profiling of DNA methylation 
and chromatin structure66,67. Methods that jointly also capture the 
transcriptome have yet to be described.

Despite being challenging techniques, the multi-omics nature of 
the resultant data enables a very in-depth analysis of cells, revealing 
hierarchies of changes to the epigenome and transcriptome during 
development, differentiation or pathogenesis. For example, stages 
of mouse gastrulation were profiled using scNMT-seq, which demon-
strated that DNA methylation and chromatin accessibility patterns at 
ectodermal enhancers are pre-established in epiblast cells and stable 
during ectoderm differentiation, whereas mesodermal and endoder-
mal enhancers are inactive in epiblast cells but actively remodelled 

following differentiation to mesoderm or endoderm68. Accessibility 
and DNA methylation changes seemed to be tightly coordinated. These 
studies illustrate that multi-omics profiling of single cells for tran-
scriptomic and epigenetic layers is feasible and provides fundamental 
insights unattainable using mono-omics methods.

Apart from methylated cytosines, methylation of adenines to 
6mA can also be profiled in DNA (Fig. 4d). In contrast to 5mC, 6mA is 
an ultra-rare base in mammalian DNA69 and can thus provide nearly 
unambiguous DNA marking when artificially introduced. Typically, a 
prokaryotic DNA adenine methyltransferase (Dam) is used to methyl-
ate adenines in GATC context for DNA-sequence encoding of epige-
netic information. Dam can either be expressed to mark accessible 
chromatin70–72 or be tethered to endogenously expressed proteins 
using insertion mutagenesis to mark their binding sites in live cells. 
Two DNA–RNA separation-based methods applying adenine meth-
ylation to 6mA have been described: scDam&T-seq, with Dam teth-
ered to chromatin-associated proteins to mark their nuclear location 
(DamID)70, and scDam&T-seq with EpiDamID, in which Dam is tethered 
to protein domains or nanobodies that recognize PTMs73 (Fig. 4d). 
As 6mA cannot be detected directly through short-read sequencing, 
quantification is relative, relying on Dam activity and a 6mA-specific 
restriction digest. In contrast to the other chromatin profiling methods 
described above, the resulting profiles typically reflect the aggre-
gate of residence times of the proteins marked, leading to better 
signal-to-noise ratios but poorer temporal resolution. The reliance 
on endogenous tethering limits the scope of these methods to sys-
tems amenable to transgenesis. Interestingly, it extends their scope 
beyond only those proteins for which a specific antibody is available, 
and at least scDam&T-seq enables a method of analysing chromatin 
occupancy that is orthogonal to antibody-based methods. Addition-
ally, these methods may suffer less from the bias towards accessible 
chromatin that characterizes transposase-based tagging approaches. 
Interestingly, these methods share several features with Fibre-seq-
based approaches74, in which chromatin patterns are read through 6mA 

Fig. 2 | The four general principles for multi-ome measurements from  
single cells. All principles are visualized with RNA and DNA as example analytes.  
Principle 1 is based on physical separation of the distinct molecular analytes 
(parts a,b). a, Following complete lysis of the isolated cell or nucleus, poly(A) 
RNA hybridizes to oligo-dT-coated paramagnetic beads, and following magnetic 
pulldown, the supernatant that contains the genomic DNA is transferred to a 
new reaction vessel7,9. Alternatively, biotinylated nucleotides are incorporated 
into RNA-derived cDNA, allowing their capture with streptavidin-coated 
paramagnetic beads (not shown)42. Advantages include flexibility in down
stream processing of DNA and/or RNA and compatibility with intact cells and 
nuclei from fresh and frozen tissue. Disadvantages include potential loss of 
RNA and/or DNA molecules during physical separation. b, In an alternative 
approach, lysis conditions that rupture the cell but not the nuclear envelope 
allow separation of nuclear from cytoplasmic molecular analytes, either by 
precipitating the nucleus with centrifugation or magnetic pulldown followed 
by aspiration of the cytosolic supernatant13,14 or by microfluidic-controlled 
nucleus-from-cytoplasm separation16,17. Advantages include flexibility in 
downstream processing of DNA and RNA and availability of non-poly(A) RNA. 
Disadvantages include loss of nuclear RNA plus some cytoplasmic RNA during 
nuclear–cytoplasmic separation, loss of mitochondrial analytes, need for intact 
single cells, incompatibility with frozen tissue and likely incompatibility with 
mitotic cells (in which the nuclear envelope disaggregates). c, In principle 2, 
termed preamplification and split, distinct analytes are differentially tagged 
and jointly preamplified, followed by splitting the preamplification reaction for 

analyte-specific sequencing library preparations18. Advantages include minimal 
risk of analyte loss and compatibility with intact cells and nuclei from fresh and 
frozen tissue. Disadvantages include limited flexibility, as the preamplification 
protocol needs to be suitable for all analytes of interest, and risk of cross-
contaminating molecular analytes. d, Principle 3, termed seq-split, involves 
analyte-specific barcoding and sequencing library preparation in a single-pot 
reaction20. Multi-omic information is uncoupled computationally following 
sequencing. Advantages include minimal risk of analyte loss and compatibility 
with intact cells and nuclei from fresh and frozen tissue. Disadvantages include 
that libraries cannot be sequenced separately to optimal depth for each modality, 
and potential risk of cross-contaminating molecular analytes. e, In principle 4, 
termed combinatorial indexing, molecular analytes of single cells are tagged 
without isolating single cells21. Multiple cells or nuclei are deposited per well of a 
multi-well plate, whereby each cell or nucleus serves as a reaction container. Each 
receives an analyte-specific tag and a well-specific barcode. By pooling, mixing 
and randomly re-distributing the cells or nuclei in subsequent rounds of well-
specific barcoding, molecular analytes uniquely barcoded per cell are obtained.  
Combination with concepts of principle 2 and/or 3 achieves single-cell or single-
nucleus multi-omics. Advantages include that there is no need for isolating  
single cells, ability to achieve extremely high throughput, and compatibility with 
intact cells and nuclei from fresh and frozen tissue. Disadvantages include typically 
lower sensitivity, risk of analyte loss and limited flexibility in whole-genome and 
whole-transcriptome amplification protocols. dsDNA, double-stranded DNA; 
NGS, next generation sequencing; poly(A), polyadenylated.
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marking using single-molecule long-read sequencing. Combining both 
methods may thus facilitate high-throughput, haplotype-resolved and  
cell-type-specific characterization of chromatin structures in bulk.

Single-cell omics plus low-plex profiling of another analyte
Aside from profiling multiple comprehensive omics layers from the 
same cell, substantial progress was recently made in profiling single 
cells comprehensively for a single analyte and in a less comprehen
sive (low-plex) manner for another analyte. Most common among these 
methods are those quantifying the cell’s transcriptome and/or acces-
sible genome, alongside a limited set of cell surface or intranuclear 
proteins. These methods typically rely on antibodies tagged with a spe-
cific barcoded oligonucleotide, which can be captured and amplified 
alongside the transcriptome. Using mixes of dozens to hundreds of such 
barcoded antibodies that each recognize specific epitopes, subsequent 
barcode counting thus enables quantification of multiple proteins of 
interest in single cells alongside true omics analysis. Such methods ena-
ble the profiling of protein abundances in addition to gene expression or 
other modalities, but can also capture other information about proteins 
such as protein stability, PTMs and protein isoform expression. Omics 
layers shown to be amenable to this include the transcriptome (REAP-
seq75, CITE-seq76, inCITE-seq77, SPARC78, ECCITE-seq79 and RAID-seq80), 
open chromatin (ASAP-seq81 and ICICLE-seq82) or both (DOGMA-seq81 
and TEA-seq82), as well as chromatin modifications (scCUT&Tag-pro83) 
(Fig. 3d). Epitopes available for profiling are mostly limited to the cell 
surface, although methods for intracellular (SPARC78 and RAID-seq80) 
and intranuclear (inCITE-seq77 and NEAT-seq84) epitopes have also been 
developed. Note that any plate-based method can theoretically also 
leverage antibody marking and cytometry to quantify a limited set of 
proteins per cell. A notable alternative approach (PHAGE-ATAC) was 
described recently in which barcoded phages that display a nanobody 
serve to bind cell surface epitopes85. The barcoded phage genomes can 
be quantified in conjunction with genome-wide chromatin accessibility 
profiles. Each of these methods is currently limited by the availability of 
specific antibodies or nanobodies, and although mass spectrometry-
based methods for proteome-wide analysis of single cells have been 
developed86, such analyses alongside other omics layers are currently 
lacking. A related method recently described is single-cell transcrip-
tome and translatome sequencing (T&T-seq), in which cells are sorted 
into plates and lysates are distributed for total RNA-seq and for affinity 
purification of actively translating ribosomes. T&T-seq thus enables 
joint profiling of all transcripts and those transcripts that are being 
translated into proteins87.

Finally, other molecular features have also been shown to accom-
modate barcoding, with guide RNAs as a key example. In cells express-
ing CRISPR-based gene editing, activation or inactivation systems, 
feature barcoding methods enable high-throughput profiling of the 

transcriptome or accessible chromatin in pools of single cells subjected 
to high-throughput genetic perturbation screens. Examples include 
CROP-seq, in which the guide RNA sequence is directly determined 
alongside the cell’s transcriptome88, and CRISP-seq89 and Perturb-
seq90,91, in which each guide RNA has a unique barcode that is sequenced 
alongside the transcriptome. The latter two methods have lower speci-
ficity, as recombination can blur the link between barcode and guide 
RNA, and more recent implementations of Perturb-seq therefore apply 
direct guide-RNA sequencing. Methods to profile the impact of such 
perturbations on chromatin accessibility include CRISPR-sciATAC92, 
Perturb-ATAC91 and Spear-ATAC93. Recently, this approach was applied 
at scale when millions of single-cell transcriptomes were analysed, 
with each expressed gene inactivated in a subset of these cells. This 
strategy revealed the effect of inactivation of each expressed gene 
on the expression of all other genes, and thus represents a valuable 
resource for the in silico modelling of genetic perturbations94. Notably, 
a similar approach can be deployed to characterize gene interactions95. 
Here, cells are transfected with, on average, two different guide RNAs 
from a pool, generating pools of double-knockout cells. The combined 
impact of both perturbations can then be compared with the impact 
of single perturbations, providing direct quantification of a matrix of 
genetic interactions.

Spatial multi-omics methods
Methodologies for spatial multi-omics are developing rapidly to allow 
the study of different molecular analytes at up to subcellular resolution 
within their native tissue context (Fig. 1). Spatial multi-omics technolo-
gies were listed by Nature as one of the seven technologies to watch in 
202296, with the basis for their development and ongoing innovations 
being a range of established spatial mono-omics methods (Box 1). Spa-
tial multi-ome characterization of a sample, usually a fixed fresh-frozen 
or formalin-fixed paraffin-embedded (FFPE) tissue section, is often 
achieved by combining these spatial mono-omics methods. They can 
be applied separately on adjacent tissue sections, serially on the same 
tissue section if the quality of the different analytes can be maintained, 
or in parallel on the same tissue section if joint targeting and reading out 
of the different analytes is possible. The number of target analytes that 
can be analysed simultaneously at the different molecular levels varies 
between methodologies (Fig. 1). Often spatial omics measurements are 
also supplemented with histological stains, such as H&E (haematoxylin 
and eosin) staining, of the same or adjacent tissue sections, allowing 
integration with additional morphological annotations.

Spatial multi-omics via adjacent-section strategies
The application of spatial assays for different mono-omics layers of 
interest (Box 1) on adjacent or serial sections from the same tissue 
sample enables these techniques to be assayed in their most optimal 

Fig. 3 | Selected tagmentation-based methods for single-cell multi-omic 
analyses. Summaries of experimental workflows highlighting how and in what 
order different modalities are probed and separated for analysis, while retaining 
single-cell information. Shown are SHARE-seq38 (part a), Paired-seq240 (part b, 
left) and Paired-Tag48 (part b, right), SNARE-seq39 (part c) and TEA-seq82 (part d). 
In all methods shown, an assay for transposase-accessible chromatin (ATAC) 
precedes reverse transcription (RT) of polyadenylated RNA. Cell barcoding 
can occur through successive rounds of combinatorial indexing (parts a,b) or 
by compartmentalizing cells and barcoded oligonucleotides in microdroplets 
(parts c,d). DNA fragments originating from mRNA and DNA can be separated 

by binding to paramagnetic beads (part a), differential restriction digestion 
(part b) or using specific PCR primers (parts c,d). Part b illustrates how similar 
workflows can either map accessible chromatin (left) and chromatin-associated 
proteins or their post-translational modifications (right). TEA-seq illustrates 
that barcoded oligonucleotides conjugated to antibodies can be detected using 
approaches similar to those developed for measuring gene expression. cDNA, 
complementary DNA; ChIP–seq, chromatin immunoprecipitation followed 
by sequencing; RNA-seq, RNA sequencing; TdT, terminal deoxynucleotidyl 
transferase; TSO, template-switching oligonucleotide; UMI, unique molecular 
identifier.
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setting and their data to be integrated computationally (Fig. 5a). This 
requires sample collection and preparation procedures compatible 
with all assays of interest, well-thought-out experimental design and 
good assay coordination. This strategy is mostly required when multi-
omics readouts of interest are not possible yet or suboptimal on the 
same section. Mass spectrometry imaging (MSI) methods97, for exam-
ple, can be used for spatial metabolome characterization of small bio-
molecules such as lipids (Box 1), but cannot easily be combined with 
other spatial genome, transcriptome or proteome readouts on the 
same section owing to specific sample preparations and limitations 
(for example, the need for matrix deposition in MSI97, OCT compound 
embedding complicating mass spectrometry98 and inherent break-
down of lipids during potential upfront assays). Conversely, MSI is 
compatible with H&E staining on the same section, which can also be 
leveraged for computational integration with other spatial assays. 
Additional serial sections can also be dissociated into single cells or 
nuclei for generating matched single-cell sequencing data that can 
be used for optimal deconvolution of the spatial data and additional 
data integration (Fig. 5a). As such, a combination of different single-cell 
sequencing and spatial transcriptomics and proteomics approaches 
was applied and integrated to assemble an atlas of healthy and obese 
murine and human livers and to map hepatic macrophage niches99. 
Disadvantages of this approach are that not all assays are compatible 
with all sample types (for example, fresh-frozen versus FFPE), that it 
suffers from sample heterogeneity, as even adjacent sections will dif-
fer slightly as to structure and cellular composition, and that different 
spatial assays may have different resolutions. Although computational 
tools exist that can compensate for these challenges (see below), the 
concordance between sections is never unambiguous. Hence, innova-
tive methods enabling spatial multi-omics measurements on the same 
tissue sections have started to emerge.

Spatial (epi)genomics-plus-transcriptomics
The possibility for simultaneous unbiased profiling of chromatin acces-
sibility or specific histone modifications and gene expression on the 
same tissue cryosections has been described for spatial ATAC&RNA-
seq and spatial CUT&Tag-RNA-seq, respectively100. These methods are 
based on combining microfluidic deterministic barcoding in tissue 
(DBiT) strategies (Box 1) for spatial-ATAC-seq101 or spatial-CUT&Tag102 
with DBiT-seq poly(A) transcript profiling103 (Fig. 5b). For capturing 
chromatin accessibility, accessible gDNA is first tagmented in situ 
with a universal ligation linker. For capturing specific histone modifi-
cations, the tissue is first incubated with primary antibodies against 
the epigenetic marks, followed by a secondary antibody that allows 
protein A-transposome tethering for tagmentation of the DNA at 
these specific locations. Combined mapping of the transcriptome 

is achieved by hybridizing a biotinylated oligo-dT that also contains 
a universal ligation linker and primes RT in situ100 (Fig. 5b). DBiT-seq 
barcoding with serial attachment to the tissue of two microfluidics 
chips with equidistant channels perpendicular to each other is then 
used to administer two sets of channel-specific barcodes (Box 1), with 
the first set ‘A’ ligating with the universal ligation linkers present on the  
tagmented DNA and poly(A) mRNA-derived cDNA, and the second  
set ‘B’ ligating to the set ‘A’ barcodes, resulting in an in situ 2D grid with 
uniquely barcoded AB crossroads (20–25-µm pixels)100. The spatially 
barcoded gDNA and cDNA fragments are collected by reverse crosslink-
ing, cDNA is enriched with streptavidin-coated magnetic beads, gDNA 
is retained in the supernatant, and NGS libraries are constructed sepa-
rately for sequencing (Fig. 5b). Based on the spatial barcodes, sequenc-
ing reads are combined with microscopy images of the tissue section, 
allowing the multi-omics sequence information to be mapped spa-
tially100. Limitations of these assays are the near-single-cell resolution  
(20–25-µm pixel size), the small analysable area (2,500–10,000 pixels), 
the uncharacterized spaces in between adjacent pixels (depending on 
channel distances) and the expertise that is required in fabricating 
and handling microfluidics chips for implementation. Nevertheless, 
these methods were successfully applied to developing mouse and 
adult human brains, revealing how epigenetic states or modifications 
regulate cell type, states and dynamics100.

Alternatively, microscopy-based methods can enable spatial profil-
ing of genome or epigenome information together with gene expres-
sion by directly imaging DNA loci, chromosomal and nuclear structures, 
and transcripts within single cells at up to subcellular resolution. Sev-
eral methods showing imaging-based multi-omic measurements for a 
limited number of combined analytes exist104–106, but we focus on those 
that can characterize at least one analyte layer more comprehensively. 
Multiplex single-molecule fluorescent in situ hybridization (smFISH) 
methods, such as MERFISH107,108 and seqFISH109,110 approaches (Box 1), 
originally designed for targeted high-sensitivity spatial profiling of 
thousands of transcripts at subcellular resolution, were adapted to 
allow genome-scale chromatin tracing as in DNA-MERFISH111 and DNA-
seqFISH+112. Combined RNA, chromatin and nuclear body imaging in 
the same fibroblast cells was enabled by sequentially staining for >1,100 
nascent transcripts using RNA-MERFISH, followed by DNA-MERFISH for 
>1,000 genomic loci, and finally fluorescent antibody readouts for cell-
cycle-state determination and landmark nuclear structures, including 
nuclear speckles and nucleoli111 (Fig. 5c). This approach allows for the  
characterization of chromatin domains, compartments and trans-
chromosomal interactions and their relationship to transcription in 
single cells111. Similarly, DNA-seqFISH+ imaging of up to 3,660 chromo-
somal loci in mouse embryonic stem cells was shown to be compatible 
with RNA-seqFISH of 70 mRNAs and intron-seqFISH of 1,000 genes at their  

Fig. 4 | Selected DNA methylation-based methods for single-cell multi-
omic analyses. Summaries of experimental workflows highlighting how and 
in what order different modalities are probed and separated for analysis, while 
retaining single-cell information. Shown are scNMT-seq59 (part a), snmCAT-seq65 
(part b), scMethyl-HiC67 (part c) and EpiDamID with scDam&T-seq73 (part d). In all 
methods shown, several types of epigenetic information can be discerned from 
a single sequencing library: DNA methylation and accessibility (part a), DNA 
methylation, accessibility and gene expression (part b), DNA methylation and 
chromatin conformation (part c), and histone modifications and transcription 
(part d). These layers of information can be discriminated by analysing DNA 
methylation patterns (parts a,b), DNA methylation and read-pair mapping 
(part c) or read-associated barcode tags (part d). Only scNMT-seq (part a) 

involves physical separation of modalities to be probed (mRNA from intact 
cells). Each of these methods is plate-based and therefore restricted in its 
throughput. DNA methylation patterns can be read using bisulfite conversion 
of unmethylated cytosines to uracil (U) (parts a–c) or methylation-sensitive 
restriction digestion (part d), and reflect endogenous methylation alone (part c), 
endogenous methylation as well as exogenously added methylation reflecting 
chromatin accessibility (parts a,b), or endogenous adenine methylation added 
after genetic transformation (part d). cDNA, complementary DNA; Dam, DNA 
adenine methyltransferase; FACS, fluorescence-activated cell sorting; gDNA, 
genomic DNA; 5mCTP: 5-methyl-deoxycytidine triphosphate; NGS, next-
generation sequencing; RT, reverse transcription; T7, T7 promoter; TdT, terminal 
deoxynucleotidyl transferase; TSO, template-switching oligonucleotide.
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nascent transcription active sites, as well as sequential immunofluores-
cence targeting of 17 nuclear structures, including the nuclear lamina, 
nucleolus and histone modification marks, using primary antibodies 
conjugated with DNA-oligonucleotides detectable by fluorescently 
labelled readout probes112 (Fig. 5c). In addition to identifying hetero-
geneity in chromosome structure, this study found that many active 

gene loci reside at the surface of nuclear bodies and the presence of 
persistent global chromatin states112. Also, OligoFISSEQ methods allow 
rapid in situ sequencing-based visualization (Box 1) of multiple genomic 
loci in single cells, with the potential for genome-wide application 
and being compatible with immunofluorescence and other FISSEQ-
based methods for protein and RNA characterization, respectively113. 

Box 1

Principles of spatial mono-omics methods for spatial multi-omics 
developments
Methods for spatial mono-omics have progressed tremendously 
in the last decade with excellent reviews existing for spatial 
transcriptomics165,171–173, (epi)genomics166,174, proteomics86,167 and 
metabolomics168,175. Here, we briefly highlight the basic principles of 
the approaches that currently form the basis for most ongoing spatial 
multi-omics developments.

Array-based spatial transcriptomics
These approaches allow for transcriptome-wide profiling through 
capturing of polyadenylated (poly(A)) RNA transcripts released from 
fixed and permeabilized tissue sections, making use of thousands 
of arrayed and spatially barcoded oligo-dT spots (for example, 
Spatial Transcriptomics170,176 and 10x Genomics Visium115), uniquely 
DNA-barcoded beads (for example, Slide-seq177 and HDST178) or 
even barcoded DNA nanoballs (for example, Stereo-seq179) on a 
slide surface. Following reverse transcription into barcoded cDNA 
and library preparation, gene expression is spatially profiled by 
addressing the barcoded next-generation sequencing (NGS)  
reads to specific locations within the imaged tissue section.

Microfluidic deterministic barcoding strategies
These methods (including DBiT-seq103, spatial-ATAC-seq101 and spatial-
Cut&Tag102) allow high-resolution NGS-based spatial (multi-)omics 
profiling. By serially attaching two polydimethylsiloxane (PDMS) 
microfluidics chips with equidistant microchannels perpendicular to 
each other on a pre-fixed tissue section, two sets of channel-specific 
DNA barcodes (A1-N and B1-N) can be delivered to the tissue surface 
for barcoding of captured poly(A) transcripts, proteins or epigenomic 
information. This yields a 2D map of pixels on the tissue with unique 
barcode combinations (AB) at the channel crossflows to spatially 
allocate barcoded NGS reads for the analytes of interest.

DNA antibody tags
This approach allows protein targeting and spatial mapping via NGS 
by using polyadenylated antibody-derived tag-conjugated antibodies, 
derived from single-cell CITE-seq76. These antibodies linked to DNA 
sequences with an antibody-specific barcode and a poly(A) tail are 
compatible with the capture-based array or microfluidic deterministic 
barcoding approaches above, for spatial (co-)profiling of proteins 
by NGS. Alternatively, next to the imaging-based methods that rely 
on cyclic fluorescent antibody stains for the identification of up 
~60 protein targets in tissue sections (such as seqIF180, CycIF181 and 
MILAN182), antibodies labelled with DNA barcodes can be identified 

through cyclic hybridization and imaging of fluorescent readout 
sequences or with fluorescent detection during oligosequence 
amplification (for example, CODEX183 and immuno-SABER184).

Multiplex smFISH
Multiplex single-molecule fluorescent in situ hybridization (smFISH) 
methods allow imaging of thousands of gene transcripts and 
genomic loci in single cells with high accuracy and subcellular 
resolution, to enable single-molecule detection of RNAs in their 
native tissue context and characterize chromosomal structure and 
organization. With the most advanced methods (such as MERFISH107,111 
and seqFISH+112,185), predefined optical barcoding schemes are 
assigned and imprinted onto oligonucleotide targets using a library 
of encoding probes. Each encoding probe contains a region targeting 
the sequence of interest and variable distinct readout sequences 
in multiple copies. After encoding probe binding, detection of 
the imprinted barcodes is achieved through multiple rounds 
of fluorescent readout probe hybridization, high-resolution imaging 
and signal quenching.

In situ sequencing
In situ sequencing (ISS) methods allow high-throughput spatial 
mapping of transcripts and genomic loci in single cells. Both 
targeted and untargeted approaches (for example, ISS186, ExSeq125 
and FISSEQ187,188) exist for transcript identification, in which highly 
specific padlock probes are hybridized to in situ-synthesized cDNA 
sequences, followed by probe ligation and rolling circle amplification 
(RCA) of either the barcoded probe sequences or short sequences 
of the cDNAs, to generate micrometre-sized RCA products within 
cells that are decoded using in situ imaging-based sequencing-by-
ligation. OligoFISSEQ113 methods also allow genome-wide targeting 
of genomic loci.

Mass spectrometry imaging
Mass spectrometry imaging (MSI) is an alternative to the antibody-
based approaches for spatially characterizing not only proteins 
or peptides but also other small biomolecules, such as lipids, 
metabolites or sugars, in tissue sections. Samples are systematically 
scanned by light or particle beams ionizing the surface biomolecules 
and making them accessible to time-of-flight (TOF) mass 
spectrometry for identification. Matrix-assisted laser desorption/
ionization (MALDI) MSI methods enable spatial metabolome 
characterization in tissue sections at (near) single-cell resolution189.
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Although these microscopy-based methods are important for studying 
chromosomal and nuclear structures and organization linked to gene 
expression regulation at a single-cell level, they require expertise in 
complex optical barcoding schemes and high-resolution imaging 
modalities, are challenging to apply in complex tissue samples, are 
costly and usually can only characterize a limited area.

Alternatively, by using laser capture microdissection (LCM)-based 
isolation of specific (single) cells from tissue sections, single-cell 
sequencing-based genome-plus-transcriptome or epigenome-plus- 
transcriptome profiling methods as described above can be applied 
at spatial resolution, as was done for analysing tumour development, 
metastasis and prognosis in patients with triple-negative breast cancer114.

Spatial transcriptomics-plus-proteomics
Methodologies allowing parallel spatial interrogation of both the 
transcriptome and proteome are currently still limited, are often 
based on serial characterization of both modalities, mostly allow  
co-characterization of only a limited number of proteins and often lack 
single-cell resolution. For example, the commercial array-based 10x 
Genomics Visium technology for poly(A) RNA capture and spatial bar-
coding at 55-µm resolution followed by NGS identification (Box 1) cur-
rently supports immunofluorescence protein detection of one or two 
targets on the same fresh-frozen or FFPE tissue section, although at the 
cost of the otherwise applied H&E staining used for spatial mapping115 
(Fig. 5d). However, Spatial PrOtein and Transcriptome Sequencing 
(SPOTS) demonstrates that Visium is also compatible with co-profiling 
of a larger number of proteins using polyadenylated antibody-derived 
tag (ADT)-conjugated antibodies (Box 1), as was shown for 21 proteins in 
mouse spleen and breast cancer tissue cryosections116. Similarly, Spatial 
Multi-Omics (SM-Omics) shows Spatial Transcriptomics (the forerunner 
of Visium with 100-µm resolution) to be compatible with DNA-barcoded 
antibody and/or immunofluorescence co-mapping of six proteins, with 
the added concept of full automation using liquid-handling robotics 
achieving increased throughput and performance117.

Alternatively, NanoString GeoMx Digital Spatial Profiling (DSP) 
allows quantification of the abundance of RNAs and/or proteins by 
counting unique indexing oligonucleotides, which are covalently linked 
via a UV-photocleavable linker with probes or antibodies that target 
transcripts or proteins of interest, respectively118,119 (Fig. 5e). Whole-
transcriptome DSP assays or DSP assays for >100 protein targets are 
possible, although coupled to image-based selection of specific regions 
of interest following fluorescent antibody and/or RNAscope120 marker 
stainings. Selected regions of interest are illuminated by directed UV 
light, which cleaves the photocleavable linkers and releases oligonu-
cleotide indices, enabling their collection and identification using NGS. 
Achieving single-cell resolution is challenging with this technology, but 
the combination of both transcriptome and protein readouts on the 
same sample was shown in FFPE cell pellet array sections stained with 
the GeoMx Human Whole Transcriptome Atlas (WTA) probe set and a 
59 GeoMx antibody panel121.

Chip-based DBiT-seq approaches (Box 1) also allow co-mapping 
of poly(A) mRNAs with proteins in tissue cryosections, as shown in 
the original DBiT-seq method with ~10-μm pixel resolution and tens 
of proteins co-profiled103, but improved upon in spatial-CITE-seq  
(spatial co-indexing of transcriptomes and epitopes), in which whole-
transcriptome and co-mapping of ~200–300 proteins was achieved at 
20-μm pixel resolution122 (Fig. 5b). Both these methods employ cock-
tails of ADT-conjugated antibodies (Box 1) each bearing a poly(A) oli-
gonucleotide with an antibody-specific barcode. The channel-specific 

set ‘A’ barcodes, delivered by the first chip with equidistant channels 
placed on the tissue, consist of barcoded poly(T) DNA adapters also 
containing a universal ligation linker that hybridizes to both poly(A) 
ADT and mRNA molecules, and are then incorporated during in situ RT. 
The second chip introduces perpendicularly a set of channel-specific 
set ‘B’ barcodes that are ligated to the ‘A’ barcodes and also contain a 
PCR handle functionalized with biotin. The specific ‘AB’ barcoded cDNA 
and ADTs at the channel crossroads (pixels) are collected, purified with 
streptavidin-coated magnetic beads and prepared for NGS, after which 
reads for both mRNAs and proteins can be superimposed on an image 
of the section103 (Fig. 5b). Spatial-CITE-seq was applied for improved 
tissue mapping to several mouse tissue types, as well as human tonsillar 
and skin biopsy tissue at the COVID-19 mRNA-vaccine injection site122. 
Although limited by the same aspects as previously mentioned for 
DBiT-based methods, including lack of single-cell resolution, to date 
spatial-CITE-seq is the method that allows for the highest number of 
proteins to be simultaneously spatially profiled together with the 
poly(A) transcriptome, with potential for further expansion.

As to microscopy-based approaches, several of the established 
seqFISH-based, MERFISH-based and in situ sequencing (ISS)-based 
methods for spatial transcript profiling of hundreds to thousands of 
targeted genes (Box 1) are also (sequentially) compatible with immuno-
fluorescence or DNA-conjugated antibody protein readouts in the same 
sample (Fig. 1). For the latter, oligonucleotide sequences compatible 
with the specific fluorescent readout approaches of the transcriptome 
profiling methods are mostly used (Fig. 5c)107,111,113,123–125. Staining and 
localization of cell boundaries or other cellular, nuclear or subnuclear 
markers in these ways can enable more accurate cell segmentation, 
transcript allocation or resolution of nuclear organization. Addition-
ally, combined spatial transcriptome and protein readouts on the same 
tissue section are crucial to correlate transcript with protein expres-
sion, localization and interactions, to help unravel the cellular mecha-
nisms that govern specific cell types and states. Several platforms that 
recently became commercially available for automated imaging-based 
spatial transcriptome profiling of tissue sections at single-cell resolu-
tion, including the NanoString CosMx (smFISH-based)126, Vizgen MER-
SCOPE (MERFISH-based)127 and 10x Genomics Xenium (ISS-based)128 
platforms, will allow for imaging-based co-profiling of a few to tens of 
proteins, making these technologies more accessible.

Data integration
A wide variety of algorithms have been described for the tailored data 
analysis of individual analytes in single cells. Here, we focus on compu-
tational advances that allow the integration of measurements across 
several modalities, as these algorithms leverage the multi-omic nature 
of these technologies to enhance our understanding of complex cel-
lular states. Each modality covers different aspects of cellular identity 
and has its strengths and weaknesses. A principal goal of multi-omics 
data integration is to achieve robust and sensitive cell type or cell state 
identification129. This integrated multi-omics view of cellular identity 
can improve our understanding of differentiation trajectories, their 
underlying gene regulatory networks, cell–cell interactions, micro
environmental spatial organization, cellular lineages and clonal dynam-
ics. Ultimately, a holistic view of cellular identity disentangles causal 
relationships between the different molecular layers that give rise to 
the observed cellular phenotypes. However, to achieve meaningful 
integration of high-dimensional data modalities, computational and 
statistical models need to be developed that consider the technical 
and biological intricacies of these technologies.
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Recently, Argelaguet et al.130 defined three categories of data inte-
gration strategies depending on the anchor used to link the different 
data modalities. Horizontal integration strategies use common data 
features measured across different datasets to integrate independently 
assayed groups of cells, such as when assaying different batches with 
the same technology or when integrating across different technologies 
measuring the same molecular analyte. Inversely, vertical integra-
tion strategies use the cell as the anchoring unit to integrate non-
overlapping data features, such as when measuring multiple omics 
layers of the same cells in parallel (Fig. 6a). The hardest integration 
problem emerges when neither cells nor common data features can be 
used as anchors. In this case, diagonal integration strategies are used 
to map separate groups of cells profiled by different molecular assays 
(Fig. 6b). Many computational methods have already been developed 
to tackle horizontal integration problems, as cell atlas efforts require 
the integration of many batches of single-cell data. For a comparison 
of these approaches, we refer to recent reviews and benchmark stud-
ies130–133. Here, we focus primarily on vertical integration approaches as 
these are applicable to most multi-omics technologies in which parallel 
measurements are made of individual cells.

Linking molecular layers
When paired data modalities can be unambiguously assigned to indi-
vidual cells, several integration strategies can be applied depending 
on the end goal of the analysis. For finding significant cross-modal 
associations between specific features (coined local integration meth-
ods by Argelaguet et al.130), classic regression-based statistical models 
can be fitted in a supervised way134. These models can be expanded to 
handle common confounders (such as population stratification biases, 
sample-specific effects and sequence context-dependent effects), 
which might inflate the resulting association statistics, by explicitly 
modelling these confounders using linear hierarchical mixed models135. 
However, hypothesis testing the very large number of possible corre-
lations of analytes between different molecular layers would require 
unattainable sample sizes after multiple testing correction. There-
fore, the hypothesis search space is often constrained by previous 
biological information (for example, the distance from the epigenetic 
marker or accessible regulatory element to the expressed gene). These 
approaches can be used to identify, for example, cell-type-specific 

allelic effects of genetic variation on gene expression (expression  
quantitative trait loci (eQTLs)) in differentiating induced pluripo-
tent stem cells (iPS cells)136 or the effect of genetic perturbations on 
gene expression using multiplexed CRISPR technologies to identify  
cis-acting enhancer–gene pairs137. Local integration approaches can also 
be used to facilitate the inference of gene regulatory networks (GRNs).  
Classic GRN inference approaches, using only scRNA-seq data, identify 
sets of co-expressed genes enriched with particular upstream regula-
tory motifs138. However, this approach is prone to false-positive gene 
associations as the presence of these motifs does not necessarily guar-
antee the activity of the associated TF. Using methods for simultaneous 
analysis of open chromatin and gene expression with sequencing, it 
has been shown that chromatin accessibility at regulatory domains 
precedes gene expression38 and may thus outperform methods for 
GRN inference from scRNA-seq alone.

In contrast to local approaches, global integration strategies aim 
to identify larger-scale patterns (hundreds to thousands of features) 
of covariation across modalities to identify global shifts in the cellular 
state in an unsupervised way. To this end, linear matrix decomposition 
approaches such as principal component analysis (PCA), canonical 
correlation analysis (CCA)139 and non-negative matrix factorization 
(NMF)140,141 have proven successful to identify latent factors underlying 
cellular heterogeneity. For example, MOFA+142 extends on this principle 
and builds on the Bayesian Group Factor Analysis framework to jointly 
model variation across spatial and temporal covariates and employs a 
sparse hierarchical prior architecture that handles both shared sources 
of variation and private variation that is particular to individual modali-
ties. This approach was used to integrate the different modalities in 
scNMT-seq data to reveal lineage-specific enhancers during embryo 
development68. Although the linearity of these approaches makes 
them inherently robust and results in readily interpretable factors of 
variation, they suffer from a lack of explanatory power when dealing 
with non-linearities that are commonly found in complex biological 
systems. Nonlinear multi-view neural network architectures143,144 such 
as multimodal autoencoders have been proposed to tackle this limita-
tion. These neural networks aim to learn simple (low-dimensional) 
representations of the data, also known as an encoding, from complex 
(high-dimensional) input datasets. Instead of learning individual repre-
sentations for each modality, these representations can be forced to be 

Fig. 5 | Methods for spatial multi-omics. Spatial multi-ome profiling of tissue 
samples can be achieved by applying spatial mono-omics assays separately  
on adjacent or serial tissue sections (part a) or in a combined way on the same 
tissue section (parts b–e). a, Serial fresh-frozen or formalin-fixed paraffin-
embedded (FFPE) tissue sections can be analysed using different spatial  
mono-omic assays, potentially also combining with morphological stainings  
and annotations on the same or adjacent sections, followed by computational 
data integration. b, Microfluidic deterministic barcoding strategies in tissue 
allow next-generation sequencing (NGS)-based spatial multi-omics profiling 
of transcriptome-plus-proteins, as in DBiT-seq103 and Spatial-CITE-seq122, and 
epigenome-plus-transcriptome, as in ATAC&RNA-seq and CUT&Tag-RNAseq100. 
Using dual microfluidic chip-based spatial barcoding of poly(A) RNAs together  
with proteins or epigenome information at the crossroads of chip channels,  
a spatially barcoded 2D pixel map of the tissue is created. c, Advanced fluorescence 
in situ hybridization (FISH)-based methods, including MERFISH107,108,111 and 
seqFISH+109,110,112, allow microscopy-based identification of thousands of 
transcripts together with genomic loci in single cells, in addition to being  
compatible with limited protein readouts using fluorescent or DNA-conjugated 

antibody readout strategies. These high-resolution imaging methods leverage 
predefined optical barcoding schemes and complex encoding and readout 
probe designs. d, Array-based assays, including Spatial Transcriptomics170 (ST) 
and 10x Genomics Visium115, make use of slides with arrayed oligo-dT spots for 
capturing and spatial barcoding of poly(A) RNAs followed by NGS profiling. This 
can be combined with upfront haematoxylin and eosin (H&E) staining or limited 
protein antibody staining and tissue imaging for spatial mapping. In SM-Omics117 
and SPOTS116, these technologies have also been shown to be compatible with 
antibody-derived tag (ADT)-conjugated antibody-based co-profiling of a larger 
number of proteins. e, NanoString GeoMx digital spatial profiling (DSP)118,119,121 
allows quantification of RNAs and proteins in specific regions of interest (ROIs) 
by counting uniquely barcoded oligonucleotides that are covalently linked 
through a UV-photocleavable linker with probes or antibodies. Tissue marker 
staining, imaging, ROI selection and illumination by directed UV light causes 
disintegration of the photocleavable linkers that are collected and profiled by 
NGS, followed by spatial mapping to the ROIs. cDNA, complementary DNA; 
gDNA, genomic DNA; OCT, optimal cutting temperature compound; UMI, unique 
molecular identifier.
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shared across different data modalities, thus forcing the neural network 
to implicitly learn common links between them. Several alternative 
architectures have been proposed that optimize for different criteria 
such as robustness to dropouts and batch effects, disentanglement 
of the learned latent factors for improved interpretability and cross-
modal translation for missing modality imputation145,146. For further 

details we refer the reader to a recent overview of proposed deep 
learning approaches147.

Data integration for spatial multi-omics
Spatial mono-omics and multi-omics technologies also ben-
efit from various data integration strategies. Before applying 
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Fig. 6 | Data integration strategies. Examples of different scenarios in which 
various types of data integration strategies can be used. a, Vertical integration 
strategies aim to integrate information from paired molecular layers to obtain 
holistic representations of biological systems, at the single-cell level or at 
the tissue region level. Here, we illustrate an example of a spatial multi-omics 
experiment in which mirrored tissue slices have been assayed by two different 
spatial modalities (yellow and blue). To integrate both data sources, haematoxylin 
and eosin (H&E) staining images of each modality are first registered to account 
for deformations during sample preparation. Subsequently, to account for 
differences in resolutions across modalities, data points are averaged in windows 
of a predetermined region size154. For every region the averaged regional profiles 
can be used as paired inputs for either linear or nonlinear vertical integration 
approaches. In this example, we illustrate integration through the use of a 
multi-view autoencoder neural network143. Each modality is used as input into a 
dedicated encoder–decoder network that learns a shared data representation, 

effectively integrating both data modalities. This shared representation can 
be used for downstream analysis and/or visualization. The terms gi and mi 
correspond to the measurements of region i for modality 1 and modality 2, 
respectively, with g’i and m’i being the molecular profiles reconstructed from 
the shared representation by the decoder networks. b, Integration of datasets 
from different experiments with independent observations of individual cells 
and non-overlapping molecular features is the hardest integration problem and 
requires diagonal integration approaches. Here, we illustrate this problem for the 
integration of independently acquired single-cell RNA sequencing (scRNA-seq) 
and single-cell assay for transposase-accessible chromatin (scATAC-seq) datasets 
through the use of autoencoder neural networks with a probabilistic coupling to 
map the different data modalities to a shared latent space144. Although single-cell 
resolution is lost in this coupling, clusters obtained in this shared latent space can 
be used to ascertain correlations between molecular layers, discover multimodal 
biomarkers and/or translate between the different modalities.
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vertical integration, horizontal integration algorithms can be used 
to correct for technical variability between different sections of 
the same or different samples, and can also be expanded to fully 

utilize spatial correlations between sections148. Additionally, for 
spatial omics technologies that do not achieve single-cell resolu-
tion, deconvolution methods can be used to integrate non-spatial 

Glossary

3C or Hi-C
A class of methods uncovering 
the higher-order chromosome 
conformation and chromatin 
interactions in the nucleus.

Autoencoders
A class of architectures of neural 
networks that take a highly dimensional 
input and encode into a low-
dimensional representation via an 
encoder network. These networks 
are trained in a self-supervised way 
by reconstructing the original input 
from the encoding using a decoder 
network.

Bisulfite sequencing
A method in which bisulfite 
treatment of DNA before sequencing 
converts unmethylated cytosines 
to uracil, while 5-methylcytosines 
are protected from conversion. 
This method hence discloses sites 
in the genome where DNA methylation 
is found.

Cell plasticity
The ability of a cell to remodel its 
epigenomic, transcriptomic and 
proteomic landscape, leading to  
new phenotypic features.

Cell state
A specific stable or unstable functional 
condition of a cell belonging to a 
particular cell type.

Cell type
A categorization of cells by specific 
morphological and/or phenotypic 
characteristics.

Chromatin accessibility
The structures of DNA wrapped 
around histone octamer proteins 
(nucleosomes) that make up 
chromosomes. Chromatin can be highly 
condensed with DNA inaccessible or 
open with DNA accessible.

Displacement preamplification 
followed by PCR
(DA-PCR). A class of methods for whole-
genome amplification of single-cell 
DNA using multiple rounds of strand 
displacement amplification, generating 
amplicons with PCR-handles at both 
ends, enabling molecules to be further 
amplified by PCR.

DNA methylation
The deposition of methyl groups 
onto DNA. In mammals, methylation 
is predominantly found at cytosines 
as 5-methylcytosine, and mostly in a 
cytosine–guanine dinucleotide (CpG) 
context.

Epigenome
The ensemble of modifications to  
DNA and DNA-associated proteins that 
signal and regulate gene expression and 
other DNA-related processes. Examples 
include DNA methylation, histone 
post-translational modifications and 
chromatin remodelling proteins.

Exome sequencing
A targeted next-generation sequencing 
approach that enables sequencing 
the coding exons, which can be 
supplemented with flanking intronic 
sequences as well as (part of) the gene 
regulatory sequences, approximating 
1.1% or more of the human genome.

FFPE
Formalin-fixed paraffin-embedded 
(FFPE) tissues are preserved for 
long-term archival storage by formalin 
fixation followed by embedding in 
paraffin wax blocks.

Genome
The genetic blueprint or DNA of an 
organism established at fertilization, 
which for humans normally consists  
of 23 pairs of chromosomes contained 
within the nucleus, plus the mitochondrial 
DNA molecules present at multiple 
copies in the mitochondria of the cell.

Hierarchical mixed models
Statistical regression models that model 
nested hierarchies in the data taking 
into account complex covariate data 
structures.

Human Cell Atlas
The Human Cell Atlas (HCA) aims 
to create a reference map of all 
human cells, providing a basis for 
understanding human health and for 
diagnosing, monitoring and treating 
diseases.

Linear matrix decomposition
Numerical analysis algorithms  
that factorize observations into a 
product of smaller matrices. These 
matrices usually represent factors 
or components of variation that are 
easier to interpret (such as biological 
processes) and their presence within  
the observations (cells).

Metabolome
The ensemble of metabolites present 
within a cell or tissue.

Multiple displacement 
amplification
(MDA). An isothermal DNA amplification 
method that applies DNA polymerase(s) 
with strand displacement activity.

Neural networks
A class of algorithms that use densely 
connected networks of artificial neurons 
that are non-linearly activated given 
a combination of input values from 
connected input neurons, mimicking 
the human brain.

OCT compound
Optimal cutting temperature (OCT) 
compound is a standard type 
of sample-embedding medium 
used to embed fresh-frozen tissue 
samples for optimal storage and 
cryosectioning.

Phenome
The set of traits or characteristics 
expressed by an organism or cell.

Proteome
The ensemble of proteins translated 
from transcribed genes contained 
within the genome, which can be highly 
variable among different cell types.

Smart-seq2
Switching mechanism at the end 
of the 5′ end of the RNA transcript 
(Smart)-based method for single-cell 
cDNA generation, amplification and 
sequencing library conversion.

Tagmentation
A method in which double-stranded 
DNA is cleaved and tagged with adapter 
sequences in a single step by using a 
transposase complex loaded with these 
adapter sequences.

Template switching
A method in which Moloney murine 
leukaemia virus (MMLV)-type reverse 
transcriptases add non-templated 
nucleotides (CCC) to first-strand 
cDNA near the 5′ end of the transcript, 
enabling annealing of an rGrGrG-
containing template-switching 
oligonucleotide and the reverse 
transcriptase to switch templates 
and copy the template-switching 
oligonucleotide sequence to the cDNA.

Transcriptome
The ensemble of transcripts or RNA 
molecules transcribed from genes 
contained within the genome, which 
can be highly variable among different 
cell types.

Unique molecular identifier
Short sequences that barcode 
each molecule individually and are 
added as tags to DNA fragments in 
next-generation sequencing-based 
approaches to identify molecules of 
interest with increased accuracy.
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single-cell data to identify the cellular constituents of a particular  
tissue region149–151.

Vertical integration of non-spatial single-cell multi-omics data 
followed by spatial deconvolution using the RNA modality allows other 
molecular modalities to be indirectly spatially mapped. This approach 
was used, for example, by Foster et al., using ArchR152 for scRNA-seq and 
scATAC-seq integration, to identify spatial fibroblast epigenome pat-
terns during tissue repair153. Spatial multi-omics technologies also allow 
for vertical integration, although few currently available technologies 
allow for true multimodal assaying at single-cell resolution on the same 
tissue section. Hence, generating spatial multi-omics data often still 
relies on the analysis of adjacent tissue sections and is thus limited 
to studying correlations across modalities of tissue regions (Fig. 6a). 
Linear approaches are suitable for the inference of these correlations, 
although special care needs to be taken in the statistical analysis as 
spatial autocorrelation can violate independence assumptions of the 
observed datapoints154,155. Although more spatial multi-omics technolo-
gies are emerging, spatial mono-omics assays can often also be com-
bined with simple histological stains, such as H&E staining, allowing 
for the integration of cellular morphology and gene expression data. 
Nonlinear neural networks have been proposed to map discrete spot-
based expression profiles onto high-resolution morphology images156 
or to learn a joint cell morphology-plus-expression representation for 
the identification of novel cellular subpopulations missed by individual 
modalities157. As more spatial multi-omics technologies become avail-
able that can characterize many analytes at single-cell resolution, we 
expect rapid developments of vertical integration strategies based 
on adaptations of currently available non-spatial single-cell meth-
odologies. By leveraging spatial information linking a cellular state 
to its respective micro-environments and macro-environments (for 
example, through the use of graph neural networks), more fine-grained 
multimodal representations of cellular state should be obtainable.

Finally, approaches for the harder problem of diagonal integra-
tion of unpaired spatial and non-spatial data modalities have also 
been proposed using autoencoder neural network architectures with a 
probabilistic coupling between the different data modalities. For these 
approaches, however, previous knowledge is generally required to 
constrain the resulting shared representations to biologically accurate 
alignments144.

Current challenges in data integration
Despite extensive research, several challenges remain for computa-
tional data integration. These strategies make implicit assumptions 
about the expected similarity of cellular states captured across dif-
ferent experiments and/or modalities. In the case of horizontal data 
integration across different batches, this can lead to overcorrection 
of true biological variation158, especially when studying subtle shifts 
in cellular state in different experimental conditions. This problem 
is further exacerbated in vertical integration strategies when cor-
respondence between features is not immediately obvious and/or 
when non-linearities between the different layers might be biologically 
relevant132. For example, gene expression changes have been shown 
to be foreshadowed by chromatin priming, as seen in cell cycling via 
SHARE-seq38. Also, other biological phenomena such as alternative 
splicing and/or PTMs are likely to influence the correlation structure  
in cell state across the different molecular layers. Therefore, integration 
methods need to be developed that can not only identify the common 
anchors between the different samples and/or molecular layers but can 
also account for sample-specific and modality-specific variation in a 

readily interpretable way. Such models have already been proposed in 
other fields of multi-domain learning but have not yet been adapted 
to cellular multi-omics datasets159. The expansion of these models to 
integrate paired, unpaired and multimodal spatial assays will require 
robust data standards160,161 for scalable analysis of multimodal data in 
addition to well-established benchmarks to evaluate their efficacy.

Perspectives
In the decades to come, multi-omics at single-cell and spatial resolu-
tion will innovate further, leading to a more holistic understanding of 
cell biology. Advances can be anticipated on multiple fronts, including 
improvements in throughput, reduction of cost and the incorporation 
of more modalities in a single assay. Additionally, we expect improve-
ments of sensitivity and specificity in the detection and characteriza-
tion of each modality as part of multi-omic measurements. For example, 
on the genome level, full and error-free characterization of all genetic 
variants is still a challenge, which currently limits opportunities for 
comprehensive somatic mutation profiling at single-cell resolution 
and reconstructing phylogenetic cell lineages from naturally acquired 
mutations. Similarly, measurements of the epigenome are severely lim-
ited for co-detection of the range of epigenomic features co-regulating 
gene expression and other DNA-related processes. For instance, histone 
PTMs can currently be detected only a single or a few marks at a time; 
hence, these methods would benefit from drastic increments in the 
number of PTMs that can be co-detected, also together with other 
epigenomic features. The characterization of the transcriptome is 
often limited to poly(A) RNA rather than total RNA measurements; 
hence, it would be beneficial to include both coding and (small) non-
coding RNAs as well as concurrent isoform detection. Proteome assays 
are still antibody-based and thus limited in how many proteins can be 
profiled simultaneously. Unbiased low-input methods such as mass-
spectrometry-based approaches may circumvent this, but cannot cur-
rently be combined with assays for other molecular layers. This lack of 
multimodal integration also holds true for metabolome and lipidome 
assays. In addition to such improvements for characterizing modali-
ties in multi-omics methods, we also anticipate the development of 
multimodal assays that incorporate entirely new modalities that cur-
rently remain uncharted, such as the epitranscriptome (consisting of 
base modifications to transcripts, some of which are known to affect 
gene expression)162. Furthermore, the field is likely to see a continued 
strong technological push for spatial multi-omics, avoiding the need 
for tissue dissociation and enabling concurrent multi-omic profiling 
of cell-intrinsic and -extrinsic molecular features defining cell types 
and states. Moreover, integration of phylogenetic cell lineages recon-
structed from naturally acquired or artificially induced DNA mutations 
with other spatial or single-cell multi-ome information will transform 
our understanding of organismal development, cell migration routes 
and stem cell biology in health and disease. Finally, it will be necessary 
to develop methods that capture not only transient phenotypes but 
also ancestral states, apply multi-omic technologies to serial measure-
ments in live cells163, and computationally improve the accuracy of data 
extraction from each molecular layer, as well as undertake integrative 
analyses across modalities to unravel dependencies within and across 
different data sources.

To arrive at such holistic multi-ome profiling of single cells dissoci-
ated from tissue or at spatial resolution will require many challenges to 
be overcome in the following years. For a view on how challenges associ-
ated with each modality specifically could be tackled, we refer to previous  
reviews on single-cell and spatial mono-omic profiling11,86,164–168. 
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Optimization of low-input bulk molecular analysis tools to single-cell 
and/or spatial resolution, like amplification-free long-read single-
molecule sequencing approaches, will enable the incorporation of 
novel molecular readouts. In parallel, to enable integration of more 
modalities per assay will require innovation in the principles presented 
in Fig. 2, including expansion and combination of the different princi-
ples. Making various single-cell and spatial multi-omics assays com-
mercially available will also make them more accessible and applicable 
for the wide research community, but we are already starting to see 
this evolution169.

All these technological and computational developments will 
translate into a better understanding of development, organismal 
function and functional decline of organs with ageing, and will be key 
in unravelling the cellular pathogenesis of diseases, identifying more 
effective stratification strategies of disease processes, devising novel 
therapeutic modalities and guiding precision medicine.

Published online: xx xx xxxx
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