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Abstract

BACKGROUND: Knowing which environmental chemicals contribute to metabolites observed in 

humans is necessary for meaningful estimates of exposure and risk from biomonitoring data.

OBJECTIVE: Employ a modeling approach that combines biomonitoring data with chemical 

metabolism information to produce chemical exposure intake rate estimates with well-quantified 

uncertainty.

METHODS: Bayesian methodology was used to infer ranges of exposure for parent chemicals 

of biomarkers measured in urine samples from the U.S population by the National Health and 

Nutrition Examination Survey (NHANES). Metabolites were probabilistically linked to parent 

chemicals using the NHANES reports and text mining of PubMed abstracts.

RESULTS: Chemical exposures were estimated for various population groups and translated 

to risk-based prioritization using toxicokinetic (TK) modeling and experimental data. Exposure 

estimates were investigated more closely for children aged 3 to 5 years, a population group that 

debuted with the 2015–2016 NHANES cohort.

SIGNIFICANCE: The methods described here have been compiled into an R package, 

bayesmarker, and made publicly available on GitHub. These inferred exposures, when coupled 

with predicted toxic doses via high throughput TK, can help aid in the identification of public 

health priority chemicals via risk-based bioactivity-to-exposure ratios.
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INTRODUCTION

There are more than 10,000 chemicals currently in commercial use in the US, and hundreds 

more are introduced every year [1]. Due to the extensive time and resources needed to 

experimentally assess the risk of a chemical, approaches are needed to prioritize these 

chemicals for in-depth exposure and hazard characterization. For chemicals with dose-

response high-throughput screening (HTS) in vitro toxicity data, methods are available 

to first identify biological targets of chemicals [2] and then estimate an equivalent dose 

in humans [3]. However, as risk is a function of both hazard and exposure, identification 

of potential hazards by HTS must be accompanied by complementary rapid exposure 

screening tools [4–8]. While some chemicals may be data rich or have a variety of different 

types of data, the majority of chemicals currently lack sufficient exposure data [3, 4], 

and thus, computational exposure screening methods that are efficient, easily applied, and 

high-throughput are being developed.

Exposure predictions for large numbers of chemicals are not meaningful without reliable 

estimates of uncertainty and variability. To obtain such information for high-throughput 

exposure (HTE) predictions, “actual exposure” data must be available for model evaluation, 

for instance via biological monitoring. Biomonitoring data is an important component of 

chemical risk assessment and has started to play an increasing role in the development of 

high-throughput exposure models as focus moves from a per-chemical basis to the larger 

exposure landscape as a whole (see reviews [9, 10]). However, collecting such data is 

expensive and labor intensive [11, 12]. Therefore, our ability to construct accurate models 

for different exposure pathways (the path from a chemical source to a human receptor) 

is often limited, mainly due to a lack of proper data for evaluation. Two broad classes 

of exposure pathways can be defined: near-field (that is, indoor, proximate sources) and 

far-field (for example, industrial releases) sources, both of which need to be addressed with 

limited monitoring data [13, 14].

Unfortunately for exposure scientists, the actual exposure events for an individual are 

both difficult to monitor and confounded by the inherent complexities of human behavior. 

However, we can obtain data that could be used to characterize potential sources upstream 

of exposure, such as composition of consumer products, characterization of environmental 

releases, or measurements in environmental media. There have been a number of exposure 

models using such data to estimate exposure by different pathways [8, 15–19] We can also 

obtain exposure indicator data (that is, downstream), particularly biomarkers of exposure 

(for example, chemical concentrations in urine or plasma) [20]. Since the exposure event 

itself can be difficult to observe, we develop models to either estimate exposure from 

upstream sources (forward modeling) or infer exposure from downstream sources (reverse 

modeling) [10]. Both forward and reverse modeling have drawbacks (for example, it 
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can require many accurate forward models to get an idea of aggregate exposures while 

biomonitoring data can struggle to capture acute or intermittent exposures, exposure to 

chemicals with short half-lives, or high clearance rates), and recent advances have been 

made to compare the results of both approaches to establish model effectiveness—that is, 

the predictive ability of models for chemicals covered by biological and environmental 

monitoring data [14].

Biomonitoring data reflect aggregate human exposures across all pathways for the general 

population [9, 21]. A forward modeling approach unintentionally may omit important 

exposure pathways for certain chemicals. The Systematic Empirical Evaluation of Models 

(SEEM) framework is a consensus model of multiple forward exposure model predictions 

(referenced in the previous paragraph; and other data such as national production volume) 

intended to provide a more complete and accurate estimate of both potential exposure and its 

inherent uncertainty [22]. SEEM calibrates the statistical weight associated with each model 

predictor across a range of chemicals for which data are available (for example, median 

intake rate estimates inferred from biomonitoring data). The residual chemical-to-chemical 

variability in exposure that is unexplained by the predictors provides an estimate of model 

uncertainty. SEEM can be used to estimate a range of possible exposures using both its 

consensus model of calibrated predictors and the empirically estimated uncertainty for the 

hundreds of thousands of chemicals lacking evaluation data.

For this work, biomonitoring data were obtained from the National Health and Nutrition 

Examination Survey (NHANES) [23]. NHANES is an elaborate study conducted by the 

Centers for Disease Control and Prevention (CDC) at multiple locations throughout the 

United States. Starting with 1999–2000, NHANES is conducted in cohorts over 2-year 

cycles. Data from a cycle can take years to be completed and released publicly; the most 

recent data used in this work is from 2015–2016. The study is designed to have sufficient 

statistical power to characterize key biometrics for the general United States population 

as well as various sub-populations of interest. The surveys include household interviews, 

collection of medical histories, standardized physical examinations, and collection of 

biological specimens. One result of analyzing these specimens is a regular report on “Human 

Exposure to Environmental Chemicals” [24, 25]. NHANES data are reported for various 

demographics (for example, gender, race, age) at selected percentiles (for example 50th, 

95th) as well as a geometric mean. For this analysis, quantiles of the total population were 

used, as calculated from the CDC NHANES data files [23, 26].

Dozens of studies have utilized the NHANES data to look at exposure (see review [10]), 

however, a large majority of them are limited in scope, usually focusing on a small subset 

of urine biomarkers or staying within the area of comparing biomarker concentrations. 

As exposure science moves to be more high-throughput and assess larger numbers of 

chemicals, there is a lack of well-documented approaches to use biomonitoring studies on 

this larger scale. Several studies, focusing in on individual or small numbers of related 

chemicals, employ urine metabolite concentration data with some procedure involving 

survey population quantiles, adjustment by creatinine excretion, bodyweight, etc., and 

occasionally chemical-specific exposure routes to estimate exposure as an intake dose [27–

30]. While these studies provide valuable insights and may be more accurate as they can 
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be specific to certain chemicals and their exposure routes, there are hundreds of chemicals 

with biomonitoring data in NHANES alone. Furthermore, as mentioned previously, there 

are many forward exposure models to predict chemical intake doses, but assessment of their 

accuracy is highly limited due to a lack of validation data. Providing a well-designed and 

publicly available method to estimate exposure intake rates for hundreds of chemicals based 

on biomonitoring data can fill a major gap in exposure and risk assessment research.

In this paper, we outline a reverse modeling approach to infer ranges of chemical exposures 

(intake rates in mg/kg/day) for parent chemicals of biomarkers measured in urine samples 

from the U.S. population by the National Health and Nutrition Examination Survey 

(NHANES) [23]. The approach uses Bayesian methodology to appropriately incorporate the 

inherent uncertainties associated with limit of detection issues in the biomonitoring data and 

the complexities of chemical metabolism. Exposure reconstruction from biomonitoring data 

[27, 29, 31, 32], including Bayesian methods [28], has been used elsewhere for individual 

chemicals. Here we refined (see methods subsection Bayesmarker Package for details) a 

multichemical method originally described in Wambaugh et al. (2013) and made it publicly 

available on GitHub as an R package called bayesmarker (https://github.com/USEPA/

CompTox-HumanExposure-bayesmarker), which is intended to be applicable generally to 

urine biomonitoring datasets. We illustrated the application of bayesmarker using updated 

data from NHANES and additional parent-product metabolism relationships identified 

through an informatics-led literature review. Exposure estimates were obtained for 179 

parent chemicals, which were then prioritized using a risk-based metric calculated using 

high-throughput toxicokinetics. The exposure estimates of chemicals not in the initial SEEM 

calibration set were also compared to SEEM predictions to assess consistency between 

forward and reverse modeling approaches. Lastly, exposure estimates were investigated 

more closely for children aged 3–5 years, a population group that was introduced in the 

2015–2016 NHANES cohort. These inferred intake rates, when coupled with predicted 

toxic doses via high throughput toxicokinetics, allowed for the identification of public 

health priority chemicals via risk-based bioactivity:exposure ratios (BER) and provided an 

evaluation of high-throughput exposure model predictions.

METHODS

Problem description

Biomonitoring of concentrations of chemicals within the body represents the downstream 

integration of exposure to the body from all pathways and routes. The goal of this work is 

to infer upstream exposure from these downstream data sources. The major challenge of the 

exposure inference problem is the appropriate handling of multiple sources of uncertainty 

[10, 33, 34]. The first contributor to uncertainty is that biomonitoring data often reports 

metabolite (‘transformation product’) concentrations from which we can only infer parent 

chemical exposures [35]. The stoichiometry relating a parent to multiple metabolites is 

complex [33, 34, 36]. When a parent molecule can be metabolized to one of several product 

molecules, the proportions φ that quantify the probabilities of each path from parent to 

product are often unknown [36]. Furthermore, multiple parents may be metabolized to the 

same product molecules. A second major contributor to uncertainty comes from limitations 
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in our ability to measure chemicals within biological media [10, 34]. Analytical technologies 

can only detect chemicals if they occur at a high enough concentration, which is referred 

to as the limit of detection (LOD) [35]. Measurements below this LOD in an individual’s 

biological sample indicate a concentration smaller than the LOD or absence of the chemical. 

Note that, for the biomonitoring study used, it is assumed that the chemicals being measured 

are detectable in urine. In addition to uncertainty, there is also variability in that each 

metabolite is measured in a population of individuals, meaning the observed chemical 

concentration is represented by a distribution rather than a single value [33, 34, 36]. Being 

able to incorporate this variance and uncertainty into the model will provide better estimates 

of exposure.

Model description

Here we describe a general statistical model with a Bayesian framework for estimating 

human intake rates from biomonitoring measurements, based on urine metabolite 

concentrations and known parent-metabolite (transformation product) relationships (Fig. 

1). The general approach described is a revision to one that was reviewed by a Federal 

Insecticide, Fungicide, and Rodenticide Act (FIFRA) Scientific Advisory Panel in 2014 [37] 

including, wherever possible, improvements suggested by that panel. Bayesian formalism is 

a rigorous statistical methodology for incorporating uncertainty into mathematical models 

using probability distributions of plausible values for each parameter. For example, a typical 

model parameter that is normally distributed would be characterized by a mean and standard 

deviation; the more accurately we know the behavior of a parameter in our model, the less 

uncertainty we must afford it in the model (that is, the smaller the standard deviation). 

Through Bayesian methods, prior assumptions about the value of parameters are informed 

by the addition of new data to produce posterior distributions for the parameters that reflect 

both the prior assumptions and the data. The result of a Bayesian analysis is a posterior 

probability distribution for each parameter, often summarized by quantiles such as the 

median (50th percentile) and 95% “credible interval” (lower 2.5th to upper 97.5th percentile 

range).

The toxicokinetic model linking urine concentrations to parent chemical exposures assumes 

steady-state equilibrium with mass balance to minimize the parameters needed (such as 

chemical-specific biological half-lives, magnitude, and timing of exposures) [9, 20, 21, 

36]. Assumptions similar to those of Lakind and Naiman [27] were made – chiefly that 

the individuals were at steady-state due to a constant rate of exposure and therefore the 

urine concentrations were the result of this constant exposure [38]. Wambaugh et al. (2015) 

assessed 349 chemicals based on multiple data sources and appropriateness of toxicokinetic 

models, which showed that humans can reach a steady-state with respect to environmental 

exposures (majority of chemicals reach steady-state within 3 weeks), that steady-state 

concentration is a reasonable surrogate when exposure is more episodic, and that 100% 

absorption is reasonable [39]. There are of course cases where a steady-state model may 

have limitations (see Discussion), but for the high-throughput approach presented in this 

work, we believe it is sufficient in most cases. Because we are inferring a dose (intake) rate 

consistent with an eliminated concentration in urine, we refer to this simple toxicokinetic 

model as steady-state “reverse dosimetry” or “reverse toxicokinetics” [32, 36].
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The Bayesian inference statistical model that is the focus of this work has three stages: (1) 

Calculate statistics (mean, standard deviation, etc.) for the population urine concentration 

measurements, (2) Convert to units of exposure via a simple toxicokinetic model, and 

(3) Propagate exposures from metabolites to parent chemicals. In stage 1, the log of 

geometric means is calculated from estimates of population quantiles generated from the 

individual urine concentration measurements using the statistical survey weights provided 

by NHANES. We assume that the true population distribution is log-normal, and parameters 

of the log-normal distribution are used to estimate observations that are below the limit of 

detection [40]. The data input for this model are the estimates of the 50%, 75%, 90%, 

and 95%-iles (obtained using the survey weights of the biomonitoring data) from the 

biomonitoring study being analyzed and estimates of their standard errors. Assuming the 

natural log-transformed estimates are approximately normally distributed, we estimate a 

standard error by dividing the difference (on the log scale) between the upper and lower 95% 

confidence limit by 2*1.96. The lower limit is missing in the biomonitoring data if the lower 

confidence limit would fall below the nominal limit of detection for the chemical. In that 

case, the standard error is estimated by dividing the difference between the log-transformed 

upper confidence limit and the log-transformed central estimate. The standard error for 

the estimates of the quantiles for chemical j (sej) is the square root of the mean of the 

squared standard errors for the quantiles of that chemical. So, the expected value of the 

log-transformed Qi
tℎ quantile (Qi = 0.5, 0.75, 0.9, 0.95 for i = 1–4, respectively) for chemical 

j given mean lUj and population standard deviation s is F−1(Qj, lUj, sj), where F−1() is 

the inverse of the normal cumulative distribution function. We simplify the estimation by 

assuming the standard errors for the quantile estimates are estimated without error.

Then, for stage 2, if lyij is the observed value of the Qi
tℎ quantile of the jth chemical, which 

has been converted via reverse dosimetry from an observed concentration in urine to a parent 

chemical exposure,

lyijdefN F−1 Qi, IUj, sj , sej , Iyij > LODj

IyijdefPr N F−1 Qi, IUj, sj , sej < LODj , Iyij < LODj

IUj = ln Uj

Thus, lyij is left-censored for measurements below the LOD in this stage based on the 

observed LOD and other characteristics of the distribution. We use a lognormal prior for sj 

to help regularize estimation:

sj IN(Isd, Isd . sd)
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Isd N(0, 1000)

Isd . sd = Isd . z t 0, 1
625, 1df

That is, lsd.sd is a half-Cauchy distribution, as recommended in Gelman [41] (where N() and 

IN() indicate the normal and log-normal distributions respectively).

Finally, in stage 3 the median concentration of metabolite Uj is the sum of contributions 

from exposures to each parent k that can be metabolized to product j. That is, if Pk is the 

median exposure to parent k, then

Uj = ∑kPkφkj .

Here ∑jφkj = 1 or 2. The sum is 2 for parent chemicals that are cleaved in half, with 

each half possibly being further metabolized. For most chemicals with multiple potential 

metabolites, each parent molecule results in only a single product molecule, and the sum 

will be 1. In these data, when the sum is 2, one of the φkj values is 1. Finally, the φkj 

values that are not set to be 0 (meaning parent k cannot produce product j), or 1 (meaning a 

molecule of parent k always produces a molecule of product j) need to be estimated, given 

the constraints that for each k, ∑j:φkj ∉ 0, 1 φkj = 1. This is done by assigning an element 

δl to each non-zero φkj so that, if Lk is the set of indices for δ that corresponds to the φkj that 

need to be estimated, and l is the index of δ that corresponds to j of φ, set φkj = dl/∑z ∈ Lkdz

with prior dl ~ U(0,1). Therefore, when φkj is not 0 or 1, it means parent k is broken down 

into multiple products with some non-zero proportion, which we model based on the observe 

metabolite concentrations and parent-metabolite relationships. Corresponding Just Another 

Gibbs Sampler (JAGS) [42] code is included in the supplemental material.

Model inputs

There are two main inputs to the model used to obtain exposure estimates based on 

the NHANES survey data: (1) the metabolite concentrations, which are represented by a 

distribution of values over the individuals; and (2) a numeric matrix indicating metabolism 

stoichiometry (see previous section regarding φ) where rows represent the parent chemicals 

and columns represent the metabolites.

Reverse dosimetry is straightforward for a metabolite that is related to only one parent 

compound, but many metabolites can have multiple parent compounds and many parent 

compounds can have multiple metabolites. A mapping of parents to metabolites, shown in 

Fig. 2, was originally derived [13, 14] from the NHANES reports to identify relationships 

and potential non-identifiability of parent compounds from a given metabolite [24, 25]. 

Further linkages were obtained by text mining PubMed abstracts for co-occurrences of 

the NHANES metabolites (along with all of their known synonyms listed in the EPA’s 
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CompTox Chemical’s Dashboard [43]) with keywords related to metabolism (for example, 

“metabolite of” and “its metabolite”) where evidence in humans was required, followed 

by manual curation of the full-text of the corresponding publications for confirmation of 

the relationships. A 1:1 stoichiometry of parent to metabolite molecule was assumed (in 

other words, φ = 1) unless known otherwise (and confirmed by manual inspection wherever 

SMILES descriptors were available for parent and metabolites). The proportion of different 

product molecules was generally unknown and treated as such in the estimation process 

while preserving mass balance.

The distribution of each metabolite concentration was characterized by a geometric 

mean, standard deviation, and standard error. For each metabolite, the geometric mean 

concentration was calculated across 11 population groups (the total population, males, 

females, age 3–5 years, age 6–11, age 12–19, age 20–65, age 66 and older, BMI ≤ 30, BMI 

> 30, and females of reproductive age) using urine concentration, a scaling factor based 

on glomerular filtration (estimated from creatinine concentration), and each individual’s 

bodyweight. It is important to note that for the group labeled 1–5 years of age by NHANES, 

urine concentration measurements were not obtained for children under the age of 3. 

Thus, we refer to this group as age 3–5 throughout the manuscript to more appropriately 

represent the data that was analyzed. Metabolites were restricted to those measured in 

urine, as opposed to those in serum, to meet mass balance assumptions. Daily creatinine 

excretion was estimated using a predictive model that incorporates the individual’s gender, 

ethnicity, age, and kilogram body weight (see next section). Using the Bayesian framework 

together with the relative molecular weights of the parents and metabolites (Table S3), 

urine concentrations were converted to exposure rates. Measurements below the LOD were 

estimated by drawing samples from the derived log-normal distribution for each chemical.

Modeling creatinine excretion rates

In stage 2 of the model described above, the metabolite concentrations are converted to 

exposure rates by using a simple toxicokinetic model and assuming steady-state exposure 

(Fig. 1). This requires estimating the rate at which chemicals are filtered into urine 

by the kidneys, which is known as the glomerular filtration rate (GFR). It is common 

practice to use urinary creatinine excretion rates (CER) from timed urine collections as 

an estimate of GFR [44]. At steady state, creatinine generation is a function of muscle 

mass [45] and is influenced by sex, race, age, and body weight [46–49]. To accurately 

scale metabolite concentrations using estimated CER, we extrapolated CER from urinary 

creatinine concentration and the volume and time of last void for the urine samples 

provided by the 2009–2010 NHANES cohort (first cohort with this data available; using 

this NHANES cohort to build a general model for CER). The analysis was carried out with 

the R statistical programming environment [50] accounting for sampling design using the 

package “survey” [51]. The model for log10(CER) was defined by

log10 CER = MGender + DEtℎnicity + ns Age, knots = c 20, 60 + ns(Bwt, knots = c(50, 100)) + s × E

where E ~ t(df = 3.5), ns is natural cubic spline (with knots being the cut points of the 

piece-wise cubic polynomial), t is the Student’s t distribution with df degrees of freedom 
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(to handle “outliers”). Model parameters were taken directly from SAS xport files for the 

2009–2010 cohort from the variables RIAGENDR, RIDRETH, BMXWT, and RIDAGEYR, 

and this model was used for all NHANES cohorts.

Obtaining exposure estimates

Markov Chain Monte Carlo (MCMC) methods were used to sample from the posterior 

distribution [52]. MCMC was performed using JAGS v. 4.3.0 via rjags v. 4–10 in R v. 3.6.1 

using 18 cores on a cluster of hexa core CPUs. Parallelization was accomplished using the 

parallel and foreach packages [53, 54]. The model was run for all chemicals and for each 

population group. Parameters known imperfectly were assigned probability distributions that 

characterize the degree of uncertainty. Using Bayes’ rule, we defined a joint probability 

distribution for model parameters (for both statistical and more deterministic parts of the 

model). This is the posterior distribution, and summarizes all the information in the data, 

the prior information, and the model posited for the data. Priors assumed that the exposure 

values were log-normally distributed around a mean (normally distributed with mean 0 and 

variance 1000) with standard deviation sd, and the proportions of the metabolites from a 

parent compound are Dirichlet-distributed with αi set to 1.

The process concluded by testing the samples for convergence with the coda package (v. 

0.19–4), which summarizes the output from the Markov Chain Monte Carlo (MCMC) 

simulations. Convergence was tested using two diagnostics, namely Heidelberger and 

Welch’s convergence [55] and Gelman and Rubin’s convergence [56] with r-hat set to 1.05. 

Acceptable convergence of the samples imply that earlier and later samples have similar 

enough distributions and that different chains converge to the same distribution (that is, the 

estimate of the posterior is stable/stationary).

Bioactivity:exposure ratio calculation

The inferred exposure estimates can be extrapolated to a measure of overall expected 

risk using toxicological data and toxicokinetic modeling. One measure of relative risk is 

the bioactivity:exposure ratio (BER). BER is the ratio of chemical hazard (the expected 

human dose to induce a toxic effect; obtained from toxicity data) to the exposure estimate 

(expressed as a dose metric). These two values were calculated using the httk R package 

[57]. Doses exhibiting toxicity in rats, specifically the median lethal dose (LD50), have 

been predicted for thousands of chemicals via EPA’s Collaborative Acute Toxicity Modeling 

Suite (CATMoS) [58]. LD50 values were obtained through the OPEn Structure-activity/

property Relationship App (OPERA; UI version 2.7) [59] and transformed to translate 

them from a measure of acute toxicity in rats to a chronic toxicity endpoint for humans, 

namely a no-observed-adverse-effect level (or NOAEL). This was achieved by multiplying 

the LD50 values by an acute-to-chronic application factor of 0.0001 based on work by 

Venman and Flaga [60]. These transformed LD50s were then used as input to the httk 

package’s calc_tkstats function to generate human equivalent doses (HEDs). Our median 

exposure estimates were used as input to the calc_mc_css function to obtain a steady-state 

plasma concentration with dose units (ug/L). BERs for each chemical and population group 

were calculated from these two values and ranked from lowest to highest BER to aid 

in chemical prioritization. Uncertainty was propagated from the estimated intake rates to 
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obtain a 95% confidence interval on the BER values for the total population by repeatedly 

MCMC sampling from the inferred exposure distribution for each chemical. One chemical, 

di-n-octyl phthalate, was predicted to reach steady-state after 139 years, a clear outlier (next 

longest time to steady-state was 34 days), and therefore was excluded from BER calculation 

only.

Comparison with SEEM

SEEM, the Systematic Empirical Evaluation of Models, is a consensus modeling approach 

that predicts exposure to thousands of chemicals [22]. SEEM calibrates its predictors using 

a small set of inferred exposure intake rates, which were the result of the precursor study 

to this work (in other words, the same underlying model as described so far was used to 

estimate exposure values for the chemicals used to calibrate SEEM) [14]. A total of 106 

chemicals with inferences from NHANES prior to the 2011–2012 cohort were used to 

calibrate SEEM. Here, incorporation of the latest NHANES cohorts and additional curation 

of parent-chemical metabolites produced inferred exposure intake rates for 62 additional 

chemicals not in the calibration set. Of these 62 chemicals, 39 had SEEM exposure 

predictions. Exposure inferences for these 39 chemicals were obtained for each NHANES 

cohort between 2009–2010 and 2015–2016, where data was available, and compared to the 

SEEM predictions for the total population with 95% confidence intervals obtained from the 

quantiles function of the stats R package. A simple linear model was used to investigate 

correlation between SEEM and bayesmarker predictions. Samples were drawn from the 

MCMC exposure distribution and used as the variable for the linear model with the weights 

being the inverse square of the standard deviation of the drawn exposure samples. This was 

performed 1000 times to generate a distribution of R^2 values, from which a median and 

95% CIs were obtained.

Bayesmarker package

The method described above (excluding BER calculation and SEEM comparison) has been 

organized into an R [50] package called bayesmarker. It is currently designed to work 

on the NHANES survey but will be made more generalizable to operate on any urine 

biomonitoring study. Figure S1 depicts the basic structure of the package and how the 

previously discussed steps and elements are organized. The input is a single Excel file that 

contains three sheets of data tables (Tables S1–S3). These tables were created manually 

based on which metabolites and NHANES cohorts were of interest and the relationships 

between different elements of the data. The first two tables are based on the biomonitoring 

data (NHANES data structure) designating required data files and relevant columns (for 

example, the BMI column name from the bodyweight file from a specific cohort). The third 

table of the input file is the parent-metabolite mapping (that is, a table matching parent 

compounds to metabolites). In addition to adding more links to this mapping, we made 

multiple refinements to the original method published by Wambaugh et al., 2013 [14]. First, 

the analysis pipeline is organized using more concise code such that five main functions 

are called consecutively, starting with obtaining the data files to finalizing exposure estimate 

units and observing model convergence. Various checks in the form of print statements 

and options for parallel execution as well as locally saving logs and plots are available 

throughout the pipeline. Lastly, the package allows for choosing subsets of chemicals, 
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population groups, and NHANES cohorts as well as the ability to combine data from 

multiple cohorts. A more detailed description along with vignettes to reproduce the analysis 

herein can be found on the bayesmarker GitHub page (https://github.com/USEPA/CompTox-

HumanExposure-bayesmarker).

RESULTS

Estimating chemical exposure

Using the most recent NHANES cohort in which each metabolite was measured (see 

Table S1; up to the 2015–2016 cohort), our method was applied to obtain up-to-date 

parent chemical exposure estimates (Table S4). The parent-metabolite relationship may be 

thought of as a directed graph in which chemical entities are represented by nodes and 

transformations from one chemical to another are described by edges [61]. A total of 270 

edges in the metabolite mapping linked 151 metabolites to 179 parent chemicals (Fig. 2). 

Estimates were generated for each chemical per population group using the method depicted 

in Fig. 1.

To identify population group specific patterns and their potential vulnerabilities, the log2 

fold differences in the mean exposure estimates for each population group compared to total 

population was calculated (Fig. 3; data in Table S5). Population groups were clustered by 

similarity across all chemicals, grouped by chemical class. Chemicals not measured in the 

3–5 age group are indicated in gray. Red color indicates higher estimated exposure of a 

chemical in a group compared to the total population and blue represents lower exposure. 

A value of 1 (or 2) in the log2(fold change) scale indicates a doubling (or quadrupling) 

of exposure whereas a value of −1 (or −2) indicates a halving (or quartering) of exposure. 

There were 75 chemical-population group pairs that exhibited significant differences in 

estimated exposure compared to all individuals (significance defined by no overlap of the 

95% confidence intervals; Table S6).

When considering all chemicals, the relative median exposure estimates were generally 

lower for individuals with a BMI > 30 and higher for children, especially younger children. 

Examining chemicals by group allows identification of many patterns across and within 

individual population groups and chemical classes. We observed, for example, that five 

personal care and consumer product chemicals (color-coded light green) exhibited relatively 

higher exposure in females (including those of reproductive age). These chemicals include 

4 parabens (particularly ethyl paraben and n-propyl paraben) and benzophenone-3, which 

are commonly used in cosmetic products. Other population groups (specifically age 6–11, 

age 12–19, and age 65 and older) had lower exposure for a few herbicides (coded orange; 

atrazine and 2,4,5-Trichlorophenoxyacetic acid) and a few sulfonyl urea herbicides (coded 

dull pink). For the latter case, all other sulfonyl urea herbicide chemicals had high exposure 

for those same population groups, except in males, which showed similar exposure to the 

total population. Four carbamate pesticides exhibited lower exposure to females and 20- to 

65-year-olds (coded black), in addition to a few sulfonyl urea herbicides. As for individuals 

over the age of 65, 3 organochlorine pesticides (middle, coded in pink; trichloronate, 

fenchlorphos, and 1,2,4-trichlorobenzene) exhibited higher estimated exposure compared 

to all individuals, while half of the fungicides (coded dark green) also showed this higher 
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exposure and the other half showed lower exposure. At the individual chemical level, one 

organophosphorous insecticide (coded gray; diazinon) showed much higher exposure to 

individuals over the age of 65, and one fungicide (coded dark green; propineb) exhibited 

much lower exposure for 12–19-year-olds.

Translating exposure to risk

While exposure estimates are useful in many cases or applications, we ideally want 

to perform chemical prioritization based on overall chemical risk, which incorporates 

exposure and hazard [62–65]. By coupling our inferred exposure intake rates (median 

exposure value across all NHANES survey participants) with predicted toxic doses and high 

throughput toxicokinetics, we can identify public health priority chemicals via risk-based 

bioactivity:exposure ratios (BER). The smaller a chemical’s bioactivity exposure ratio, the 

more of a priority it is for further study because the average, population-level exposure is 

closer to the toxic effect dose. We estimated a range of roughly 8 orders of magnitude in 

the BER values for parent chemicals of NHANES metabolites (Fig. 4; data in Table S7). 

The chemical with the lowest BER was styrene with a BER value of 169.5. The 4 smallest 

BERs were seen for two volatile organic compounds and two phytoestrogens. Most of the 

organophosphorus insecticides had a BER value that fell within the middle of the range and 

sulfonyl urea herbicides had the highest BER values. The BER value for most chemicals is 

smallest for child population groups (3 to 5-year-olds and 6 to 11-year-olds).

Exposure case study: children aged 3–5

Wambaugh et al. [13] showed that children aged 6–11 typically had higher exposure to 

most chemicals when compared to other population groups. At that point, ages 6–11 

was the youngest cohort with chemical exposure data in NHANES, but, starting with the 

2015–2016 cohort, some data on children aged 3–5 was included. This newly reported 

demographic group generally had higher estimated exposure for most chemicals compared 

to other population groups (Fig. 3). For chemicals without data for the age 3–5 group, the 

population group with the highest estimated intake rate was usually children aged 6–11. We 

looked more closely at these two groups to determine patterns and potential vulnerabilities, 

which may be of particular interest as it relates to topics in environmental justice and the 

importance of developing tools to address exposure differences.

Estimated intake rates for children aged 3 to 5 and 6 to 11 were each compared to intake 

rate estimates to the total population (Fig. 5; data in Table S8). Of the 69 parent chemicals 

with metabolite data from the 2015–2016 cohort, all but 8 chemicals exhibited a higher 

estimated exposure in 3 to 5-year-olds compared to all individuals (gold bars). This was true 

for all but 13 chemicals for 6 to 11-year-olds as well (gray bars). Our estimates indicate that 

most children experience higher exposure to chemicals than adults, and the difference ranges 

up to almost 7-foldhigher for 3 to 5-year-olds and threefold higher for 6 to 11-year-olds. 

Furthermore, exposure to most chemicals is higher for 3 to 5-year-olds compared to 6 

to 11-year-olds (gold bars higher than gray bars), with chemicals like tin, cyanide, and 

multiple phthalates exhibiting exposure increases by twofold or more. On the other hand, 

some chemicals (for example, parabens) showed lower exposure in 6 to 11-year-olds when 

compared to the total population but much higher exposure in 3 to 5-year-olds versus the 
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total population. In other words, increased exposure was only seen for children under 6. This 

may be the result of various behavioral traits, exposure routes specific to young children, 

or physiological differences (for example, child inhalation rates have been shown to result 

in a higher volume inhaled per kilogram bodyweight). Comparing population groups in 

this manner helps in the identification of patterns and chemicals of interest in terms of 

population-specific vulnerabilities.

Consistency with SEEM predictions

To evaluate the SEEM consensus model [22], which uses intake rates inferred for a subset 

of the chemicals analyzed here as training data, we examined the model predictions for 

the chemicals not included in the training data. Comparison across the 2009–2010, 2011–

2012, 2013–2014, and 2015–2016 cohorts was performed using all individuals with 95% 

confidence intervals included (Fig. 6; data in Table S9). Observing the results by cohort, no 

strong correlations were identified between bayesmarker and SEEM predictions (all cohort 

R2 < 0.1; all R2 values in Table S10). When looking at agreement within individual chemical 

classes, some correlation was seen for VOCs in 3 cohorts (average R2 ~ 0.225; Fig. 6B–D). 

A slightly higher correlation was observed for heterocyclic amines in the 2013–2014 cohort 

comparison (R2 = 0.36 ± 0.018), and the greatest agreement between predictions within 

chemical class and cohort was for personal care and consumer product chemicals in the 

2013–2014 cohort (R2 = 0.49 ± 0.024). No correlation was observed for phytoestrogens 

in 2009–2010 or flame retardants in 2011–2012 and 2013–2014. Importantly, only one 

of the chemical classes in this evaluated set of chemicals was represented in the training 

data (personal care and consumer product chemicals). Therefore, this observed less-than-

expected correlation between SEEM and bayesmarker predictions may be explained by the 

fact that these new chemicals are potentially out of the domain of applicability of the current 

iteration of SEEM. In other words, the training data lacked chemicals of these various 

types that we are evaluating it on, leading to lower performance in some cases. There were 

16 personal care and consumer product chemicals in the SEEM training data (106 total 

chemicals) and 2013–2014 for these chemicals achieved the highest R2. There were also 3 

chemicals of this class in 2015–2016, but they exhibited higher uncertainty in their exposure 

estimates than those in the 2013–2014 cohort, resulting in a lower R2. By retraining SEEM 

with this evaluation set added, which represents 6 new chemical classes (ranging from 1 to 

13 new chemicals for each class), we can likely expand the applicability and accuracy of 

SEEM in the area of high-throughput exposure prediction.

Understanding uncertainty

As mentioned previously, an important aspect of this work is dealing with uncertainty. 

In Figs. 4–6, uncertainty is depicted using 95% credible intervals, which are calculated 

from the Markov Chains representing a population distribution from the Bayesian model 

calculation of parent chemical exposures. As can be seen from Figs. 4–6, the range of these 

95% CIs can be quite large across all chemicals. We attempted to explain the observed 

uncertainty based on the expected contributors, which have been discussed throughout 

this work: measurements below the LOD and the number of parent chemicals of a given 

metabolite. Figure 7 shows how these factors contribute to the observed uncertainty in 

exposure estimates for personal care and consumer product chemicals. A number of 
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conclusions can be drawn from this result: (1) For a simple one-to-one parent-metabolite 

relationship, uncertainty is driven by the fraction of measurements below the LOD (more 

measurements below the LOD result in higher uncertainty), (2) For a parent sharing a 

metabolite with other parents, uncertainty is driven by the number of shared parents (more 

shared parents results in higher uncertainty), and (3) Between 1 and 2, 2 results in much 

greater uncertainty (in other words, the uncertainty from a large number of shared parents 

is order of magnitudes greater than having many measurements below the LOD). Regarding 

this last point, if all measurements are below the LOD, there is still the knowledge that 

the exposure value is low. However, if a single metabolite has multiple parent chemicals, 

which is common in NHANES as they want to represent the most parent chemicals via 

the least number of metabolites, all of the observed exposure could be from one parent 

(meaning this one parent chemical has relatively higher exposure than the other parents) 

or each parent could contribute equally (meaning small exposure was seen for all parents 

to lead to the aggregate exposure that is the observed metabolite concentration). These 

two scenarios result in uncertainty spanning multiple orders of magnitude. Additionally, 

a chemical directly measured in urine by NHANES but also sharing multiple parents 

of a metabolite results in less uncertainty. Lastly, the cohort in which a metabolite was 

measured also seems to have a small effect, with the general trend being the older the 

cohort, the higher the uncertainty. For a similar examination for all chemicals, see Fig. S1. 

Understanding uncertainty of our exposure estimates and how different data characteristics 

contribute is important for interpreting our results and moving forward in terms of chemical 

prioritization and subsequent analyses.

DISCUSSION

In this work, we describe a Bayesian inference approach to estimate chemical intake 

rates from urine biomonitoring data across multiple population groups. This methodology 

appropriately handles and incorporates various sources of uncertainty to provide a 

distribution of exposure for each chemical rather than a point estimate. We demonstrated 

the utility of this method using the CDC NHANES data to obtain estimates of exposure 

and a measure of risk for 179 chemicals. Children aged 3 to 5, included in the 2015–

2016 NHANES cohort, were investigated more closely to identify exposure patterns and 

potential vulnerabilities. This method provides a means to not only prioritize chemicals 

based on exposure and risk, but also data to which many other exposure models can, where 

appropriate, be compared or even calibrated (for example, SEEM3).

Chemical prioritization

The bioactivity exposure ratios (BERs) shown in Fig. 4 represent a metric of risk for 

each chemical, and therefore can serve to prioritize chemicals for further study. This may 

include additional toxicity studies or data gathering (for example, monitoring chemicals 

in various environmental media) such that further comparisons to exposure models can be 

performed. While certain concentrations of metabolites may themselves indicate potential 

risk, we are choosing to focus on parent chemicals as they are typically the focus of 

toxicity testing. Additionally, rather than being treated as an exact risk estimate, the BER 

values are to be used more as a way to relatively rank the potential risk across a number 
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of chemicals. Regarding the parent chemicals of NHANES metabolites that had available 

toxicity data, the chemical with the highest risk/priority was styrene. Styrene is regarded 

as a known carcinogen. Approximately 25 million metric tons of styrene were produced 

in 2010 [66] and this increased to around 35 million metric tons by 2018, which could 

have resulted in higher exposure and therefore a lower BER value. During the SEEM 

comparison, the median estimated exposure for styrene did exhibit about a 3-fold increase 

from the 2011–2012 cohort to the 2015–2016 cohort, which would lead to a lower BER. 

It will be important to continue to track production and exposure to styrene over time (via 

studies like biomonitoring). The chemical with the second lowest BER is also a volatile 

organic compound and known carcinogen, 1,3-butadiene. The next two lowest values are 

phytoestrogens, daidzein and genistein, however, 2009–2010 was the last NHANES cohort 

to measure these chemicals. Chemicals previously prioritized for further assessment by 

other initiatives, like certain phthalates, parabens, benzophenone-3, chlorpyrifos, triclosan, 

and bisphenol A all had lower BERs than most chemicals in Fig. 4. Tracking of chemical 

exposure through biomonitoring studies is important, but it is just as important to translate 

this to risk as certain exposure changes may be more important for some chemicals than 

others based on their known toxicity.

Exposure to young children

Children exhibited the highest exposure estimates out of all population groups, based on 

this method, for most chemicals, and this translated to higher bioactivity:exposure ratios 

(BERs), meaning higher potential risk. Increased exposure rates of certain chemicals to 

young children may be attributed to a number of reasons related to their physiology or 

behavioral habits (for example, crawling on the ground, oral exploratory behaviors, and 

food preferences) as well as parental actions (“take-home” exposures, adult hobbies, or 

use of ethnic home health remedies or religious practices that incorporate certain powders, 

cosmetics, or metal implements) [67] or use of products (for example, diaper creams and 

baby hygiene products).

In Fig. 5, tin exhibited the highest difference between children aged 3–5 and all individuals 

as well as the greatest fold change differential when comparing both child groups to 

all individuals. As discussed in Lehmler et al (2018), there are several factors that may 

contribute to the elevated levels of tin observed in children, including the higher food intake 

of children, ingestion of household dust, or more (dermal) contact with products containing 

tin [68]. Other metals also showed higher estimated exposure in children. In addition to 

the routes of exposure mentioned for tin, there is a potential role for soil ingestion or 

soil-pica behavior that could lead to higher metal intakes, particularly in playgrounds and 

parks [69, 70]. Cyanide showed the second largest fold change in 3–5-year-olds compared 

to all individuals. This chemical occurs in various foods, suggesting that dietary differences 

(for example, higher consumption of fruit juices) may be important [71]. Two phthalates, 

di-n-octyl phthalate (DNOP) and di-2-ethylhexyl phthalate (DEHP), also exhibited some of 

the largest fold change differences in Fig. 6. Phthalates are used in plastics and may exhibit 

higher exposure in 3 to 5-year-olds due to more hand-to-mouth activity with plastic toys in 

young children [72]. Phthalates are also present in dust and children tend to have increased 

dust ingestion. Over the past two decades, the Consumer Product Safety Commission 
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(CPSC) has instituted bans on certain phthalates from children’s toys and childcare articles 

at concentrations above 0.1 percent (permanent ban on DEHP and interim ban on DNOP 

in 2008 [73]), which may have led to the use of other phthalates or similar chemicals as 

substitute ingredients. This likely led to a changing exposure profile for young children over 

time as new ingredients are incorporated. The latest proposed rule [74], effective October 

2017, lifts the interim ban on DNOP being present in concentrations greater than 0.1 percent 

in any children’s toy that can be placed in a child’s mouth or child care article. For this 

reason, continuation of the NHANES survey as well as the evaluation of the data will be 

needed to assess exposure changes in children based on ever evolving ingredient choices for 

the products they encounter.

One last consideration regarding child exposures is the steady-state assumption both in the 

model and for the BER calculation. A previous study showed that clearance of drugs in 

children over the age of 2 could be appropriately modeled using simple dosage formulas 

and allometric scaling [75]. Considering urine collection for biomonitoring in the NHANES 

survey of children falling in the 1–5-year-old age group was only completed for individuals 

aged 3 years and older (hence our labeling of 3–5-year-olds throughout this manuscript), a 

steady-state assumption is appropriate for this population group.

Data and model limitations

Much of the data used in this work will continue to grow in terms of the information 

available for each chemical as well as the quality of that information. For this reason, it 

will be important to identify useful data updates and incorporate them into the input files 

of bayesmaker. The first example of such data updates stems from the fact that exposures 

are constantly changing, which is why NHANES continues to collect biomonitoring data. 

Thus, new exposure inferences will need to be calculated regularly. Second, the mapping 

between parents and metabolites was populated using the NHANES reports and text mining 

of PubMed abstracts. There may be other sources or databases that have more information 

on metabolism of various chemicals. Additionally, more experimental research in chemical 

metabolism work will increase the existing literature pool, which will eventually allow for 

an increase in the number of chemicals for which exposure estimates can be calculated.

In NHANES a small number of chemicals had very few, and sometimes zero, measurements 

above the LOD. While exposure inferences for the parents of these metabolites can still 

be obtained based on data censoring limits (that is, intake rates must be low enough that 

metabolites are less than LOD), the resulting estimates often have large uncertainties. This 

is an important caveat and was partially addressed by incorporating a check on sample 

size and measurements below the LOD such that metabolites with very large uncertainties 

were identified and excluded from subsequent analyses. One potential explanation for 

why a metabolite may have many measurements below the LOD is half-life. While the 

reverse dosimetry approach used in this work has been used successfully in the past [76] 

with several VOCs, a group of compounds with complex exposure pathways and rapid 

clearance by metabolism and exhalation, there is still a chance that chemicals with very 

short half-lives may be absorbed and eliminated faster than the time between exposure 

events or urine collection. NHANES monitors blood, plasma, and urine and tends to look 
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for shorter half-life chemicals in urine because it is more informative and concentrations 

are likely to be higher for these chemicals than the other two media (conversely, NHANES 

measures persistent chemicals in blood or plasma). Measurement timeframes for chemicals 

with short half-lives can be an issue when extrapolating daily exposure from spot urine 

measurements, which NHANES performs. Doing so can lead to greater uncertainty and 

a potential underestimation of exposure. This is one of the limiting factors imposed by 

NHANES, due to the vast amount of time and resources needed to perform 24-h urine 

sampling on a large scale. Comparisons to studies estimating exposure using continuous 

urine sampling would help provide a benchmark for chemicals with varying elimination 

half-lives. Additionally, biomonitoring data can be diluted by “non-users” (individuals that 

don’t encounter exposure to certain chemicals; can result in more measurements below 

the LOD), which results in population averages covering both users and non-user but 

can sometimes lead to lower estimated intake rates for certain chemicals. If exposure is 

underestimated, either due to rapidly cleared chemicals or inclusion of non-users, then we in 

turn may underestimate risk posed by those chemicals.

Here we assume that the measured concentration in a spot sample (a single urinary aliquot 

at a point in time) is a reasonable surrogate for 24-h average urinary concentration (either on 

a volume or creatinine-corrected basis). Multiple exposure scenarios (different sequences, 

timings, magnitudes, and routes) might all be consistent with the same spot sample 

concentration [21]. Setzer et al. [77] used a hierarchical Monte Carlo simulation study to 

show that for various distributions of complex exposures to chemicals with varied half-lives 

that population average spot samples can only be used to estimate the central tendency 

(which is the median for a log-normal distribution). This is what we report here; the median 

intake rate for a population with an uncertainty (95% credible interval) around that median 

estimate. Aylward et al. [78] used longitudinal biomonitoring data and pharmacokinetic 

simulations of concentrations in spot samples and found that intra-individual variability in 

repeated spot samples for the analytes they examined exceeded inter-individual variability 

for compounds with relatively short elimination half-lives. Together, these two studies 

indicate that the methods used here are suitable for capturing the median exposure for 

a population but not the tails of the exposure distribution (for example, highly exposed 

individuals at the 95% percentile).

Comparing our estimated intake rates with estimates from other reverse-dosimetry methods 

using the NHANES data to focus on specific chemicals and classes allows the evaluation of 

the confidence in our model. Looking at 3 [27, 29, 30] studies spanning 10 unique chemicals 

(6 phthalates, BPA, and 3 pesticides), our estimated intake rates were within one order of 

magnitude for 8 out of the 10 chemicals, suggesting fair agreement. A major goal of ours 

in modeling chemical exposure is to generate estimates for as many chemicals as possible, 

usually achieved by high-throughput data and computational modeling. However, the use 

of biomonitoring data in this form (reverse modeling via inference) has clear limitations. 

To be able to estimate exposure of a chemical, at least one of its transformation products 

must be in the metabolite panel that NHANES chooses to measure. We chose to use 

urine data as it typically has a greater number of measured metabolite concentrations than 

other media (for example, blood or serum). It should be noted that urine is sometimes 

considered less suitable as a biological matrix for certain chemicals (for example, the 
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most accurate matrix for metals is expected to be blood). Future efforts should compare 

estimated intake rates from multiple matrices to assess the extent of agreement. Furthermore, 

a metabolite needs to be a good biomarker (specific and sensitive enough) such that it 

reflects parent chemical exposure. This needs to be addressed on a chemical-specific basis, 

especially when interpreting exposure and risk-related prioritization. Current biomonitoring 

studies use a targeted approach (for example, chemicals are preselected by the study team). 

The emergence of non-targeted analysis (NTA) can potentially measure all metabolites 

present in the human body (excluding those below the LOD), which could provide analysis 

opportunities for a greater number of parent chemicals.

Another limitation comes from the fact that urine measurements represent the totality of 

exposure from all routes, but we rarely know which routes are relevant for a given chemical. 

Additionally, it is not just an issue of how we encounter chemicals but also how they enter 

the body (for example, exposure to some chemicals through skin absorption does not occur 

because they cannot permeate the dermis). We would need to know much more of the 

toxicokinetic information at a chemical-specific level to correctly model all the different 

exposure routes. It could be possible to implement this by using a Bayesian approach that 

considers all exposure scenarios and attributes some fraction of exposure to various routes 

based on prior chemical knowledge (properties, occurrence in media, and potential product 

use). In the current iteration of bayesmarker, we lack information to attribute exposure to all 

routes and so typically interpret it as an oral route (in other words, equivalent oral intake 

dose assuming 100% absorption in mg/kg bodyweight/day) for subsequent analyses such as 

bioactivity exposure ratios.

As for converting urine concentrations into exposure, one important step involves 

adjustments based on glomerular filtration rate (GFR), which is estimated using creatinine 

concentrations and urine metrics. In this work, as was done in previous works [13, 14, 

22], we estimated GFR using a model based on age, sex, ethnicity, and bodyweight trained 

on data from the 2009–2010 cohort of NHANES. While this approach has served well in 

previous studies, more data has since become available to allow for estimations of GFR 

at the individual basis for NHANES participants (urine flow data since 2009). This will 

be implemented in future versions of bayesmarker, however, the model used in this work 

can still be useful for other biomonitoring studies that lack the appropriate urine flow 

data. Another important aspect of urine biomonitoring data regards metabolism rates and 

clearance routes. The literature may indicate that a parent chemical metabolizes into a 

biomarker, but we often do not know what fraction of the parent is metabolized or other 

pharmacokinetic properties of that chemical (half-life, absorption, distribution, metabolism, 

and excretion). For this reason, we chose to apply a simple toxicokinetic model for all 

metabolites. In future iterations of bayesmarker, we can incorporate more sophisticated 

approaches to handle these various cases when that data becomes available for more 

chemicals.

This work can immediately enhance the area of high-throughput exposure prediction by 

providing additional exposure intake rates against which forward modeling approaches can 

be calibrated. The SEEM consensus modeling approach extrapolated from 106 chemicals to 

forecast chemical intake rates for thousands of chemicals with little to no exposure data [22]. 
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In this work we showed that the inferred intake rates from new parent chemicals (obtained 

using the updated NHANES data) indicated that there was room for improvement in the 

performance of the SEEM consensus exposure model for chemicals belonging to certain 

classes (heterocyclic amines, perchlorates, phytoestrogens, VOCs, and flame retardants) not 

previously included in the SEEM calibration set. Considering our results for some chemicals 

that did have representation in the calibration set (personal care and consumer product 

chemicals for example) showed that SEEM predictions were moderately correlated (R2 = 

0.49), we expect better performance across the entire chemical space with these additions 

of previously unrepresented chemical classes to the calibration set of chemicals. Iterative 

comparisons of this nature where the data and methods are continually updated is important 

to achieve steady improvement in our ability to prioritize chemicals through estimation of 

exposure and risk.

Future work

The method presented in this work has been incorporated into an R package called 

bayesmarker. This package will be maintained and updated in the future as new data 

becomes available and additional analyses are performed. With access to biomonitoring 

data from individuals spanning almost two decades, one of the further analyses that can be 

addressed is to look at changes in concentrations of metabolites in urine and their inferred 

parent compound exposures over time. Along the same lines, data from different NHANES 

cohorts can be combined for greater statistical power or to perform more encompassing 

comparisons across time periods. While we provide inferred exposures as a distribution, 

usually summarized by mean and 95% CI, providing other percentiles (mainly most 

at-risk population via the 95th percentile of exposure) is highly desired in the exposure 

community due to its importance in regulatory decision making and protecting the most 

vulnerable individuals. Due to the nature of exposure variability and urine biomonitoring 

data, obtaining estimates for percentiles other than the 50th is a difficult statistical problem 

but one we plan to work on. Lastly, the bayesmarker package is expected to have wide 

applicability, as it can handle biomonitoring studies or data from sources other than 

NHANES. Working with other datasets will help ensure a more general form of this analysis 

or a specific set of instructions for study leaders to organize their data in the correct 

form. These updates to the bayesmarker package will allow for the number of chemicals 

with exposure estimates to quickly increase and provide an overall better understanding of 

exposure, as well as risk prioritization, for hundreds of chemicals across multiple population 

groups.
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Fig. 1. Depiction of the Bayesian inference methodology employed to estimate human exposure to 
parent chemicals of metabolites measured in urine biomonitoring data.
The approach consists of three stages. Stage 1 involves estimating the geometric mean 

concentration of each metabolite. The concentration distribution for a population is assumed 

to be lognormal, and concentrations below the limit of detection (LOD) are handled by 

left-censoring the data. Stage 2 uses a simple toxicokinetic model (steady-state is assumed) 

to convert concentration measurements into a dose value (mg/kg/day). Stage 3 makes use 

of prior knowledge, in the form of known chemical metabolism (linking parents to their 

products), along with conservation of mass balance to propagate or translate metabolite 

exposures to parent intake rates.
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Fig. 2. Network representation of the parent-metabolite mapping for all NHANES metabolites.
Parent chemicals were identified using the NHANES reports and text mining of 

PubMed abstracts based on metabolite synonyms and keywords such as “metabolism” or 

“metabolite”. Nodes are either exclusively a parent chemical (red), exclusively a metabolite 

(green), or a chemical that was directly measured in urine (blue). For chemicals in this latter 

set, they are chemicals for which we wished to report an exposure inference and could be 

a “metabolite” according to NHANES but also have known metabolites (for example, about 

a dozen of these are metals). Links (edges) are directed in the direction of metabolism (in 

other words, parent -> metabolite). Denser areas of the graph are annotated by chemical 

class, which was also obtained from the NHANES reports.
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Fig. 3. Difference in inferred chemical exposure between each population group and the total 
population.
Chemicals are arranged by class (indicated on the top of the heatmap) and population groups 

are clustered by similarity. Estimates were calculated using the most recent NHANES cohort 

for each metabolite. The log2 difference in median intake rate estimates from a population 

group and all individuals is shown. Red indicates relatively higher exposure, blue lower 

exposure, and gray missing data. Chemicals with an insufficient number of observations 

above the limit of detection (LOD) were removed.
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Fig. 4. Inferred bioactivity:exposure ratios (BERs) for parent chemicals of NHANES metabolites.
BER = human equivalent dose (HED)/exposure. HED is the human dose of a chemical 

that is expected to induce the same magnitude of toxic effect as the experimental animal 

dose, calculated here using the httk R package and rat oral LD50 values (LD50 is the 

concentration that causes the death of 50% of a group of test animals). LD50 values were 

scaled using a traditional acute-to-chronic transformation factor of 0.0001 to represent 

a surrogate human chronic No-Observed-Adverse-Effect-Level (NOEAL). The exposure 

value was obtained by scaling our median (point estimate) intake rate estimates by each 

chemical’s predicted steady state concentration. Error bars represent the 95% CI on the 

estimated BER for the total population. Chemicals with smaller BERs are of more interest 

as the inferred exposure is closer to the concentration at which bioactivity occurs. Points 

indicate population group by shape and chemical class by color.
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Fig. 5. Comparison of estimated intake rates of the new population group, 3–5-year-olds, 
introduced in the 2015–2016 NHANES cohort with 6–11-year-olds and all participants (labeled 
“Total”).
Bars represent the median exposure fold change between 3–5-year-olds and all NHANES 

participants (in gold) and between 6–11-year-olds and the total population (in gray). The 

error bars represent the 95% CI on the fold change between median exposure estimates. 

The dotted line indicates a fold change of 1 (in other words, no change in exposure) and 

chemicals are grouped by their chemical class as reported by NHANES.
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Fig. 6. Comparison of bayesmarker estimated intake rates with SEEM predictions for chemicals 
not in the SEEM calibration set.
SEEM predictions were originally calibrated using the 106 chemical exposure inferences 

from Wambaugh et al 2013. Using bayesmarker with the latest NHANES cohorts resulted 

in parent chemical exposures for 39 new parents that had original SEEM predictions. The 

bayesmarker inferences were compared with SEEM predictions using all individuals (total 

population) for each new cohort: A 2009–2010, B. 2011–2012, C 2013–2014, and D 2015–

2016. Each point is a parent chemical with color indicating chemical class and error bars 

(x for bayesmarker, y for SEEM) indicating 95% confidence intervals. The dotted gray line 

indicates exact correlation.
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Fig. 7. Visualization of the influence of various potential contributors to uncertainty on inferred 
intake rates from urine biomonitoring data for personal care and consumer product chemicals.
Each data point represents a parent chemical in a single NHANES cohort for each of 

its metabolites measured in that cohort (so all unique parent-cohort-metabolite triplets). 

Uncertainty (on the y-axis) is the order of magnitude spanned by the 95% credible interval 

around the median estimated intake rate (in other words, log10(upper 95% CI/lower 95% 

CI) = uncertainty), and the fraction below the LOD (on the x-axis) represents the number 

of measurements below the LOD divided by the total number of measurements for the 

relevant metabolite. Chemicals are stratified by chemical class, points are colored by 

NHANES cohort, point size represents the number of parent chemicals shared by the 

relevant metabolite, and the point shape indicates whether or not a chemical was directly 

measured in NHANES (in other words, a urine concentration was obtained by NHANES for 

that parent chemical).
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