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ABSTRACT: In this work ground and excited electronic states of
Heisenberg cluster models, in the form of configuration interaction
many-body wave functions, are characterized within the spin-
adapted Graphical Unitary Group Approach framework, and
relying on a novel combined unitary and symmetric group
approach. Finite-size cluster models of well-defined point-group
symmetry and of general local-spin Slocal

1
2

> are presented,
including J1−J2 triangular and tetrahedral clusters, which are often
used to describe magnetic interactions in biological and biomimetic
polynuclear transition metal clusters with unique catalytic activity,
such as nitrogen fixation and photosynthesis. We show that a
unique block-diagonal structure of the underlying Hamiltonian
matrix in the spin-adapted basis emerges when an optimal lattice
site ordering is chosen that reflects the internal symmetries of the model investigated. The block-diagonal structure is bound to the
commutation relations between cumulative spin operators and the Hamiltonian operator, that in turn depend on the geometry of the
cluster investigated. The many-body basis transformation, in the form of the orbital/site reordering, exposes such commutation
relations. These commutation relations represent a rigorous and formal demonstration of the block-diagonal structure in
Hamiltonian matrices and the compression of the corresponding spin-adapted many-body wave functions. As a direct consequence
of the block-diagonal structure of the Hamiltonian matrix, it is possible to selectively optimize electronic excited states without the
overhead of calculating the lower-energy states by simply relying on the initial ansatz for the targeted wave function. Additionally,
more compact many-body wave functions are obtained. In extreme cases, electronic states are precisely described by a single
configuration state function, despite the curse of dimensionality of the corresponding Hilbert space. These findings are crucial in the
electronic structure theory framework, for they offer a conceptual route toward wave functions of reduced multireference character,
that can be optimized more easily by approximated eigensolvers and are of more facile physical interpretation. They open the way to
study larger ab initio and model Hamiltonians of increasingly larger number of correlated electrons, while keeping the computational
costs at their lowest. In particular, these elements will expand the potential of electronic structure methods in understanding
magnetic interactions in exchange-coupled polynuclear transition metal clusters.

1. INTRODUCTION
Symmetry represents a core concept in physics and chemistry,
as it helps to dramatically reduce interpretational and
computational costs. Translational symmetry in lattices defines
its long-range periodic order. Point-group symmetry in crystals
and molecules defines the local (point) symmetry, which
includes reflections, rotations, and the inversion. The Pauli
exclusion principle for Fermionic systems offers another crucial
example of the importance of symmetry in electronic structure
theory (exchange symmetry). It requires any many-body wave
function of a Fermionic system to be antisymmetric with
respect to exchange of two particles. This feature has prompted
the electronic structure theory community to adopt the Slater
determinants as basis to describe the many-body wave
functions of multifermionic systems. Resolving the antisym-

metry during the optimization of the many-body wave function
on an unsymmetrized basis, such as the Hartree products,
would represent a major challenge for approximated
eigensolvers, both for the much larger optimization space
and for the optimization coefficients must perfectly couple
across the space to guarantee antisymmetry. Generally, it is not
possible to rigorously meet the latter condition via
approximated eigensolvers.
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Turning our attention toward spin symmetries, it is worth
mentioning the spin-projection S( )z preserving symmetry, and

the total spin S( )
2
preserving symmetry, embedded in Slater

determinants and configuration state functions (CSFs) bases,
respectively. In analogy to Slater determinant bases, which
enforce antisymmetry and the spin-projection quantum
number by construction, spin-adapted bases enforce total
spin symmetry, while reducing the size of the corresponding
Hilbert space, limited to the components of the desired total
spin. There are multiple ways to create a basis of spin-adapted
CSFs.1−3 In this work, we use the unitary group approach to
spin adaptation in its graphical form (GUGA), pioneered by
Paldus4−7,10,12 and Shavitt,8,9,11 which relies on the generators
Epq and epq rs, of the special unitary group of order 2, SU(2),
and on the spin-free formulation of the Hamiltonian operators.
For example, the spin-free ab initio nonrelativistic molecular
electronic Hamiltonian within the Born−Oppenheimer
approximation reads as

H h E g e
1
2pq

pq pq
pqrs

pqrs pq rs,= +
(1)

where E a a a apq p q p q= +† † and e E E Epq rs pq rs qr ps, = are
the spin-free excitation operators, and hpq and gpqrs the
molecular one- and two-body electron integrals.13 The
GUGA approach is widely utilized within the chemistry
community, and it is at the core of many electronic structure
methodologies,14 including complete/restricted/generalized
active space self-consistent field (CASSCF,15−18 RASSCF,19

GASSCF),20 and more recently, GUGA full configuration-
interaction quantum Monte Carlo, (GUGA-FCIQMC)21,22

and Stochastic-CASSCF.23

Discrete symmetry transformations, given by an operator T
that commutes with a given Hamiltonian operator, H , are
pivotal in electronic structure calculations. Commuting
operators admit common eigensolutions. Thus, the operator
T can be used to filter eigenstates of H with specific
eigenvalues of T . For example, we may take advantage of the
fact that S

2
and H commute, construct the modified

H H S
2= + Hamiltonian, and, by tuning the parameter α,

control the spectral ordering of the H eigenstates. This
strategy has been recently used to gain control over the spin in
the Slater-determinant (SD) based full configuration-inter-
action quantum Monte Carlo (SD-FCIQMC) method to
approximate eigenstates of full configuration-interaction (full-
CI) quality in large active space calculations, while being able
to selectively target states of specific spin.24 In virtue of the
vanishing commutator the modified Hamiltonian, H , shifts the
eigenvalues proportionally to αS(S + 1) while keeping the
eigenstates unchanged compared to those of the original
Hamiltonian operator, H .
Other transformations exist that lead to a modified

Hamiltonian H with a unique block-diagonal structure in the
transformed basis, and to more compact eigenstates, while
keeping the electronic spectrum unchanged compared to the
original H operator. These transformations can be described as
a similarity transformation of the original Hamiltonian,

H He eK K= (2)

where K is for example an orthogonal orbital permutation
matrix.
We have recently studied the effect of exchanging orbitals or

lattice sites on spin-free ab initio and model Hamiltonian
matrices and on their eigenstates expressed in a spin-adapted
basis.23,25−28 Orbital permutations can be described as a 90°
rotation between pairs, from which the K matrix is promptly
recognized. We found that specific chemically and physically
motivated site permutations bring the Hamiltonian matrices
into a unique (quasi-)block-diagonal structure, and many-body
wave functions into embarrassingly compact forms, indicated
by larger leading CI coefficients, small L1-norm and large L4-
norms of L2-normalized eigenvectors.25,28 As a direct
consequence of the block-diagonal structure of the Hamil-
tonian matrices, it is possible to selectively optimize electronic
excited states without the overhead of calculating the lower-
energy states, by simply relying on the initial ansatz for the
targeted wave function. This strategy has been numerically
shown for the singlet low-energy excited states of two Fe4S4
cubane clusters.26 The block-diagonal structure of the
Hamiltonian matrix, the compression of its eigenstates, that
emerge in the GUGA Hamiltonian matrix, and the possibility
to selectively target specific excited electronic states, represent
three additional theoretical advantages (to the best of our
knowledge reported by us for the very first time) in employing
spin-adapted bases in electronic structure calculations, in
addition to the already known advantages of preserving spin
symmetry.
Why are such block-diagonal structure and the correspond-

ing wave function compression desirable in quantum chemical
simulations of ground and excited electronic states of strongly
correlated systems? In quantum chemistry, multiconfigura-
tional approaches are used to generate qualitatively correct
wave functions for electronic states of molecules that are not
adequately described by single-reference approaches, exempli-
fied by Hartree−Fock, single-reference coupled-cluster and
density functional theory methodologies. Exchange-coupled
polynuclear transition metal (PNTM) clusters represent a
broad class of chemical compounds that are far from being well
characterized by single-reference techniques. In multiconfi-
gurational methods, electronic state wave functions are
described as linear combinations of electronic configurations,
in the form of Slater determinants or spin-adapted functions.
Typically multiconfigurational wave functions of PNTM
clusters feature multiple dominant coefficients. We refer to
those as multireference wave functions. The number of
electronic configurations defines the configuration interaction
(CI) space. The CI space that includes all symmetry allowed
configurations within the chosen one-electron basis is referred
to as the full-CI space. If a subset of the one-electron basis is
chosen (the active space) the many-body expansion is referred
to as the complete active space (CAS) wave function. The size
of full-CI (or CAS) expansion grows exponentially with the
number of correlated electrons and one-electron basis
functions.13,14,29 For Hamiltonian matrices of small dimensions
(up to a few thousand configurations), the optimization of the
CI expansion coefficients is generally done by exact
diagonalization procedures, such as the Jacobi eigensolver for
real symmetric matrices. For larger CI problems (approaching
a billion many-body functions), Davidson or Lanczos
techniques are utilized to compute few smallest (or largest)
eigenvalues (and eigenvectors).13,14,30 For even larger prob-
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lems, approximate techniques are employed. Density-matrix
renormalization group, DMRG,31−33 and FCIQMC21,34,35 are
two examples. While DMRG requires a low entanglement
entropy of the ground state to yield accurate results, FCIQMC
benefits from sparsity of the ground-state vector. In the latter
case, transformations that lead to Hamiltonian matrices with a
block-diagonal structure have the obvious advantage of
reducing the optimization space to the block of interest.
This paper focuses on how to identify such transformations

in Heisenberg Hamiltonian matrices for multisite clusters
within the GUGA spin-adapted framework. Ab initio
Hamiltonian matrices of exchange-coupled PNTM systems,
which can be mapped to equivalent Heisenberg models,
behave similarly up to the leading terms (quasi-block-diagonal
structure), as we have numerically shown in earlier works.26

The unprecedented wave function compression and block-
diagonal structure of the nonrelativistic ab initio Hamiltonian
matrix in the similarity-transformed spin adapted basis has
been discussed in great detail in a number of earlier works of
ours, via numerical examples offered by exchange-coupled
PNTM clusters, exemplified by iron−sulfur clusters (dimers
and cubanes),23,25,26 and manganese−oxygen trinuclear
molecular systems.27 We have also applied this strategy to
the one-dimensional s-1

2
isotropic Heisenberg model with

nearest-neighbor (NN) interactions (single J magnetic
coupling constant), and to ab initio Hamiltonians in the
form of chains of equally spaced hydrogen atoms.28 For all the
cases above we discussed the rationale behind the spin-adapted
ground state wave function compression as a function of the
permutational symmetry.
While the one-dimensional Heisenberg model with NN

interactions is exactly solvable via the Bethe ansatz,36−38

Heisenberg Hamiltonians with higher dimensions and/or with
long-range interactions (already from second NN interactions)
and more complex Hamiltonians, such as the ab initio
nonrelativistic Hamiltonian, remain elusive.39 Methods based
on the matrix product state paradigm,40−43 such as
DMRG,31−33 are very successful for 1D systems, even with
periodic boundary conditions44,45 and long-range interactions.
For lattice models of higher dimensions, tensor network state
approaches have been applied with some success.46−50 Also,
quantum Monte Carlo procedures have been able to provide
accurate numerical solutions as the Heisenberg model can be
solved without a sign problem on a bipartite lattice.51−75

In the present work, we expand our understanding of the
block-diagonal structure of the spin-free many-body Hamil-
tonian matrices and the related compression of spin-adapted
eigensolutions as a function of site permutations. We
generalize the compression to ground- and excited-states
wave functions of finite-size Heisenberg Hamiltonians, for sites
with Slocal

1
2

> , and consider more than one magnetic coupling
constant. Such models are often used to describe magnetic
interactions in biological and biomimetic PNTM clusters with
unique catalytic activity, such as the nitrogen fixation and the
photosynthesis. The Heisenberg models discussed here exhibit
a more complex electronic spectrum as compared to the single-
J one-dimensional Heisenberg model (chain).
In our previous works a more phenomenological approach has

been undertaken to explore the compression of the electronic
wave functions as a function of the orbital/site reordering. For
molecular ab initio Hamiltonians of PNTM clusters, including

high-valent Mn O3
(IV)

4 trinuclear clusters and iron−sulfur
dimers Fe S2

(III)
2 and cubanes Fe S4

(III)
4, chemically motivated

reorderings were suggested.23,26,27 Similarly, for the one-
dimensional Heisenberg chain conclusions were obtained
following a thorough exploration of the permutational space,
also adopting a simulated annealing strategy.28 In the present
work we undertake a more rigorous and fundamental strategy
to the block-diagonal structure of the electronic Hamiltonian
within a spin-adapted formulation, based on commutation
relations between partial cumulative spin operators and the
Hamiltonian operator. These commutation relations represent
a new tool to predict orbital/site permutations that lead to
wave function compression without necessarily explore
numerically the permutational space. The strength of this
strategy is its generality and transferability to other model
systems and Hamiltonians. The proposed approach greatly
enlarges the applicability of wave function-based strategies,
allowing for computationally inexpensive and reliable charac-
terizations (and predictions) of the electronic structures and
magnetic interactions in the ground and/or excited states of
exchange-coupled PNTM clusters.
In Sec. 2 we define the Heisenberg model both in terms of

the usual spin operators and in terms of the epq rs, spin-free
operators. In Sec. 3 we show the effect of the site/orbital
reordering on the spin-adapted Hamiltonian matrices and their
eigenstates for a few selected systems, including the 2- and 3-
sites s-3

2
clusters. In Sec. 4 a connection between the block-

diagonal structure of the Hamiltonian matrix and commutation
relations between partial cumulative spin operators and the
Hamiltonian operator is made, that allows us to estimate
whether block-diagonal structure is possible and what site
ordering is to be chosen in order to reveal this feature. We also
derive a generalization of the model Hamiltonians and the
corresponding optimal site reordering, that induce the block-
diagonal structure of the Hamiltonian matrix for clusters with
multiple magnetic centers. Our conclusions are offered in Sec.
5.

2. THE HEISENBERG MODEL
The quantum Heisenberg model76−80 is a long-studied model
Hamiltonian, widely used to describe magnetism in solids81−92

and molecules.93,94 In its general form it reads as

J S S J S S J S S( )
i j

N

ij
x

i
x

j
x

ij
y

i
y

j
y

ij
z

i
z

j
z= · + · + ·

> (3)

where the indices i and j run over all N lattice sites, J Jij
k

ji
k=

(with k = x, y, z) are the anisotropic magnetic coupling

constants and Si
k
are the components of the local (per site)

spin operators. In the NN Heisenberg model, the sum is only
performed over neighboring sites ⟨ij⟩. The main focus of this
work is the isotropic Heisenberg model, for which the
Hamiltonian reads as

J S S
i j

N

ij i j= ·
> (4)

where the Si are the local (per site) spin operators
co r r e spond ing to the l o c a l quan tum numbe r
S , 1, , ...local

1
2

3
2{ }. In the previous work,28 we focused on
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the single-J s-1
2
Heisenberg model with isotropic antiferromag-

netic NN interactions, Jij = J < 0

J S S
i j

N

i j= ·
> (5)

For spin-1/2 particles the second-quantized spin-free
representation of the scalar product S Si j· reads

e
e

S S s s 1
2 2i j p q p i q j pq qp

pp qq

, ,
,· = · = +

= =

i
k
jjjjj

y
{
zzzzz (6)

For the more general case of Sloc > 1/2, eq 6 becomes

e
e

S S s s 1
2 2i j

p
p

q
q

p

q

pq qp
pp qq

,
,

i j i

j

· = · = +
i
k
jjjjj

y
{
zzzzz

(7)

where Sloc is the coupled spin at each site, obtained as sum of
spin-1/2 vectors sp located at lattice site i and sq at site j,
respectively. i is the set of all electron indices at site i. The
condition that i j = for i ≠ j is implied. Inserting eq
7 (or similarly eq 6) into eq 4 allows us to express the
Heisenberg Hamiltonian in terms of the spin-free excitation
operators:13,95−97

J e
e1

2 2i j
ij

p

q

pq qp
pp qq

,
,

i

j

= +
>

i
k
jjjjj

y
{
zzzzz

(8)

Notably, the operator e E E Epp qq pp qq pq pq, = in eq 8
provides nonvanishing contributions only to the diagonal
elements of the Heisenberg Hamiltonian, for (1) δpq = 0
(because i j = ), and (2) considering that the
Heisenberg model consists of singly occupied sites, only one
term in E a a a a( )pp p p p p= +† † can contribute for each
function the operator acts on. Consequently, epp qq, equals 1
for each interacting (p, q) pair, and it represents a constant shift
in the spin-free formulation of the Heisenberg Hamiltonian,
which consequently only couples CSFs by pure exchange
interactions via the epq qp, operator. Equation 7 represents the
link between the Heisenberg Hamiltonians and the ab initio
molecular Hamiltonian used in quantum chemistry. For
systems with more than one electron per site, states with
variable Sloc populate the Hamiltonian matrix. However, for
chemical complexes featuring weak ligand-field effects, non-
Hund states characterize the higher portion of the electronic
spectrum, while for the low-energy electronic states electrons
at each site couple to maximize the local spin (Hund states). In
model Heisenberg Hamiltonians, non-Hund states can be
pushed at the higher end of the energy spectrum by adding an
effective ferromagnetic interaction JHund > 0 between electrons
residing on the same site. This term is to be added to eq 8. It is
relevant to stress that within the Heisenberg model only singly
occupied orbitals have been considered (unpaired electrons);
thus, there are no configurations coupled via epq pq, excitations
(a geminal excitation).
In the following, we will investigate in greater detail the

block-diagonal structure of Heisenberg Hamiltonian matrices
and the compactness of its eigenstates for triangular clusters of

isosceles (C2v point group symmetry), equilateral (D3h) and
scalene (Cs point group) symmetry, and 4-site clusters of
various point group symmetries. The isotropic Heisenberg
Hamiltonian for the isosceles triangle is written as

J JS S S S S S( ) ( )AB A B BC A C B C= · · + · (9)

where the JBC = JAC equality applies. This model Hamiltonian
has been used to describe magnetic interactions in Mn3O4
clusters.27 For a scalene triangle JAB ≠ JBC ≠ JAC and the
Hamiltonian reads as

J J JS S S S S S( ) ( ) ( )AB A B BC B C AC A C= · · · (10)

while for an equilateral triangle JAB = JBC = JAC. The one-
dimensional 3-site chain with periodic boundaries is identical
to the equilateral triangle, and the one with open boundaries is
topologically identical to the isosceles triangle Heisenberg
Hamiltonian with J12 = J23 and J13 = 0. For a square lattice (D4h
point group symmetry) two nonequivalent magnetic coupling
constants exist: a 4-fold Js (short) corresponding to the edges
of the square (AB, BC, CD, and DA) and a 2-fold Jl (long)
corresponding to the diagonal interactions (AC and BD). In
this case the Heisenberg Hamiltonian is given by the following
expression

J JS S S S S S S S S S

S S

( ) (

)

A C B D A B B C C D

D A

l s= · + · · + · + ·

+ · (11)

This Hamiltonian has been used to describe magnetic
interactions in Fe4S4 cubane clusters.

26

3. PERMUTATION EFFECTS ON SPIN ADAPTED BASIS
In earlier works we have shown the compression effects on
ground state wave functions for ab initio Hamiltonians25 and
for the s-1

2
one-dimensional Heisenberg model.28 In the case of

the Fe4S4 cubane model we have also numerically shown the
unique block-diagonal structure of the ab initio Hamiltonian
matrix that emerges from specific sites/orbitals reordering, and
the possibility to selectively target excited states within the
same total spin sector and differing in the intermediate spin
coupling.26 In this section, the effect of the orbital/site
reordering and the subsequent wave function compression of
ground and excited eigenstates is explored for two Heisenberg
cluster models, namely, (a) a two-site cluster with local s-3

2

spins, and (b) a 3-site s-3
2
cluster, in isosceles triangle

geometry. Generalizations to different sizes (multisite clusters)
and different topologies (isosceles, equilateral, scalene
triangles) are discussed in the next section.
The full Hilbert space size for an electronic system in a spin

adapted basis is provided by the Weyl-Paldus dimension
formula4

f N n S S
n

n
N

S

n

n
N

S
( , , )

2 1
1

1

2

1

2
= +

+

+ +i

k

jjjjjjjjj

y

{

zzzzzzzzz

i

k

jjjjjjjjj

y

{

zzzzzzzzz (12)

where N, n, and S refer to the number of correlated electrons,
orbitals, and the targeted total spin quantum number (S = 0 for
singlet, S = 1 for triplet, and so on), respectively. However, in
the Heisenberg model electrons are not permitted to pair in
the same orbital, and charge-transfer states obtained via
hopping are not considered. Thus, the configurational space
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consists solely of configurations commonly known as spin f lips.
The size of the Heisenberg configurational space is provided by
the van Vleck−Sherman formula98

g n S
n

n S

n

n S
( , )

/2 /2 1o
o

o

o

o
=

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz (13)

where n0 refer to the number of singly occupied (open) sites.
The spin-adapted basis for any Heisenberg systems can be

graphically represented as paths branching through the
genealogical branching diagrams (see Figure 1).1,13,14,99

In these diagrams starting from the root node (origin of the
graph), electrons are cumulatively spin-coupled, contributing
positively (up-spin, u, 1

2
+ ) or negatively (down-spin, d, 1

2
) to

the spin. Thus, for a six-electron system a possible spin-
adapted electronic configuration is written as |uududd⟩, where
the first 2 electrons are positively spin-coupled contributing to
the partial cumulative spin s = 1; the next electron lowers the
partial cumulative spin to s 1

2
= ; the next three electrons

further spin couple leading to the final S = 0. In the
hypothetical two-site system with local s-3

2
spins, considering

that the first 3 and last 3 singly occupied orbitals reside on site
A and B, respectively, the |uud, udd⟩ CSF is interpreted as
follows: the first three unpaired electrons on the magnetic
center A are coupled to a doublet (violating Hund’s rule), and
the other 3 electrons on site B are antiferromagnetically aligned
to the spin on A, thus leading to the total spin S = 0. The CSF
strings are not to be confused with ms conserving basis, such as
the SDs; in fact, each CSF can be expanded into a linear
combination of SDs spanning the same orbital/site space, for
example as discussed by Grabenstetter.100

3.1. Two-Site s-3
2
Model.We first consider the ground and

excited states of singlet spin symmetry, for a two-site s-3
2

Heisenberg model. The system consists of six electrons. On
each site parallel spin alignment is favored (large on-site JHund
> 0), while keeping an antiferromagnetic interaction JAB < 0

across the sites. For the singlet spin symmetry sector the basis
of spin-adapted functions consists of 5 CSFs, namely, |uuuddd⟩,
|ududud⟩, |uuddud⟩, |uduudd⟩, and |uududd⟩. These CSFs can
be identified as branches in Figure 1. Two orbital orderings are
considered, one, where electrons from the two sites are nonsite-
separated (1A − 2B − 3B − 2A − 3A − 1B), and the site-separated
ordering (1A − 2A − 3A − 1B − 2B − 3B). The Hamiltonian
matrices in the two orderings are represented in Figure 2.

Strikingly, in the site-separated ordering the Hamiltonian
matrix is already in diagonal form. A similar feature was already
observed for the N2 and the Cr2 molecules at stretched
geometry and using a nonrelativistic ab initio Hamiltonian.25

The ground state as well as all excited states are inherently
single-reference, with only one CSF completely characterizing
the many-body wave function. In particular the ground state is
fully characterized by the |uuuddd⟩ CSF, that is promptly
interpreted as two s-3

2
local spins coupled antiferromagneti-

cally. In the nonsite-separated ordering the matrix is dense
indicating the multireference character of the eigenstates when
this particular ordering is chosen. Thus, through a simple
process of site/orbital reordering, a diagonal Hamiltonian is
obtained, graphically shown in Figure 2, which corresponds to
highly compressed eigenvector, to the limit of single-reference
wave functions.
3.2. 3-Site s- J J( )3

2 1 2 Model. In this section we consider

the s-3
2
Heisenberg model of a 3-site cluster in the isosceles

triangle topology, with JBC = JAC ≠ JAB.
Combining two spin angular momenta with local spin Slocal =

3/2 results in four intermediate spin states, Sinterm = Γ(3/2) ⊗
Γ(3/2) = Γ(3) ⊕ Γ(2) ⊕ Γ(1) ⊕ Γ(0). The resulting intermediate
spins, Sinterm, further couple to the third local spin, Slocal = 3/2,
leading to 12 spin states (see eq 14).

These states range from Stotal = 9/2 to Stotal = 1/2. For Sinterm
= 3, the spins on the first two centers are collinear parallel and
the third center can further couple in a collinear manner,
leading to Stotal = 9/2, with all spins parallel aligned, and Stotal =
3/2, with the spin on the third center antiparallel with respect
to AB. Similarly, for Sinterm = 0 the first two centers show

Figure 1. Generic genealogical branching diagram for up to 9
electrons (Ne). The node weights represent the number of paths
starting from the root node, (Ne, Stot) = (0, 0) to reach the targeted
node. This number is given by the van Vleck−Sherman formula, eq
13.

Figure 2. Heisenberg Hamiltonian matrices (S = 0) for a 2-site s-3
2

system in the GUGA spin-adapted basis and using an arbitrary
ordering (1A − 2B − 3B − 2A − 3A − 1B) (left) and the site-separated
ordering (1A − 2A − 3A − 1B − 2B − 3B) (right). Red and blue colors
refer to elements of opposite sign.
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collinear antiparallel spins, while the third center is left
uncoupled. The remaining 9 spin states are characterized by
noncolinear spin couplings.
The size of the Heisenberg spin-adapted basis for each of the

possible total spin states is given by eq 13 and graphically
reported in Figure 1. For a total of 9 unpaired electrons 42, 48,
27, 8, and 1 CSFs form the bases for Stotal = 1/2, 3/2, 5/2, 7/2,
and 9/2, respectively. In Figure 3 the Hamiltonian matrices in
the GUGA spin-adapted basis are reported for the three largest
spin symmetries, namely, Stotal = 1/2, 3/2, and 5/2.

In Sec. 3.1 we have shown that site-separated orbital
orderings lead to maximal compression of the GUGA wave
function. For the 3-site case we adopt the same strategy.
However, for the 3-site problem the site-permutation degree of
freedom are also to be addressed. Of the 3! = 6 possible site
permutations (ABC, ACB, BAC, BCA, CAB, CBA) only
permutations that are nonequivalent by symmetry are retained,
namely, ABC and ACB. Notably, ACB and CAB orderings are
equivalent because the interactions between the first two sites,
AC or CA, and the last site, B, are identical by symmetry.

In Figure 3 we see an important difference between the ABC
(left) and the ACB (right) orderings. A clear block-diagonal
structure emerges for the ABC site ordering that is largely lost
for the ACB ordering. In the following we will analyze in
greater details the Hamiltonian matrices of the quartet spin
state, Figure 3b. Moving from the upper-left part of the
Hamiltonian matrix in ABC ordering 4 blocks can clearly be
distinct from the rest of the matrix. All four blocks share a
common feature, that is the local spin expectation value
S (3/2)(3/2 1) 15/4A

2 = + = . Next, CSFs with common
well-defined cumulative S S( )A B

2+ value characterize the 4
distinct blocks. The first block only contains the |uuu, ddd,
uuu⟩ CSF with S S( ) 0A B

2+ = . The second block contains
CSFs with S S( ) 2A B

2+ = , such as |uuu, ddu, duu⟩ and |uuu,
dud , duu⟩ . The third block contains CSFs with

S S( ) 6A B
2+ = , such as |uuu, duu, udd⟩, and the fourth

block contains solely the |uuu, uuu, ddd⟩ CSF with
intermediate S S( ) 12A B

2+ = . The remaining CSFs that
populate the fifth block are CSFs that violate the local Hund’s
rule already on the first site, Thus, S 15/4A

2
, which is

obtained for all those CSFs starting with |uud...⟩ or |udu...⟩.
Sparsity is also observed in the non-Hund block.
On the right-hand side of Figure 3, for which the ACB

ordering is utilized, nonvanishing matrix elements populate the
off-diagonal blocks. However, the block-separation between
Hund-states and non-Hund states holds even in the less-
optimal ACB ordering. This feature is a direct consequence of
retaining the site-separated orbital list in the ACB site ordering.
A similar block-diagonal structure has already been reported

for nonrelativistic ab initio Hamiltonians applied to trinuclear
Mn3O4 clusters.

27

The block-diagonal structure in the ABC site-ordering leads
to an extraordinary compression of the ground- and excited-
state many-body wave functions. Additionally, it allows to
selectively target excited states, exclusively relying on the initial
wave function ansatz. In the example above, choosing the |uuu,
ddu, duu⟩ CSF as trial wave function unequivocally leads to the
lowest electronic state of the second block, a state with

S S( ) 2A B
2+ = . This strategy has already been employed for

ab initio Hamiltonians of Fe4S4 cubane systems, featuring local
spin Slocal

5
2

= .23,26 In the case of the less-optimal ACB
ordering it is not possible to separate states with different
intermediate spin coupling S S( )A C

2+ , due to the presence of
the off-diagonal blocks, thus in general any choice of trial wave
function inevitably leads to the ground state wave function,
preventing any selective optimization of excited states.
Interestingly, the size of the blocks obtained in the ABC

ordering can be anticipated by means of the genealogical
branching diagrams. In Figure 4 the branching diagram of 9
electrons coupled to a doublet spin state is reported, under the
constraint S S( ) 2A B

2+ = . There are precisely three paths
that lead to S S( ) 2A B

2+ = while preserving the local spin
on site A (SA = 3/2 in this example). Three more paths exist
for the coupling with the C site. Thus, a total of nine paths and
equivalent CSFs are the only possible for this spin-state.
Similar arguments can be utilized to identify the basis
contributing to the different blocks of the Hamiltonian matrix.
Figure 4 represents a concrete measure of the minimal

Figure 3. Heisenberg Hamiltonian matrices for a 3-site s-3
2
system in

the GUGA spin-adapted basis for (a) Stotal = 1/2, (b) Stotal = 3/2, and
(c) Stotal = 5/2 total spin symmetries. The ABC (lef t) and ACB (right)
orderings have been considered. Red and blue colors refer to elements
of opposite sign.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01132
J. Chem. Theory Comput. 2023, 19, 1218−1230

1223

https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01132?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


multireference character of electronic states in an optimal site
ordering and within the GUGA spin-adapted basis.

4. BLOCK-DIAGONAL HAMILTONIANS AND
COMMUTATORS

While in Sec. 3 we collected examples of model Hamiltonians
exhibiting a block-diagonal structure, and analyzed in detail the
structure of those matrices and their eigensolutions, in this
section we provide a more rigorous rationale for the emerging
of such unique and computationally advantageous matrix
structures, which complement the chemically/physically
motivated site reorderings and the simulated annealing strategy
to identify the optimal site permutations.28

For this, we turn our attention to commutator relations
between cumulative spins and the Heisenberg Hamiltonians.
Commuting operators, T U,[ ], admit common eigensolutions.
Thus, in a basis of eigenfunctions of T , the matrix U has a
block-diagonal structure according to the degenerate eigenval-
ues of T .
For a two-site system, the Heisenberg Hamiltonian is

proportional to the S SA B· operator. Because of the
commutation relation

S S S, ( ) 0A A B
2 · =

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ (15)

(see Appendix A.1 for a proof), on the basis of eigenfunctions
of SA

2
, S S( )A B· and therefore the corresponding Heisenberg

Hamiltonian are blocked according to different values SA(SA +
1). In the site-separated orbital ordering, each CSF represents
an eigenfunction of the cumulative partial spin operators SA

2
,

S S( )A B
2+ , S S S( )A B C

2+ + , and so on, and they can certainly

be separated according to the SA
2

value. In the non-site-
separated orbital ordering each individual GUGA CSF is not an
eigenfunction of SA

2
. From this, the dense structure of the

Hamiltonian matrix and of the resulting eigensolutions follow.
From eq 15 it follows that

S S S S S( ) , ( ) 0A B A B C
2[ + + · ] = (16)

and

S S S S S( ), ( ) 0A B A B C[ · + · ] = (17)

(see Appendix A.2 for an alternative proof). Therefore, as
already shown for the two-site case, any eigensolution of the
isosceles triangle Heisenberg Hamiltonian, is also an
eigensolution of the partial cumulative spin S S( )A B

2+ (or,
in the case of degeneracies, can be cast in this form). In the
ABC ordering, CSFs with a common S S( )A B

2+ expectation
value, will form blocks in the Hamiltonian matrix, orthogonal
to the other blocks. When the ACB ordering is chosen, CSFs
only form an eigenbasis of the cumulative S S( )A C

2+ , which
does not commute with the Hamiltonian. Thus, operating on
an intermediate eigenbasis of S S( )A C+ does not bring any
advantageous blocking structure, as opposed to the ABC case.
The relation between commuting operators and block-

diagonal structure for the isosceles triangle can trivially be
extended to the 3-site chain with open boundaries (a special
case with JAB = 0) and the equilateral triangle (another edge
case with JAB = JBC = JAC).
We stress here that S S( )A B· commutes with the sum of S SB C·

and S SA C· but not with individual terms. Precisely for this
reason, no commutation relations exist for a scalene triangle
(JAB ≠ JBC ≠ JAC), except the commutator of local spin SA

2
with

the Hamiltonian. Thus, the block-diagonal structure that
separates states with different partial cumulative spin

S S( )A B
2+ is not present for the scalene triangle, but the

block-diagonal structure over SA
2 (Hund and non-Hund

states) remains. This finding is also shown graphically in Figure
5. This matrix should be compared to the one reported in

Figure 3b (left). The value of the off-diagonal matrix elements
for the scalene triangle is proportional to the (JBC − JAC)
difference. The closer JBC and JAC, the more the off-diagonal
elements become vanishingly small. In these cases the quasi-
block-diagonal structure, albeit not exact, allows partial
compression (in the numerical sense of increasing the L1-
norm), which is beneficial for methods that approximate the

Figure 4. Genealogical branching diagram for 9 electrons distributed
over 3 magnetic sites (MnA, MnB, and MnC). The paths compatible
with SA = 3/2 (local Hund state on the MnA site) and

S S( ) 2A B
2+ = are highlighted in magenta. These paths corre-

spond to the 9 CSFs of the Stot = 1/2 state with a S S( ) 2A B
2+ =

intermediate spin coupling.

Figure 5. Hamiltonian matrix for a 3-site s-3/2 Heisenberg system
with three nonequivalent magnetic coupling constants (JAB ≠ JBC ≠
JAC). Red and blue colors refer to elements of opposite sign.
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full-CI wave functions, such as FCIQMC,21,34,35 as it enhances
the numerical stability of the eigensolver. Also, as we have
observed for the isotropic one-dimensional Heisenberg
model,28 the leading CSFs already carry the most important
forms of (long-range) electron correlation, even though they
are numerically not converged to the exact solution. The
dependency of the compression with respect to the deviation
from the isosceles triangle topology is illustrated in Figure 6 for
two different reorderings.
With the commutation relations discussed above it is

possible to make predictions on more complex model systems
containing a larger number of magnetically coupled sites. In
the following we consider the Heisenberg Hamiltonian for a
J J( , )1 2 4-site square cluster, eq 11. Using the commutation
relation

S S S S S S( ) , ( ) ( ) 0A C A C B D
2[ + + · + ] = (18)

it is easy to demonstrate that S S( )A C
2+ commutes with the

Heisenberg Hamiltonian in eq 11. Equation 18 suggests that in
the ACBD ordering CSFs with common partial spins
S S( )A C

2+ eigenvalues group together forming a block-
diagonal structure of the full Hamiltonian matrix. This result
is numerically confirmed in Figure 7.
This finding explains on a rigorous ground, what we have

numerically shown for the iron−sulfur cubanes in an earlier
work.26 The same argument justifies the block-diagonal
structure and corresponding wave function compression in
the 4-site chain with periodic boundaries (extreme case of a 2J
Heisenberg model with Jl = 0). When open boundaries are
considered the commutation relation of eq 18 does not hold,
and eigensolutions of the Hamiltonian are no longer
eigensolutions of partial spin operators, and a denser
Hamiltonian is to be expected.

Figure 6. L1-norm (left) and L4-norm (right) of the lowest quartet spin state for the 3-site s-3/2 Heisenberg Hamiltonian with fixed Jab = −150 and
Jac = −20 values and variable Jbc, spanning the [−20, −150] range (arbitrary units). The Jac/Jbc ratio is used for the x-axis. Lower values of the L1-
norm and higher values of the L4-norm are associated with a more compressed wave function. The vertical black line at Jac/Jbc = 0.4 (corresponding
to Jbc = −50) marks the compression flipping point. For Jac/Jbc < 0.4 the ACB ordering and for Jac/Jbc > 0.4 the ABC ordering are to be preferred,
respectively.

Figure 7. Heisenberg Hamiltonian matrix for a 4-site s-3
2
square cluster, with two J magnetic coupling parameters, JAB = JBC = JCD = JDA = Jshort and

JAC = JBD = Jlong, in the GUGA spin adapted basis, for a singlet spin state (Stot = 0). The ABCD (left) and ACBD (right) site orderings have been
considered. The ACBD ordering ensures a bock-diagonal structure of the matrix with eigenbasis of the cumulative S S( )A C

2+ with common
eigenvalues grouped together. In the ABCD ordering such block-diagonal structure is partially lifted. Red and blue colors refer to elements of
opposite sign.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01132
J. Chem. Theory Comput. 2023, 19, 1218−1230

1225

https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01132?fig=fig7&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01132?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The commutation relations found above can also be proven
using the language of second quantization. To that end we
write the local spin operator (per site) as

E e e
e

S s

s s s

3
4

1
2 2

i
p

p

p
p

p q p q
p q

p
pp pp pp

p q p q
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jjjjjjj

y
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(19)

and utilize eq 7 for the spin−spin correlation operator S Si j· .
4.1. Cumulative-Spin-Blocked Heisenberg Hamilto-

nian. A general expression of a n-site Heisenberg Hamiltonian
can be derived, which in the spin-adapted GUGA framework
features a block diagonal matrix structure for all cumulative
spins, S( )A

2, S S( )A B
2+ , S S S( )A B C

2+ + , and so on. The
cumulative spin of the first m sites can be expressed as

S S S S S2
i
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i
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i m
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Using eq 17 it can be easily shown that a product of the
cumulative spin with the spin of another site commutes with
any other product of any cumulative spin with another site,

S S S S, 0
i

m

i m
i

k

i k
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1

1

1
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Finally, we introduce the following n-site Heisenberg
Hamiltonian,

J S S
k

n

k
i

k

i k
1

1

1
1= ·

= =
+

i
k
jjjjjj

y
{
zzzzzz (22)

which commutes with all cumulative spins calculated in the
same order, as can be demonstrated by utilizing eqs 20 and 21.
Examples for this type of system are the isosceles triangle,

vide supra, and a 4-sites structure as depicted in Figure 8 (left)

J J JS S S S S S S S S( ) ( ) ( )1 1 2 2 1 2 3 3 1 2 3 4= · + · + + ·
(23)

Instead of enforcing commutation of the model Hamiltonian
with all cumulative spins (eq 22), another Hamiltonian can be
introduced that commutes only with the first m cumulative
spins (a less strict requirement),
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The 4-site square model Hamiltonian is a special case of eq 24,
for which only blocking according to the cumulative spin of the
first two sites is assured. A more general example of a 4-site
cluster that features blocking only up to a certain level of
cumulative spin is depicted in Figure 8 (right).

5. CONCLUSIONS
In this work we have described in great detail a novel
combined symmetric and unitary group approach that yields a
unique block-diagonal structure of the many-body Hamil-
tonian matrix for general Heisenberg cluster models. As a
consequence of the block-diagonal structure, more compact
ground- and excited-state wave functions are obtained. This
compression arises from well-defined ordering of the molecular
orbitals and sites, combined with the GUGA cumulative spin
coupling. We demonstrate that molecular orbital (and site)
ordering is bound to specific commutation relations between
cumulative spin operators and the Hamiltonian operator.
In the compressed many-body wave functions a greatly

reduced number of spin-adapted electronic configurations
(CSFs) is necessary to characterize the electronic structure of
the targeted state, to the limit of single reference wave
functions (one CSF). The wave function compression greatly
facilitates the convergence of methods that approximate the
full-CI solutions, such as the spin-adapted GUGA-
FCIQMC21,22 approach, as their accuracy strongly depends
on the sparsity of the Hamiltonian and its eigensolutions.
Moreover, the block-diagonal structure of the Hamiltonian
allows direct state-specif ic wave function optimizations of
ground and excited states, while removing the undesired
overhead of computing all states energetically more stable than
the targeted one. This framework is of general applicability.
While in this work we have used Heisenberg cluster models,
and explained in greater detail the role of commutation
relations, we have observed equivalent compressions in
ground- and excited-state wave functions of exchange-coupled
PNTM clusters, such as the Fe S2

III
2, Fe S4

III
4, and Mn O3

IV
4

clusters.23,25−27 The strategy has successfully been applied also
to other model Hamiltonians (one-dimensional s-1/2 Heisen-
berg model) and their ab initio equivalent (chain of equally
spaced hydrogen atoms).
While the previous works were based on general chemical/

physical considerations and partially automated techniques
(simulated annealing)28 to identify the optimal ordering, in the
present work we show that a suf f icient condition exists to
predict at the most fundamental level the optimal site ordering:
Block-diagonal Hamiltonian matrices and highly compressed
eigenvectors are obtained for site orderings that make the

Figure 8. 4-site Heisenberg model with the optimal cumulative-spin
blocking (left), and with the blocking only according to the
cumulative spin of the first two sites (right).
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cumulative spin and the Hamiltonian operators commute. For
example, eq 15 suggests that it is possible to find solutions to
the 2-site Heisenberg model that are also solutions of the local
SA

2
operator. And considering that in site-separated orbital

ordering, CSFs are already eigensolutions of the cumulative
local spin operators, CSFs with different local spin eigenvalues
do not mix, nor they will mix via the Heisenberg Hamiltonian
(due to eq 15), from which the block diagonal structure arises.
Similar commutation relations have been discussed for tri- and
tetra-nuclear cluster models, showing also the differences that
emerge from different topologies (isosceles, equilateral, scalene
triangles). For each case, the commutation relations between
partial cumulative spin operator and Hamiltonian suggest the
optimal site-ordering. A generalization of these commutation
rules has been derived. PNTM clusters with topologies
matching the one suggested by our general commutation
rules are to be expected in nature. For those clusters our
strategy offers the best possible ordering for the most compact
wave function representation for ground and excited states.
The commutation relations represent a suf f icient condition,
thus it is possible to observe compressions and block-diagonal
structures also in cases where the above commutation relations
are not fulfilled. Finally, it is important to realize, as shown in
Figure 6, that if deviations from the ideal topology exist for the
cluster model investigated, one may still experience wave
function compression and a quasi-block diagonal structure of
the Hamiltonian. This situation in still highly advantageous for
methods that approximate the exact full-CI solutions, as the
most important correlation effects are already contained in the
few leading electronic configurations. The main practical target
of our strategy is the computational study and fundamental
understanding of magnetic interactions in exchange-coupled
PNTM clusters occurring in nature or the corresponding
biomimetic counterparts, such as the manganese cluster in
photosystem II, the active sites of the nitrogenases, or the
synthetic Co Er O3

(II) (III)
4 complex. The extension of this strategy

to other classes of chemical systems is currently under
investigation and we do not exclude its application to
transition metal complexes featuring strong interactions with
noninnocent ligands.

■ APPENDIX: PROOF OF COMMUTATION
RELATIONS

A.1. Two-site case. We want to show that

c S S S, ( ) 0AA AB A A B,
2= [ · ] = (25)

We start by writing the scalar products explicitly as

S S S SS S S, ( ) ,A A B
ij

A
i

A
i

A
j

B
j2[ · ] = [ ]

(26)

All summations in this section run over the Cartesian
coordinates (i, j, k ∈ {x, y, z}). Using the commutation relation

AB CD CA B D C A D B A B C D

A C BD

, , , ,

,

[ ] = [ ] + [ ] + [ ]
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we can rewrite this as
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The other two terms vanish because they only contain
commutators of operators that solely act on different sites,
which are zero. We then input the usual commutation relation
for angular momentum operators

S S S, i
i j

ijk
k[ ] = (29)

where ϵijk is the Levi-Civita symbol. This leads to
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In the last three lines the indices in the second term were first
renamed and then reordered to restore the ordering ijk in the
Levi-Civita symbol which leads to sign change.

A.2. Three-Site Isosceles Triangle. With a similar argument,
we can prove that

c S S S S S S( ), ( ) 0AB AC BC A B B C A C, = [ · · + · ] =+ (31)

For this, we split up cAB,AC+BC into cAB,BC and cAB,AC and again
utilize eq 27. This time, three of the four terms vanish for each
of the commutators. This leads to

c S S S

c S S S

S S S S

S S S S

( ), ( ) i and

( ), ( ) i

AB BC A B B C
ijk

ijk A
i

C
j

B
k

AB AC A B A C
ijk

ijk B
i

C
j

A
k

,

,

= [ · · ] =

= [ · · ]=
(32)

Again, by renaming and reordering i and k in the second
commutator, we can write the sum as

c c c S S S S S Si ( ) 0AB AC BC AB AC AB BC
ijk

ijk A
i

C
j

B
k

B
k

C
j

A
i

, , ,= + = =+
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