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Abstract

Passive detection of risk factors (that may influence unhealthy or adverse behaviors) via wearable 

and mobile sensors has created new opportunities to improve the effectiveness of behavioral 

interventions. A key goal is to find opportune moments for intervention by passively detecting 

rising risk of an imminent adverse behavior. But, it has been difficult due to substantial noise in 

the data collected by sensors in the natural environment and a lack of reliable label assignment 

of low- and high-risk states to the continuous stream of sensor data. In this paper, we propose an 

event-based encoding of sensor data to reduce the effect of noises and then present an approach 

to efficiently model the historical influence of recent and past sensor-derived contexts on the 

likelihood of an adverse behavior. Next, to circumvent the lack of any confirmed negative labels 

(i.e., time periods with no high-risk moment), and only a few positive labels (i.e., detected adverse 
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behavior), we propose a new loss function. We use 1,012 days of sensor and self-report data 

collected from 92 participants in a smoking cessation field study to train deep learning models 

to produce a continuous risk estimate for the likelihood of an impending smoking lapse. The risk 

dynamics produced by the model show that risk peaks an average of 44 minutes before a lapse. 

Simulations on field study data show that using our model can create intervention opportunities for 

85% of lapses with 5.5 interventions per day.
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Human-centered computing; Ubiquitous and mobile computing design and evaluation methods

1 INTRODUCTION

Interventions delivered on a mobile device are an important tool to improve health and 

wellness via behavior change such as for smoking cessation. Decades of research in 

pharmacological and behavioral intervention methods have improved the success rate 

of quit attempts, but they still hover near 30% [33]. Knowing when the participant 

is at-risk of an adverse behavior can enable the exploration of whether and how well 

delivering targeted interventions at moments of risk can improve efficacy. For example, [49] 

presented a context-aware method to deliver timely interventions by sensing the exposure to 

geolocation-based smoking cues.

To detect the high-risk moments of an imminent adverse event, it is important to identify the 

dynamic risk factors that influence the occurrence of the adverse event. Prior research [38, 

48, 66] has shown that these risk factors can be divided into two categories. First are the 

‘external’ stimuli, i.e., environmental/social cues conducive to lapse (e.g., proximity to a bar 

or seeing others smoke may increase the risk of a smoking lapse). Second are the ‘internal’ 

stimuli such as stress or craving that may increase an individual’s vulnerability to lapse. 

Depletion of coping capacity during exposure to risk factors may result in a lapse.

Behavioral science suggests that just-in-time interventions, aiming to prevent a lapse, should 

adapt to both dynamically varying internal and external factors to provide optimal support 

at the right moment [48]. The emergence of sensors in wearables and smartphones has 

made it possible to passively detect dynamic changes in internal risk factors (e.g., stress 

[27, 58] and craving [8, 22]). Dynamic changes in the external risk factors for smoking 

lapse can also be detected passively using GPS and activity sensors (e.g., visits to smoking 

spots [9]). Deriving a composite risk score that reflects the dynamically varying levels of 

risk continuously can provide new opportunities to optimize both the timing and contents of 

interventions via micro-randomized trials [36].

Substantial work has been done in estimating risk scores for other kinds of adverse events. 

They include mortality [5, 19, 20, 71], ICU admission [79, 82], disease onset [2, 13, 18, 

28, 78], fire hazard [43, 69, 73], flood [47], wildfire [21, 57], and road accidents [12, 44, 

45]. The use of deep learning models helps obtain a composite risk score that encodes the 

underlying collective predictive power of all the input risk factors. For training and testing 
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these models, carefully curated and labeled input data with timestamps of adverse event 

occurrences are used. All data not labeled to correspond to an adverse event are usually 

treated as negatively-labeled (i.e., low-risk). For example, when predicting mortality in ICU 

from large-scale electronic health records data (e.g., MIMIC-II), each of the 4,000 patients is 

either in the mortality (534 in Class 1) or the survival class (3,466 in Class 2) [5].

Estimating a composite risk score for adverse health-related behaviors poses three new 

challenges. First, continuous sensor data collected from wearables and smartphones to 

capture risk factors of adverse behaviors in the natural environment are usually noisy and 

incomplete [52]. This may be due to lack of firm attachment (e.g., proximity of pulse 

plethysmography (PPG) sensor to the skin in smartwatches that are used to detect stress and 

craving), intermittent noises (e.g., motion-induced deterioration of PPG data due to frequent 

wrist movements), and confounds (e.g., elevated physiology during recovery from physical 

activity may be confused with stress response). Second, for adverse behavioral events such 

as a smoking lapse, capturing the precise timing of each smoking lapse may not be feasible, 

as sensors may not be worn at the time of a lapse or the lapse events may not be accurately 

detected due to the imperfection of machine learning models that are used to detect smoking 

events via hand-to-mouth gestures [55]. Therefore, only a few positive events (i.e., smoking 

lapse in a cessation attempt) are available. Third, confirmed negative labels can be assigned 

to a block of sensor data corresponding to a prediction window only if the entire time period 

is confirmed to have no high-risk moment. As not all high-risk moments may result in a 

lapse, labeling a block of sensor data to the negative class is difficult for such events.

In this paper, we address each of the three challenges noted above. We first encode the noisy 

sensor data in the form of events that represent the psychological (e.g., stress), behavioral 

(e.g., activity), and environmental contexts (e.g., proximity to a smoking spot). Second, 

each of these contexts has substantial diversity in their representation (e.g., frequency, 

duration, type, etc.). We compute their homogeneous statistical representations to use them 

in training deep learning models. Third, we explore two approaches to succinctly capture 

the historical influence of recent and past events (i.e., substantial change in any context) to 

make deep learning models efficient. In the first approach called Deep Model with Recent 
Event Summarization (DRES), we summarize the influence of recent and past events via 

new features. In the second approach called Deep Model with Decaying Historical Influence 
(DDHI), we explicitly encode the influence of recent and past events as an exponentially 

decaying function over time. We refer to both models as mRisk model choices. Fourth, 

we address the challenge of sparse and positive-only labels via the Positive-Unlabeled 
(PU) framework, which allows for model training with positive-only labels. However, PU 
frameworks usually train models by giving higher weights to the positive samples and use a 

spy dataset (that has a small number of both positive and negative samples) for evaluation 

[41]. But, we do not have access to even such a small spy dataset. Therefore, we design a 

new loss function (called Rare Positive (RP)) to train the mRisk model choices and use the 

concept of the rarity of the positive class for evaluation.

We train and test the two models on a real-life smoking cessation dataset. We evaluate the 

performance of the two models via the risk characteristics they produce and their ability 

to create intervention opportunities prior to each confirmed smoking lapse moment. We 
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find that 85% of lapses can be intervened upon with about 5.5 interventions per day. By 

analyzing the risk dynamics around lapse moments, we discover that risk usually peaks 44 

minutes prior to a lapse. Finally, we use SHAP [42] to explain the influence of different 

contexts on lapse risk and find that recent visit to a smoking spot has the highest influence 

on risk, followed by stress.

2 SMOKING CESSATION STUDY AND DATA DESCRIPTION

We introduce smoking cessation, describe the smoking cessation study, and the resulting 

data used in modeling. The Institutional Review Board (IRB) approved the study, and all the 

participants provided written consent.

2.1 Smoking Cessation Research

Smoking is the leading preventable cause of mortality, causing 7 million deaths globally 

each year [1]. Therefore, extensive research has been done to support smoking cessation 

and to understand the smoking lapse process to improve rates of successful quitting. When 

a smoker attempts to quit smoking (i.e., abstain), withdrawal symptoms due to nicotine 

deprivation trigger several physiological and behavioral changes such as increase in stress, 

anxiety, concentration impairment, and craving [66, 67]. These changes can be further 

accentuated by certain situational or environmental influences such as exposure to smoking 

cues (e.g., proximity to a cigarette point of sale) or social triggers (e.g., drinks with friends) 

[53, 66]. These physiological and/or situational events constitute a high-risk situation for a 

smoking lapse. Individuals who are unable to cope with the acute challenges of high-risk 
situations, transition from abstinence to a smoking lapse [63]. In most cases, the first lapse 

eventually leads to full relapse [34, 65]. To capture risk factors for a smoking lapse that can 

be passively detected from wearable sensors and used for continuously estimating lapse risk, 

we conducted a new smoking cessation study.

2.2 Participants

Participants were recruited in a number of ways. First, recruitment flyers were posted in 

public areas such as college campuses, community clinics, churches, and in local restaurants 

and bars in Houston. Advertisements were placed in local newspapers and on radio. In 

person recruitment was implemented as needed to promote enrollment, or if requested 

by groups or institutions that have a population who is likely eligible and interested. 

The recruited participants went through the informed consent process during their initial 

(baseline) lab visit.

We use data from 170 enrolled participants (76 female), all 18+ years of age, with a mean 

age of 49.158 ± 12.99 years. All participants were African-American, residents of a city 

in the USA, smoked at least 3 cigarettes per day, and were motivated to quit smoking 

within the next 30 days of the start of the study. All of them agreed to wear the sensor 

suite. Participants were excluded if they had a contraindication for the nicotine patch 

(e.g., participants at risk of heart attack, angina, and other related health problems), active 

substance abuse or dependence issues, physically unable to wear equipment, pregnant or 

lactating, or currently using tobacco cessation medications.
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2.3 Study Protocol

Interested participants were invited to an in-person information session where they were 

provided with detailed information about the study. Once enrolled at the baseline visit, 

participants picked a smoking quit date. They visited the lab during which they were trained 

in the proper use of the sensor devices and how to respond to questionnaires in the form 

of Ecological Momentary Assessments (EMA) via a study-provided smartphone. They wore 

the sensors for 4 days during the pre-quit phase.

On their set quit date, participants returned to the lab. Then they wore the sensors for 

10 more days during the post-quit (or smoking cessation) phase. At the end of 10 days 

(14 days from the study start), participants returned to the lab and underwent biochemical 

verification of their smoking status. The participants were compensated for completing in 

person visits — $30 each for Visits 1, 2, and 3, $80 for Visit 4, and $60 for Visit 5. They 

were further compensated at the rate of $1.25 for completing each smartphone survey if they 

wore the on-body sensors and/or collected usable sensor data at least 60% of the time since 

the last phone survey, and $0.50, otherwise for completing each smart phone survey. The 

participants were also reimbursed for parking or bus tokens to defray the cost of traveling to 

the project site.

2.4 Wearable Sensors and Smartphone

Participants wore a chest band (AutoSense [16]) consisting of electrocardiogram (ECG) 

and Respiratory Inductive Plethysmography (for respiration) in their natural environment for 

up to 16 hours per day. We use the physiological data for continuous stress inference. 

To capture physical activity context, AutoSense included a 3-axis accelerometer. The 

participants also wore a wristband with 3-axis accelerometers and 3-axis gyroscopes on both 

wrists. Participants carried the study-provided smartphone with the open-source mCerebrum 

software [26] installed. The study smartphone was used to communicate with the wearables 

and collect self-reports via EMAs. The smartphone collected GPS data continuously at a 

rate of 1 Hz. We use the GPS data for detecting significant locations. The GPS data was 

extracted from the phone at the end of the study. All data from wearable sensors, EMAs, 

and GPS were stored in a secure server with the open-source Cerebral-Cortex [24] software 

installed.

2.5 Determining the Smoking Lapse Time

The participants reported smoking events via Ecological Momentary Assessments (EMA). 

For uniform coverage, the day was divided into 4 blocks. The first three blocks consisted of 

4 hours each, with remaining time assigned to the last block. In each block, up to 3 EMAs 

were triggered with a minimum separation of 30 minutes between successive prompts. 

Irrespective of the source (random or triggered by the detection of stress or smoking), each 

EMA included the following questions, ‘Since the last assessment, have you smoked any 
cigarettes?’, ‘How many cigarettes did you smoke?’, ‘How long ago did you smoke the 
cigarette?’, and ‘How long ago did you smoke the most recent cigarette?’ and ‘How long 
ago did you smoke the first cigarette?’, if multiple cigarettes were smoked.
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The precise time of smoking lapse is needed to label the corresponding sensor data to belong 

to a positive class. To pinpoint the time of a smoking lapse, we utilize the puffMarker [55] 

model that detects smoking episodes using a machine learning model trained to identify 

deep inhalation and exhalation from a RIP (Respiratory Inductive Plethysmography) sensor 

and hand-to-mouth gestures from 6-axis inertial sensors (3-axis accelerometers and 3-axis 

gyroscopes) worn on both wrists. But, some smoking episodes may not be detected (due 

to model imperfections, sensor non-wear, etc.) as well as some non-smoking events (e.g., 

eating popcorn that involves similar hand-to-mouth gestures) may be falsely detected as 

smoking episodes. Hence, we also use smoking labels provided by the participants in 

EMA’s. For training the mRisk model, we only use those detected smoking episodes that are 

also supported by participants’ self-reports in EMAs.

The time point from which a smoker is actively attempting to abstain from smoking is called 

the quit time. Although any smoking event after quitting is considered a smoking lapse, 

situations when a newly abstinent smoker promptly resumes abstinence after the initial 

smoking event are regarded as slip-ups. The resumption of usual smoking after quitting is 

considered a full relapse, and end of the current quit attempt. The time interval between 

quitting and the onset of full relapse is the abstinence period. Based on prior research [35], 

we consider three (3) consecutive days of smoking after the first smoking lapse as the onset 

of full relapse, and end of the abstinence period. We use all confirmed smoking events 

during the abstinence period as the positive class.

2.6 Data Selected for Modeling

Some of the physiological data was not of acceptable quality due to sensor detachment, 

loose attachment, persistent and momentary wireless loss between the phone and the sensor. 

Using the methods presented in [52], we identify sensor data of acceptable quality and use 

them in our modeling.

Out of 170, eight (8) participants completed the pre-quit phase, but did not return for the 

post-quit. Additionally, eleven (11) participants were unable to complete the entire study. 

Hence, we were left with 151 participants who completed the study. As we use cross-subject 

validation, we ensure uniformity and sufficiency of continuous inference data. Therefore, 

we select participants based on the following two criteria. First, the participants have a 

minimum of three hours of stress and activity inferences each day (this produces sufficient 

stress and activity data for model development). Second, the participants have GPS data for 

consecutive days across the pre-quit and post-quit days (this allows us to derive sufficient 

location history for model development). As a result, 59 participants were excluded. The 92 

remaining participants wore the AutoSense chest band for an average of 14.63 hours per day. 

From these participants (1, 012 person-days), we obtain a total of 11, 268 hours of stress 

data (11.13 hours each day) and 14, 066 hours of activity data (13.89 hours each day) for 

model development. We also obtain a total of 17, 569 hours of location data (17.36 hours 

each day) and 3, 719 completed EMAs (out of 5, 210, 71.38% completion rate). Out of 92 

selected participants, 56 have puffMarker-detected lapses also confirmed by EMA.
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3 PROBLEM SETUP AND FORMULATION

3.1 Problem Formulation

Our goal is to develop a model that can process the continuous data from sensors in 

wearable devices and smartphones and obtain a score that can indicate the risk of lapse at 

each moment, providing new intervention opportunities to maintain smoking abstinence. To 

formulate our problem, we introduce some terms and definitions.

Following the setup from [72], an Observation Window (Ow) is a fixed-length time interval 

such that data collected in this time window and any historical context prior to it are used 

to estimate the likelihood of the target adverse event occurring in an upcoming Prediction 
Window (Pw) (see Figure 1). We introduce a gap after the end of an observation window and 

before the start of a prediction window, which we call the Intervention Window (Iw), where 

an intervention might be beneficial in preventing the adverse event predicted to occur in the 

Prediction Window. We slide all windows over the continuous stream of sensor data with an 

offset of 1 minute.

Problem: Given the time series of sensor data and the timing of some smoking lapses from 

a population of abstinent smokers, train a model ℳ that can accurately estimate the risk of 

lapse in a prediction window Pw for an abstinent smoker, using the sensor data observed up 

to and including the corresponding observation window Ow, such that the proportion of all 

prediction windows estimated to have a high-risk of lapse is minimized.

4 ROBUST COMPUTATION OF PSYCHOLOGICAL, BEHAVIORAL & 

ENVIRONMENTAL CONTEXT

We apply existing trained models to accelerometry, ECG, Respiration, and GPS data to 

capture the following psychological, behavioral, and environmental contexts of users, as 

continuous inference streams (see Figure 2a).

Stress:

As stress can influence a smoking lapse, we obtain a continuous assessment of physiological 

stress arousal by applying the cStress model [27]. cStress computes a set of features from 

one-minute windows of ECG and respiration data and produces a likelihood that the user is 

exhibiting stress arousal in the captured physiological response. We apply the cStress model 

on our smoking cessation field study ECG and respiration data to generate stress likelihood 

every five seconds from overlapping, i.e., sliding minute windows to get a smoother time 

series. The cStress model produces a value between 0 and 1 that we call our stress inference 
stream.

We handle short episodes of missing data in the stress inference stream (due to noisy data, 

confounding physical activity, or recovery from physical activity), by applying the k-nearest 

neighbor-based imputation [60].
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Activity:

Movement such as transition from inside to outside of a building can expose a user to 

potential environmental triggers of a smoking lapse (e.g., corner of a building designated as 

a smoking spot). Therefore, we obtain an assessment of non-stationary or active state for 

each minute. We utilize the 3-axis accelerometer sensor embedded in AutoSense for activity 

detection (of the torso) using the model presented in [52].

Location History:

Change in location can expose a user to major environmental cues such as tobacco point 

of sale or bars. Therefore, we obtain a continuous assessment of change in a participant’s 

location. We adapt the context mining approaches used in [9] to derive location history, 

dwell places, and transitions from raw GPS data. First, we de-noise the GPS data via median 

filtering [83] as the gap between consecutive GPS points is much less than fifty meters 

even at a speed of 100 kilometers per hour due to the sampling rate of 1 Hz in our GPS 

data. We perform median filtering by substituting a GPS sample point with the median 

of temporal predecessor points from a window length of 2 minutes (i.e., 120 predecessor 

points). This step produces a continuous inference stream of location history (time, latitude, 

and longitude). Finally, we employ spatio-temporal clustering to derive the start and end 

times at dwell places (both significant and transient) or transition from one place to another.

4.1 Robust Representation of the Current Context

The current context, i.e., measures of stress, activity, and location history inferred from the 

observation window, are heterogeneous as they are sampled at different rates, and transitions 

can happen dynamically. Although not as noisy as the raw sensor data they are derived from, 

they still suffer from noise, discontinuity, and rapid variability due to model imperfections, 

sensor non-wear, data quality issues, and confounding events.

To address these issues and obtain a homogeneous and robust representation of the current 

context that can be used to train a deep learning model, we compute statistical features of 

continuous inference streams. Such aggregate statistical measures have more robustness to 

noise compared to raw inferences themselves.

We use 13 statistical functions to compute features from the stress stream. These functions 

compute the elevation (80th, 90th, and 95th percentiles), reduction (20th, 10th, and 5th 

percentiles), dispersion (interquartile_range and skewness), central tendency (median), 

shrinkage (range between [20th, 10th] and [20th, 5th] percentiles), or accumulation (range 

between [80th, 90th] and [80th, 95th] percentiles) from a window of inferences. Given an 

observation window (ti, ti+w) of length w = |Ow| minutes, we have a maximum of 12 * w 
stress state data points, since an assessment is produced every 5 seconds. We compute stress 

features as follows. Thirteen (13) statistical features are obtained from the stress stream 

from ti to ti+w. The same functions are also applied to the consecutive difference between 

the successive stress likelihoods in the window. To account for day-specific within-person 

variability, we compute the statistical features (called baseline features) from day-long stress 

stream up to ti+w (we use until_obs to abbreviate ‘until the end of observation window’). 
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Finally, we capture the average deviation of stress (from the daily mean) at the current 

window.

We compute the fraction of time active in the current window from the activity stream in 

an observation window. From the location stream in the observation window, we compute a 

binary indicator to check if the current location is a smoking spot (=1) or not (=0). Next, we 

compute the distance to the nearest smoking spot. Finally, we compute the fraction of time 

spent stationary at a place, the fraction of time spent in transition in the current window and 

the current speed.

In total, we compute 46 features from the three inference streams, called the Continuous 
Inference Features.

4.2 Encapsulating History via Events-of-Influence

A key question for the mRisk model is how to describe the influence of context on lapse risk 

over time. Continuous measures of factors such as stress are likely to have only proximal 

impact on risk, which is modeled by the temporal interval between the observation and 

prediction windows. However, significant contextual events, such as period of extremely 

high stress, may have a degree of influence over a significantly longer interval of time. 

We, therefore, define events of influence, which are specific contextual events occurring at 

discrete moments in time, and model their influence on risk prediction. Hence, our next 

challenge is how to succinctly capture the influence of these historical contexts so that the 

model may be able to estimate the degree of their influence and how it may wane over time. 

We encapsulate the historical contexts by computing events-of-influence streams (see Figure 

2a) from the corresponding continuous inference streams.

Event-of-influence stream is a sequence of irregularly spaced events derived from the 

continuous inference stream. An event represents a location in time, which likely impacts 

the participant’s current and future actions. Each event comprises of one or more attribute 

values, a start time, and an end time, represented as <list of values, start, end>. The 

type of attribute values in different events-of-influence stream can be numerical, binary, or 

categorical. Specifically, we compute three events-of-influence streams.

4.2.1 Stress Events.—The model presented in [60] applies a moving average 

convergence divergence (MACD) method to detect the increasing or decreasing trend and 

the inflection point (or the peak) in the stress likelihood time series based on short-term 

and long-term exponential moving average. This method clearly marks each stress event’s 

start and end times, defined as the interval containing the increasing-trend interval followed 

by a decreasing-trend interval. Each stress event has the following attributes — the stress 
duration, which is defined as the time interval between the start and end of a stress event 

(in Figure 2b, we observe a stress event of 14.75 minutes) and the stress density, which is 

defined as the area under the stress stream divided by the stress duration (in Figure 2b, we 

observe a stress event with density of 0.445). Each stress event is represented by <stress 
density, stress duration, start, end>. Finally, the model applies a threshold based on the stress 

density to determine which events are stressful and which are not. We note that stress or 

non-stress events are only detected from those segments of sensor data that are of acceptable 
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quality and not confounded. In our data, on average, we detect 2 to 9 stressful events per day 

with a mean density of 0.242 and a mean duration of 10.747 minutes.

4.2.2 Activity Events.—We employ the following approach to detect the activity events 

from the activity stream. We cluster the contiguous active and stationary windows together 

to construct the active and stationary events, respectively. Each activity event is represented 

as <binary indicator of 1, duration, start, end>. In our data, on average, we detect 12 activity 

events per day with a mean duration of 2.70 minutes.

4.2.3 Visitations to Smoking Spots.—Smoking spots are those places where 

participants are observed to have smoked, smoking is usually allowed, and cigarettes are 

available. We employ the spatio-temporal context mining methods described in [9] to locate 

the two categories of smoking spots (personal and general smoking spots) from participant’s 

location history and smoking patterns.

Visitations to smoking spots are recorded as events-of-influence. We adapt the method from 

[9] to detect a visitation to a smoking spot (when a participant dwells for at least 6.565 

minutes with the distance of 30m from the centroid of a smoking spot). Each visitation to 

smoking spot event is represented as <semantic type, duration of stay, start, end>, where 

we consider the following semantic types for our analysis, smoking outlet, retail store, gas 

station, or a bar (usually cigarettes are available at these location types), start is the arrival 

time to and end is the departure time from the smoking spot. Duration of stay at a smoking 

spot is computed as the difference between the departure and the arrival time. In our data, on 

average, we detect about 1 visitation to smoking spots per day with a mean stay duration of 

12.48 minutes.

5 mRisk: MODELING IMMINENT RISK OF LAPSE

In developing the mRisk model, we aim to discover a suitable representation of the 

event-of-influence time-series and find the role of continuous context variables within 

the observation window in predicting the lapse risk. We first opt for traditional feature 

representation of the event time-series. We propose several features to summarize the 

influence of events on modeling the lapse risk phenomenon. We term this model Deep 
Model with Recent Event Summarization (DRES). In an alternate approach, we hypothesize 

that events have a decaying influence over time on the risk of lapse. We explicitly model 

the decaying influence using exponential decay functions. Furthermore, we incorporate 

knowledge from the patient sub-typing domain [3] to enable end-to-end model learning, 

with both dynamically changing instance variables and static variables reflecting an 

aggregate phenomenon. We refer to this model as Deep Model with Decaying Historical 
Influence (DDHI).

5.1 Deep Model with Recent Event Summarization (DRES)

For the DRES model, we represent the event-of-influence Using features. These features 

complement the statistical features obtained from the observation window described in 

Section 4.1. The architecture of the DRES model also includes the encoding of the recent 
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past with a stacked observation window-based design. We present the features used to 

summarize the events-of-influence and the model architecture in the following.

5.1.1 Events-of-Influence Representation using Features.—We propose 15 
events-of-influence features to capture the temporal dynamics of the psychological, 

behavioral, and environmental events from the recent past. These features are extracted 

from three events-of-influence streams corresponding to an observation window.

• Stress Events: We compute average duration & density of stress events within 
current window, time since the previous stress event, duration & density of the 
previous stress event. Additionally, we compute the average duration & density 
of stress events, and fraction of time in the stressed state until the observation 

window.

• Activity Events: We compute time since the previous activity event and duration 
of the previous activity event. Additionally, we compute the average duration 
of activity events and fraction of time in an active state until the observation 

window.

• Visits to Smoking Spot Events: We compute time since last visit to a smoking 
spot and average duration of stay at smoking spots. We also compute the fraction 
of time spent at smoking spots until the observation window.

5.1.2 Feature Set.—We compute 61 total features from the continuous inference and 

event-of-influence streams. We also include the hour of day (using one-hot encoding) as 

a feature based on prior work [64] which shows time may affect the occurrence of a 

smoking lapse. In total, we compute 62 features per observation window for the DRES 
model development. We adopt per-participant standardization to account for between-person 

differences and introduce feature baselines to incorporate within-person variability or 

individual biases in features.

5.1.3 DRES Model Architecture.—The idea behind the DRES model is that all the 

features computed in each observation window can be represented in a time-lagged fashion 

to accurately estimate the risk of lapse likelihood in the prediction window. Figure 3 shows 

the overall architecture of DRES model. Here, Xt refers to the feature vector computed from 

an observation (i.e., time-lagged) window starting at time t. We use the tabular features nf 

= 62 from each observation window. Next, we stack features from nl previous observation 

windows, with the size of the input instance being nl × nf. The nl observations provide 

information on the temporal evolution of features in the recent past (hence, the term Recent 
in DRES). The efficacy of DRES model depends on the ability of hand-crafted features to 

properly encapsulate the spatial-temporal-behavioral cues useful in predicting lapse. Since 

DRES model utilizes regularly sampled feature vectors stacked together in time, we use a 

simple Convolution plus LSTM architecture. The model’s overall architecture consists of 

two convolutional layers, one recurrent LSTM layer, three fully connected layers, and a 

single node sigmoid layer. The convolution layers help to extract micro-features in a local 

neighborhood followed by an LSTM layer which captures temporal patterns of the micro-

feature sequence. The recurrence in the LSTM is operating along the nl lagged windows. 
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The penultimate fully connected layer is followed by an L2 normalization layer to normalize 

the input vectors to unit norm. Finally, the output of the final fully connected layer is passed 

through a single node with a sigmoid activation function to generate the lapse likelihood.

5.2 Deep Model with Decaying Historical Influence (DDHI)

For the DDHI model, we explicitly model the decaying influence of a past event. For 

the current context, we continue to use the statistical features from Section 4.1. But, we 

observe that the proposed event of influence features in the DRES model rely heavily 

on the usefulness of specific features calculated and are limited to only incorporating 

the most recent past events and the average information. We propose an alternative event 

encoding approach that allows for encoding of multiple past events and enables the model 

to learn from not only recent events but also the accumulated effect of past on participants’ 

psychological and contextual state without explicit feature engineering. First, we provide the 

rationale for the development of our proposed methodology. Next, we formally define the 

encoding procedure and the various design choices involving the model architecture.

5.2.1 Modeling Rationale.—Lapse risk may be influenced by not only recent internal 

and external events but also by the accumulated history of exposures, with the influence 

waning over time. To model this behavioral element, we need to efficiently represent the 

stimuli received by the participants from earlier time points. In estimating the risk of 

imminent adversarial behavior, our goal is to directly account for the current influence of 

past events, weighted by their position in time. The event-of-influence streams are also 

unique in their discrete nature of non-aligned multi-modal observation. The unique aspects 

of event modeling make it challenging to directly apply the current deep-learning modeling 

approaches to our scenario.

Modeling with time-series data requires encoding previous states as time progresses. Long-

Short Term Memory Networks (LSTMs), Time-Aware LSTM networks [3], and attention-

based LSTMs [78] have all been used successfully to model time series data. They have 

produced state-of-the-art results in time-series problems such as mood forecasting [70], 

mortality prediction [10], and intervention delivery [72]. Transformers [77] with the self-

attention mechanism has proven highly successful in modeling long-term dependencies 

for sequential data, enabling learning of large sequence models for multivariate long-term 

forecasting [84].

In our case, to capture the historical influence, the model needs to learn from the events-of-

influence streams. Different events-of-influence streams have observations at different times 

with scant alignment between them. To properly capture the historical influence, we need to 

be able to learn from these multiple irregular time series from further in the past. We also 

need the model to learn from mutual interaction of multiple past event types by aligning 

their decaying effect in a future time, which is not yet handled well in current models. 

To efficiently model long-range temporal interactions of irregularly sampled non-aligned 

observations, we want a model where the temporal delay can be explicitly designed because 

it’s a key aspect of our problem.
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Therefore, we propose a decay-aware temporal embedding of heterogeneous past events to 

encode their residual effects in predicting the lapse risk. We represent each event using a 

standard set of attributes and use the encoding approach to propagate the effects of past 

events. In this way, we aim to create a temporal projection of any past event in times of 

future inference. Our proposed methodology transforms event data using an exponential 

decay function before feeding it to an LSTM layer. The LSTM layer provides a simple 

way of handling the time-dependency within the current observation of limited length. 

To estimate effective exponential decay factors and weights for different event attributes, 

we adopt the patient phenotyping approach from the EHR domain [3]. We analyze the 

feasibility of grouping our participants using global aggregate context variables from the 

pre-quit period and use the grouped representation as a key input variable in the model.

5.2.2 Decay-aware Temporal Encoding of Heterogeneous Events.—We 

represent a single event using a vector of k attributes, B = [β1, β2, ..., βk] alongside the 

time of event t. For example, stress events can be represented using, the time of event t, 
density β1, duration β2, peak amplitude β3 and other factors. These attributes are determined 

by the event type. For example visit to smoking spots is an indicator event with no density 

information present. We represent a single event of type e (e.g., stress, visit to smoking 

spots, activity) using the tuple t, Be = β1
e, β2

e, …, βk
e . We aggregate the contributions of k 

different attributes of an event in a single numerical value using a linear function,

f Be = 1
k ∑

i = 1

k
μieβi

e
(1)

Here, μie is the weight coefficient associated with the ith attribute,βi
e. We standardize each 

attribute to be within the range [0, 1] and estimate the weight coefficients using sigmoid 

function —0 ≤ μie ≤ 1. The division by the number of attributes k ensure that 0 ≤ f(Be) ≤ 1 

for all event types with different number of attributes.

To represent an event from the past (t1, Be) at a future time t ≥ t1, we assume an exponential 

decay function of a constant rate αe with f(Be) representing the initial quantity from (1). 

Thus, the contribution of the event from time t1 at a future time t becomes f Be e−αe t − t1 . 

Exponential models are widely used to model decay in natural phenomenon such as drug 

absorption [25], recovery times from physical activity [60], among others.

Thus, given n past events of Type e, t1, B1
e , t2, B2

e , t3, B3
e , …, tn, Bn

e , we aggregate the 

effects of all past events at time t as s t
e with

s t
e = ∑

k = 1

n
f Bk

e e−αe t − tk I t ≥ tk , (2)

where I (t ≥ tk) is an indicator function equal to 1 if t ≥ tk and 0, otherwise. The parameter 

αe controls the rate of decay of an event of type e as we progress in time. We directly feed 

the time-series St − w:t
e  of different event types (stress, activity, smoking spot visits) to the 
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model together with statistical features from the current window Ow to allow the model to 

learn from accumulation of past events. Since Equation 2 can be computed at any time in 

future, we can maintain the regular time intervals required for a simple LSTM to operate on.

Our embedding depends on effective estimation of the parameters α, [μ1, μ1, ..., μk] for 

each event type. We assume that these three parameters act as variables specific to global 

contexts. For example, we assume that the decaying rate of influence of stress on lapse risk 

does not change from one stress event to another and is similar for a set of homogeneous 

participants (i.e., phenotype). Thus, estimation of the parameters α, [μ1, μ1, ..., μk] depends 

on identifying the degrees of freedom on which each participant is homogeneous.

5.2.3 Phenotyping Participants for Parameter Estimation.—Patient sub-typing 

is grouping of patients to address the heterogeneity in the patients, to enable precision 

medicine where patients are provided with treatments tailored to their broadly unique 

characteristics [3]. We group participants based on observations from the pre-quit period 

so that the model can be applied to a user right from the moment they quit when no post-quit 

data is available. The features we use include gender, age, average stress density, duration 

and count per day before quitting, average frequency and duration of visits to smoking spots 

prior to the quit period, and average activity event count and duration per day. We term 

them phenotype features since they provide relatively stable information (i.e., trait) about the 

participants. We aim to cluster the participants into a small number of groups.

Clustering:  Our clustering of participants based on their phenotype features is guided by 

three questions — which clustering algorithm to use, which features contribute most towards 
a grouping of the participants, and how many clusters are appropriate. We experiment with 

partition-based traditional k-means algorithm and hierarchical clustering approaches. Both 

methods perform similarly in our data. We vary the number of clusters for obtaining the 

most appropriate clustering. For identifying the features which are most useful in grouping 

the participants into different clusters, we select silhouette score [54] as the evaluation 

criterion. First, we re-scale the features to fall within the same range between 0 and 1. Next, 

we measure the silhouette score of removing a single feature at every iteration and remove 

the feature which contributes negatively toward the overall clustering. This recursive feature 

elimination process allows for identification of the most important features necessary for 

grouping the participants. Finally, we apply the k-means clustering with appropriate number 

of clusters for extracting groups of similar participants. Using number of clusters equal to 4, 

we obtain the best result with all the features contributing positively. The centroid of each 

cluster is used to estimate the parameters α, [μ1, μ1, ..., μk].

5.2.4 DDHI Model Architecture.—Figure 4 shows the overall architecture of the end 

to end DDHI model. The phenotype features are first used for clustering the participants. 

The mean of each cluster is then used to output three global context specific parameters 

(α, μ1, μ2) for each event type using a feed forward layer. The centroid of each cluster 

represents all the participants belonging to that cluster. The centroid is passed as an input 

through an intermediate feed forward layer. α, [μ1, μ1, ..., μk] are weights of nodes with 

sigmoid activation function which are fully connected to the mentioned intermediate layer. 

Using the appropriate parameters for each event type, the event log in the memory are 
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then transformed to form the event encoded time-series Sstress, Sactivity, and Ssmk_spot. Let 

the length of the current observation window be equal to w with rightmost time t. Then, 

we output the event of influence encoded time-series for r separate event types within the 

current observation window as St − w:t
event1 event2, …, eventr ∈ ℛw × r, where s t − w:t

stress  measures the 

aggregate effect of all past stress events in the current time window t − w to t. The features 

from continuous inference streams along with the hour of day are used in a lagged fashion 

with multiple observations of nf = 47 features. With nl such lags, a single instance of lagged 

features is Xt − nl: t ∈ ℛnl × nf. Two separate LSTM networks are trained on top of the lagged 

features Xt − nl: t and St − w:t
stress, activity, ..., smk_spot. We flatten the outputs of LSTM into planar 

nodes, concatenate the two separate representations and feed it to a multi-layer feed-forward 

neural network.

6 LEARNING FROM SPARSE & POSITIVE ONLY LABELS

Our goal is to estimate the risk of a smoking lapse during the abstinence period from 

continuous sensor data in the natural environment. We segment the sensor streams using 

sliding (by 1 minute) candidate windows consisting of the observation, intervention, and 

prediction windows. We assign a positive-label (high-risk of lapse) to observation windows 

only if the corresponding prediction windows overlap with a smoking lapse time, otherwise, 

the observation windows are unlabeled. Recall that we only consider a lapse to have 

occurred if it is detected by puffMarker and supported by an EMA. Using either of them 

alone is insufficient since self-report does not pinpoint the accurate timing of smoking lapse, 

and puffMarker can produce false positives. As a consequence, our available ground truth 

labels are sparse, and we only have positive (high-risk) labels available.

6.1 Positive Unlabeled (PU) Learning

As we only have access to a subset of positively-labeled data and a larger class of unlabeled 

data which may consist of many lapse events that were either missed by puffMarker, missed 

by EMA, or missed by both, we adapt positive-unlabeled (abbreviated as PU) learning 

methods to train the mRisk model choices. PU learning [4] is a variant of the classical 

supervised learning setup where the assumption is that the data contains positive-labeled or 

unlabeled samples, which may contain positive (high-risk of lapse) or negative (low-risk of 

lapse) samples. We employ class-weighted base estimators in the PU learning framework to 

address the class imbalance.

As we mark an observation window with a positive label if the corresponding prediction 

window overlaps with the smoking lapse time, the traditional assumption that positively-

labeled data is selected completely at random (SCAR)) does not hold. Therefore, we use 

the PU-bagging or ensemble PU learning approach [46] that is independent of the SCAR 

assumption and use leave-one-participant-out-cross-validation (LOPOCV). We describe 

more details of how we train the PU-bagging model in the Appendix (see Section A.1).
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6.2 Rare-Positive (RP) Loss Function

Key to training deep learning models is a suitable loss function that the model can use 

to optimize the representation. Contrary to the typical supervised learning setup, where 

concrete ground truths are available for both positive and negative classes, we only have 

access to a subset labeled positives (i.e., high-risk moments). All the other samples are 

unlabeled and consist of positives (i.e., lapses missed by puffMarker and/or EMA) and 

negatives (low-risk moments); we assume that the proportion of positive instances is rare 

in the unlabeled class. We want to guide the learning process so that the model learns an 

accurate representation of the positive class and learns to extract other rare true positives 

from the unlabeled class.

6.2.1 Design of the RP Loss Function.—In designing the RP loss function, we aim 

to achieve two key goals. First, we want to create a representational feature space in which 

positive data points are clustered together. This is trivial for the model to do by coalescing 

all the input instances into a single point in the feature space. Hence, the second condition 

needs to be designed, which constraints such development. Our second competing goal is to 

ensure that the learned representation space of the positive class can only include a small 

portion of the unlabeled class, as positive instances are expected to be a rare occurrence in 

the unlabeled class. To formulate the two components of our proposed loss function, we let 

S denote the set of all samples, Sp the set of all positively-labeled samples sp and Su the set 

of all unlabeled samples su, with S = Sp ∪ Su.

Positive Class Dispersion (P):  We adopt the definition of consistency as proposed recently 

in [56], to minimize intra-class variations, but apply it only to the positive class Sp . Our 

goal is to reduce the mutual dispersion of the positive instances for forming dense clusters. 

As in [56], our data is also collected by wearables in the noisy field environment, and hence 

are impacted by outliers. To reduce the impact of outliers, we also define dispersion of the 

positive class Sp  in terms of a robust aggregate function.

Consistency of spi ∈ Sp is the average distance of its representation from the representation 

of all other points spj ∈ Sp, i ≠ j in the model’s feature space, i.e., C spi = d spi , Sp , using the 

definition of average distance in the feature space from [56]. It was shown in [56] that this 

definition of distance is differentiable and hence suitable for use in loss function and leads 

to faster convergence (for noisy data collected by wearable devices). Now, consistency of the 

positive class is defined as an aggregated function, ψ, of all the point consistencies within 

the class. Within a mini-batch of data UMB ∈ S, positive class dispersion, P is defined as

P = ψ C spi spi ∈ UMB ∩ Sp (3)

Similar to [56], we also select a percentile measure for ψ. But, in contrast with [56] that 

uses non-overlapping windows of data, we need to produce a risk score for each minute and 

hence use overlapping windows, sliding each minute. Consequently a positive event (i.e., 

a confirmed lapse) is contained in all overlapping observation windows whose prediction 

window (e.g., 60 minutes long) contains the positive event. One positive event a day can 
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result in 10% (60 out of 600 minutes of sensor wearing a day) of the data labeled as 

high-risk. Therefore, we use 80th percentile of the point consistency values of the positive 

class to obtain robustness, while respecting rarity of the positive class. Minimizing P ensures 

that the positive instances pack tightly in the deep representations space.

Rarity of the Unknown Positives Within Unlabeled Class (R):  Given the assumption of 

rarity of positive samples in the unlabeled class, the tight cluster produced for the positive 

class (by minimizing P) should only contain a small portion of the unlabeled class. For this 

purpose, we define the rarity metric R as the proportion of unlabeled samples whose average 

distance from the samples of positive class are at most P.

Let d sui , Sp  denote the average distance of the representation of unlabeled sample sui ∈ Su

from the representation of all positive instances spj ∈ Sp in the model’s feature space. We 

define an indicator function

I sui = 1 d sui , Sp ≤ P
0 otherwise.

Our goal is to limit the number of unlabeled instances for whom the above indicator function 

outputs 1. For this purpose, given a mini-batch of data instances UMB ∈ S, we define the 

rarity metric R as follows.

R =
∑sui ∈ UMBI sui

UMB ∩ Su
(4)

Minimizing R amounts to reducing the proportion of unlabeled instances which fall within 

the cluster of positive instances and minimizing P constraints the positive instances to form a 

tight cluster itself.

We compose our overall Rare-Positive (RP) loss function as follows so the model can 

concurrently optimize both positive dispersion (P) and rarity (R) measures.

ℒRP = γP + (R − ϵ)2, (5)

where ϵ is the expected proportion of unknown positives we assume to be present within the 

unlabeled class. (R − ϵ)2 denotes the squared distance of the rarity metric R from a fixed ϵ 
value. We choose the quadratic function in favor of an absolute error for two reasons. First, 

quadratic error term is continuously differentiable. Second, we want the penalty for an error 

to increase in proportion to the magnitude of the error itself.

We conduct experiments to find the best value of ϵ from our dataset. The γ value is a scaling 

hyper-parameter for scaling two terms with different units. Since, we L2 normalize the deep 

vectors to have unit norms before distance calculation, their range is similar to the range of 

proportions (0, 1). We choose γ = 0.5 for our experiments.
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6.2.2 The Loss Function.—For training the mRisk model, we employ the joint 

supervision of cross-entropy loss (to derive risk likelihood between 0 and 1) and RP loss. 

More specifically, our overall loss objective is

ℒ = ℒCE + λℒRP , (6)

where ℒCE is cross-entropy soft-max loss [81] and we use λ (= 0.2) to balance the effect of 

two loss functions.

7 OPTIMIZATION, EVALUATION, AND EXPLANATIONS OF mRisk MODEL 

CHOICES

We first determine the best value of the hyper-parameter ϵ to optimize the proposed RP loss 

function. Second, we compare the performance of our two proposed models by analyzing 

the risk characteristics each model produces. Third, we design simulation experiments 

to evaluate how successful the models are in creating intervention opportunities prior to 

each confirmed lapse. Fourth, we visually analyze the risk dynamics produced by mRisk 
before and after lapse moments. Finally, to understand the major factors driving the lapse 

risk produced by the mRisk model, we explain the influence of features on the model 

performance using Shapley values [42].

7.1 Loss Function Optimization and Evaluation

We experiment with different choices of ϵ (which denotes the expected proportion of rare 

positives within the unlabeled class) on positive class dispersion (P) and rarity metric (R) to 

determine its best value. We also compare with Triplet loss [61], a widely used traditional 

loss function used in deep learning. Figure 5 shows the results when we train the models by 

combining the stated loss functions with cross-entropy loss. We make several observations. 

As each model is trained with mini-batches, we first analyze the distribution of P and R 
for different choices of ϵ. We observe that the model achieves lowest deviations (or spread) 

in P and (R − ϵ)2 for ϵ = 0.35. We take this as an indication that for this value of ϵ, the 

model is able to consistently find the best representation to separate out positives (including 

unknown positives in the unlabeled class) from the negatives (all in the unlabeled class). 

We get another supporting indication of it by observing that the value of P is the lowest for 

this choice of ϵ. We see from Figure 5c that when ϵ increases from 0.2 to 0.35, the weight 

assigned to the (R − ϵ)2 component of the RP loss function reduces because 0 ≤ (R − ϵ) ≤ 

1. After this value, ϵ gets farther away from the true proportion of positives in the unlabeled 

class (see Figure 5b), making it harder for the model to find a suitable representation. 

Therefore, we hypothesize that for ϵ = 0.35, the model is able to find a representation to 

form the tightest cluster of positives while allowing unlabeled positives. We use ϵ = 0.35 for 

all experiments.

We next observe from Figure 5b that at ϵ = 0.35, the proportion of unlabeled positives is 

24.68% of the unlabeled data (i.e., R). We use EMA reported lapses that were not used in 

model training (as they were missed by puffMarker) to estimate the proportion of positive 

class in unlabeled data. Each EMA where one or more lapses was reported, indicates a 
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2-hour lapse window where participants recall having smoked. If these hours are considered 

to represent high-risk moments, they constitute 17.8% of all unlabeled hours of data. As the 

high-risk moment is considered to precede a smoking lapse, the entire 2-hour window may 

not constitute high-risk moments, while hours where no lapse was reported may also consist 

of high-risk moments, this is only a crude estimate based on available sources of imprecise 

labels. Nevertheless, the two estimates lie within 7% of each other.

We also observe that treating the unlabeled data as negatively labeled and using Triplet loss 

to maximize its separation from the positive class results in a representation that produces 

slightly higher values of P as the RP loss function (especially for ϵ = 0.35). But, as 

the model is forced to maximally separate positives from the unlabeled class, it ends up 

admitting a larger proportion of unlabeled data (about 45%) in the positive cluster. Using 

a model trained with such a loss function will require a higher number of interventions to 

achieve a given recall rate (i.e., intervention delivered prior to a detected lapse event) as 

compared with the RP loss function.

7.2 Evaluating mRisk Model Choices by Their Risk Characteristics

We train the two mRisk model alternatives using only sparse positive labels. Lack of 

unambiguous negative labels of low-risk moments diminishes our options of computing 

traditional metrics such as F1 score, AUROC, and others. Thus, we opt for measuring the 

performance of the models in predicting the detected lapse events. If the model outputs a 

high-risk probability for a confirmed smoking lapse, we consider it an accurate prediction.

However, if we classify every data-point as high-risk, we would achieve 100% accuracy. 

In a traditional supervised learning setup, we measure the false positives, which gives us a 

measure of the cost of using/deploying any developed model. Since we can not measure the 

false positive rate directly, we propose to measure the cost of our model indirectly. At every 

decision point, we treat the percentage of assessment windows determined to be high-risk as 

the cost of a specific model. This indirectly captures the user burden posed by a model in 

real-life where a high-risk moment may trigger an intervention to reduce the likelihood of a 

lapse.

We also note that considering any data-point as high-risk requires specifying a decision 

threshold (TL) within the probability scale. If the model outputs a probability ≥ TL, we 

consider it a high-risk moment, and low-risk, otherwise. We select a value of TL to achieve a 

lapse detection accuracy of 80% and report the inference cost.

7.2.1 Results.—Figures 6a and 6b together captures the trade-off between lapse 

detection performance and the inference cost for using different values of the decision 

threshold (TL). Figure 6a shows the steep drop-off in detection accuracy for both the mRisk 
model choices as we increase the value of the decision threshold. The drop-off in accuracy 

is comparatively less steep for the DDHI model when compared to the DRES. For achieving 

a minimum of 80% lapse detection performance, the decision threshold values are 0.28 for 

the DRES model and 0.31 for DDHI. The corresponding inference costs are 33.61% and 

24.50% for DRES and DDHI respectively. Thus, for the same lapse detection performance, 

we obtain a 9% improvement in the inference cost by using the DDHI model. Figure 6c 

ULLAH et al. Page 19

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shows the distribution of the lapse likelihoods produced by both models. Both models have 

the desirable right-skewed distribution, as we expect a majority of moments to represent a 

low risk.

7.3 Evaluating mRisk Model Choices via Simulated Delivery of Risk-Triggered 
Interventions

For our next evaluation of the two models, we train a baseline machine learning model and 

evaluate how successful the models are in creating intervention opportunities prior to each 

confirmed lapse. We design simple simulation experiment where interventions are delivered 

when the risk for lapse rises above a pre-determined threshold (TL) (see Section 7.2). To 

limit intervention fatigue [32], no new interventions are triggered until intervention gap (IG) 
minutes have elapsed since the last intervention, assuming the impact of an intervention lasts 

at least this long.

Since we use a prediction window of 60 minutes, we use IG = 60 minutes. We note that 

introducing an intervention gap changes the direct relationship between the risk threshold 

and the frequency of interventions observed in Section 7.2. Although the choice of TL and 

IG will depend on the characteristics of the dataset, preferences of the smoking intervention 

researcher, and other real-life constraints (e.g., no intervention when driving or when in 

meetings), we analyze the performance of the mRisk model choices in the simple scenario 

when the intervention delivery only depends on TL and IG to show its expected behavior. 

Keeping IG set at 60 minutes, we vary TL to observe the performance of each model at 

different frequency of interventions per day.

7.3.1 Evaluation Metric.—For each model, we estimate the probability that an 

intervention opportunity is available ahead of a lapse event. For this purpose, we use only 

the confirmed lapse moments, i.e., positive labels. The proportion of lapse events occurring 

within 60 minutes (i.e., prediction window) of an intervention is called the Intervention Hit 
Rate (IHR) (see Section A.2 in the Appendix for a more precise formulation). As launching 

an intervention at every allowable moment can trivially achieve a 100% IHR, but at the 

cost of a high intervention frequency, we measure the participant burden via intervention 

frequency and determine IHR for different values of intervention frequency per day. For a 

given intervention frequency, a better model should have a higher IHR.

7.3.2 Experiment Setup.—We simulate with an intervention frequency range of [3, 

7] per waking day to evaluate mRisk model choices — DRES and DDHI — in creating 

intervention opportunities. We also train a Random Forest Model using the PU Bagging 

Framework, named PU-Bagging RF [7], to act as a baseline. This model accepts the feature 

vector used in the DRES model, and produces a risk score for each observation window.

To vary the intervention frequency per day for the PU-Bagging RF, DRES and DDHI 
models, we vary the risk thresholds. In addition to evaluating the performance of the three 

models on IHR, we also compare the difference in IHR when using the new RP loss function 

versus Triplet Loss in both mRisk model choices. To evaluate the impact of phenotyping 

idea in the DDHI model, we experiment with different number of phenotypes, including 

no phenotypes. Finally, as learning the personal smoking spots for each new user requires 
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collecting and analyzing pre-quit data, we evaluate the gain in performance when this data is 

used in modeling.

7.3.3 Results.—Table 1 shows that DRES and DDHI outperform the baseline PU-
Bagging RF model, DDHI outperforms IHR, and RP Loss outperforms Triplet Loss. The 

last row in Table 1 shows that not using personal smoking spots results in a substantial drop 

in performance of both models. Table 2 shows the effect of phenotyping in the DDHI model. 

We observe that increasing the number of phenotypes improves IHR, achieving a peak IHR 

for four (4) phenotypes suggesting it as the optimal for our dataset. As the DDHI model 

with RP Loss function outperforms other models, we select this as the mRisk model in 

subsequent experiments. We select 5.5 interventions per day, as it provides the largest jump 

in IHR. We also find that for this choice, the risk crosses the threshold approximately 32 

minutes prior to the lapse moment, on average, providing half an hour window to intervene 

prior to a lapse.

7.4 Evaluating mRisk Model Performance on Training-Independent EMA Labels

In the preceding evaluation (in Section 7.3.3), we only used those lapses reported in 

EMAs that was also detected by Puffmarker providing us with precise moment of lapse, 

in estimating the intervention hit rate (IHR). These labels were also used in the model 

training. For a more independent evaluation of the mRisk model, we use a new source of 

lapse labels from our field data that was not used in training or testing of the model.

These are lapses reported in EMA’s that were missed by puffMarker (due to lack of sensor 

data or model failure). Figure 7a shows an EMA that participants fill out to report recent 

cigarette smoking lapses. If users report smoking, they are asked to report the time of 

smoking and the amount of cigarettes they have smoked. If they report smoking more than 

one cigarette, they are also asked to report the timing of the first and most recent cigarette. 

We use three questions related to reporting the time of smoking events — ‘How long ago 

have you smoked?’, ‘How long ago you smoked first cig’, and ‘Most Recent cig how long 

ago?’.

As Figure 7a shows, participants indicate a 2-hour time window. When an EMA report of 

lapse is missed by puffMarker, we are unable to determine the precise moment of lapse and 

can only locate it in a 2-hour lapse window. Therefore, these labels are not used in training 

the models. In the absence of precise lapse moment, we consider the entire lapse window as 

the potential lapse time. For example, if at time t, a participant reports smoking a cigarette 

‘4 – 6 Hours’ ago, we label t − 6 Hours to t − 4 Hours as containing a smoking event. The 

actual lapse event may occur anywhere in a specific lapse window, and hence the high-risk 

moments (that are assumed to precede a lapse) may occur at different portions of the 2-hour 

lapse window.

We adopt the following approach for computing the intervention hit rate for EMA-reported 

lapses. Let tint denote the time when the estimated risk produced by the pre-trained mRisk 
model crosses a prespecified threshold (corresponding to an expected 5.5 interventions per 

day) and triggers an intervention. Let [tEMA, tEMA + 2H] denote the lapse window based 

on the participant’s EMA response. We say that the intervention delivered at time tint has 
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preceded a lapse if the prediction window [tint, tint + Pw] has an overlap with [tEMA, tEMA 

+ Δ]. Here, Δ denotes the duration of time since the start of the 2-hour lapse window 

considered as high risk. If Δ = 60 minutes, then only the first hour of the 2-hour lapse 

window is considered to be high-risk. If Δ = 120 minutes, then the entire lapse window is 

considered high-risk. We assume that risk is high prior to a lapse and low afterwards, which 

is confirmed by our subsequent analysis (see Section 7.5).

We use 2-hour lapse windows that have risk scores available from the mRisk model at least 

30 minutes (depending upon the availability of sensor data, including imputed data for short 

periods of missing sensor data). This results in a total of 615 lapse windows reported in 336 

EMA’s that are used in this analysis.

We vary the value of Δ from 60 to 120 minutes and report the intervention hit rate in Figure 

7b corresponding to 5.5 interventions per day. We observe that IHR increases from 0.78 and 

saturates at 0.98 for Δ = 100 minutes, indicating that most high-risk moments are contained 

within the first 100 minutes of the 2-hour lapse window. As the actual lapse moment and 

the actual high-risk moment may vary from instance to instance, the IHR reported here may 

represent an overestimation. Nevertheless, this analysis shows that the mRisk model may 

enable the delivery of an intervention prior to most self-reported lapses, even at the rate of 

5.5 interventions per day.

7.5 Rise/Fall in Risk Levels Produced by mRisk Before/After Lapse Moments

As the mRisk model produces a continuous risk score, we visually analyze the rise and fall 

in the risk scores before and after lapse moments. We first apply the mRisk model post-facto 

on daylong data from a participant in Figure 8a. The moment of lapse from puffMarker is 

shown together with the time when the accompanying self-report of lapse was recorded. We 

make several observations.

First, we observe that for the case when both detected and reported lapse are available (see 

Figure 8a), the reported time is 29.33 minutes after the actual lapse in this instance. In other 

instances, this time gap may be higher or lower. This ambiguity in determining the actual 

timing of lapse makes it difficult to use self-reported lapses (not supported by sensor-based 

detection) for model training or testing.

Second, in Figure 8a the lapse is preceded by a high-risk episode as estimated by the mRisk 
model. We further observe that as time gets closer to the lapse moment, the risk decreases. 

We also observe that once lapse occurs, the risk falls further, perhaps due to satiation of 

smoking urge.

Third, we observe two high-risk windows in the entire day. The mRisk model can guide 

the delivery of an intervention prior to the risk reaching its peak during both the high-risk 
episodes.

Figure 8a only shows the variation in risk score around one lapse moment for a single 

participant. To see if there is a general pattern of risk rising prior to lapse and falling 

immediately before and after the lapse moment, we aggregate the risk scores across all lapse 

moments from all participants. Figure 8b shows the mean lapse risk (with a confidence 
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interval of 90%) before and after a smoking lapse. The mean risk score is also plotted. We 

observe that generally, the risk score is around the mean level. But, it rises and peaks around 

44 minutes prior to a smoking lapse. The risk then decreases as the time approaches the 

lapse moment, falling below the mean level at the time of lapse, and falling even further after 

the lapse moment. We note that even though the observed variability may diminish when 

data from different lapse instances are pooled, due to the risk peaking at different times for 

different lapse instances, we still see a robust pattern at the population scale.

7.6 Understanding the Role of Context in Estimating Lapse Risk via Model Explanations

For the mRisk model to be trusted by intervention researchers [14], we analyze the behavior 

of the mRisk model in terms of the influence of the three major sensor-derived contexts (i.e., 

stress, activity, and location) on the lapse risk. We utilize the SHapley Additive exPlanations 
(SHAP), a game theory-based algorithm that can be employed to explain global and local 

feature importance for a fitted machine learning model [42]. SHAP explains a prediction 

by assuming that each feature value of the instance is a player in a game and the final 

prediction is a payout. Based on coalition game theory principles, the algorithm assigns 

payouts to players depending upon their contribution to the total payout. Players cooperate 

in the coalition and receive specific profits. In our case, the payout is the prediction of the 

risk of lapse for a single instance. The profit is the actual prediction for this instance minus 

the average prediction across all instances. The Shapley value is the weighted marginal 

contribution of a feature across all the possible coalitions. Features with large absolute 

Shapley values are more important.

We approximate the Shapley values for each input node of the DRES using the Deep SHAP 
method proposed in [42]. Deep SHAP builds upon DeepLIFT [68], which is a local additive 

feature attribution method for approximating the conditional expectations of SHAP values 

using a collection of background samples (training data, see [11] for details). Using Deep 
SHAP, we first obtain the Shapley values of each input instance (nt × nf, nf = 62) of the 

mRisk model. We then average the Shapley values of each feature along the time axis. 

Finally, Shapley values of all instances across all participants are aggregated to interpret the 

collective impact of the input features on the model (i.e., global feature importance).

7.6.1 Observations from Global Feature Importance.—Figure 9 shows the impact 

of top 15 features on the mRisk model output, ranked by their Shapley values, averaged over 

all iterations. The top features are distributed across multiple contexts — visiting smoking 

spots, stress, activity, and hour of day. The most influential feature (time since last visit 
to smoking spot and fraction of stay duration at smoking spots until obs) indicate that 

exposures to smoking spots influences lapse risk. Average duration of activity events until 
obs also has significant influence. We hypothesize that spending more time moving around 

increases the chance of exposure to environmental cues of smoking, which may increase the 

risk of lapse.

We observe that 9 out of the 15 features are related to stress. These include skewness of 
stress likelihood until obs, fraction of time stressed until obs, and average density of stress 
events until obs. We hypothesize that frequency and duration of high-stress likelihood so 

ULLAH et al. Page 23

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



far in the day influences the risk of lapse. We also observe the event-of-influence features, 

which encode the temporal dynamics of recent contexts, outrank the continuous inference 

features. This observation underscores the importance of suitably representing the events-of-

influence time series in a deep modeling framework that utilizes these contexts for learning.

8 RELATED WORKS

Our work on predicting the imminent risk of adverse behaviors is related to and builds upon 

several prior works.

Research on Predicting the Risk of Adverse Events:

Several works have been done on predicting the risk of adverse clinical/health events such 

as mortality [5, 19, 20, 71], ICU admission[79, 82], disease diagnosis [2, 13, 18, 28, 78], 

clinical sepsis [17, 62], property fire hazards [43, 69, 73], flood [47], road accidents [12, 

44, 45], and wildfire [21, 57]. In each of these cases, both negative and positive labels were 

available and used for model training and the phenomena studied were better understood in 

terms of the influence of the input variables.

Research on Identifying Risk Factors of Adverse Behaviors from Self-Reports:

The risk factors or the determinants of lapse behaviors have been studied extensively via 

self-reports. These factors have been categorized into two broad categories [38]. First are 

the covert antecedents or the physiological/emotional states such as stress, craving/urge, 

and self-regulatory capacity. For instance, elevated stress levels and low self-regulatory 

capacity may increase the risk of a smoking lapse [23, 66, 67]. Similarly, enhanced negative 

affect, low resilience, and self-esteem usually lead to impulsive unhealthy eating in young 

adults [30]. Second, are the environmental or social cues such as being in a context that is 

conducive to a lapse behavior. For instance, it has been found that being at a place where 

cigarettes are available or seeing others smoke are significantly associated with the increase 

in vulnerability to a smoking lapse [64, 66]. In addition, impulsive binge drinking has been 

found to be significantly associated with peer-family influence, companion-competition, and 

interactions at social gatherings [29]. Self-reports do not provide a precise timing of the 

lapse events and hence can’t be used for developing continuous risk estimates. Further, 

methods used for analyzing self-reports are not applicable to analyzing noisy and continuous 

sensor data. But, these works motivate the formulation of the mRisk model. Specifically, 

we utilize the passive and continuous streams of some of the associated physiological and 

situational risk factors as inputs into the mRisk model to predict the imminent risk of lapse 

behaviors.

Research on Detection of Risk Factors Using Mobile Sensors:

For the continuous estimation of the imminent risk of adverse behaviors in the natural 

environment of individuals, passive and continuous detection of the associated risk factors 

using mobile and wearable sensors is necessary. Fortunately, recent advances in mobile 

and wearable sensing technologies have enabled the development of computational models 

for the continuous detection of the risk factors. For instance, these works [6, 27, 75] have 

been able to detect stress and depression from wearable physiological sensors (ECG and 
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respiration) and smartphone-based GPS sensor data, respectively. Other works have been 

developed to continuously estimate the craving/urge for addictive behaviors such as cigarette 

smoking [8], alcohol consumption [51], and cocaine intake [22]. Finally, recent works have 

developed models to detect the environmental cues that are conducive to adverse behaviors. 

For instance, a recent work [9] introduced and defined contexts that are conducive to adverse 

behaviors as ‘opportunity’ contexts and developed a computational model for the reliable 

detection of the smoking ‘opportunity’ contexts using GPS and activity data. We leverage 

these works to extract psychological, behavioral, and environmental risk factors and use 

them as multidimensional input to the mRisk model.

Research on Predicting Mood and Behaviors:

Several recent works have demonstrated the feasibility of predicting mood and behaviors 

from self-report and mobile sensor data [39, 50, 70, 74, 76, 80]. For instance, [50] developed 

a model to predict the onset of excessive fatigue during an outdoor running session using 

inertial sensor data. Another work [70] presents a recurrent neural network-based model to 

forecast the depressive mood of individuals in the coming n days based on the user’s history 

during the last k days. Other works have proposed deep neural network frameworks [39, 

80] to perform personalized prediction of self-reported mood, health, and stress scores using 

physiological and behavioral information from continuous sensor data. A closely related to 

ours is [74] that detects mood instabilities in patients who have schizophrenia using activity, 

location, and audio data passively collected from mobile sensors. A subsequent work [76] 

developed a model to predict relapse episodes in patients who have schizophrenia using 30 

days of symptom trajectory data.

We complement these works by presenting the first model to continuously estimate the risk 

of smoking lapse using noisy mobile sensor data with incomplete and positive-only labels 

and no confirmed negative labels.

9 DISCUSSION, LIMITATIONS, AND FUTURE WORKS

Although this work uses a specific application of smoking lapse and a specific real-world 

dataset, the many interesting challenges encountered in modeling and the proposed ideas to 

address them may be applicable in the continuous estimation of risk in related domains such 

as the risk of lapse when quitting excessive drinking, abstaining from addictive substances 

(e.g., cocaine), controlling overeating, overcoming suicide attempts, among others. Like 

smoking, each of these adverse behaviors occurs in the natural environment. Similar to 

smoking lapses, they are influenced by both internal states and external cues. Mobile 

sensor data can passively track risk factors for each of these, but they are likely to be 

similarly noisy. Finally, the timing of a subset of adverse events may be obtained, but getting 

unambiguous negative labels is similarly difficult.

The mRisk model proposes a new end-to-end framework for model development that may 

be adaptable to continuously estimate the risk of other adverse behaviors. It presents 

approaches to incorporate the influence of both recent and past events captured from 

imperfect machine learning models applied to noisy sensor data and proposes a new loss 

function with customizable parameters to train a model for continuous risk estimation. It 
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also proposes approaches for evaluating modeling choices in the absence of unambiguous 

negative labels by using the limiting of intervention burden in place of negative models to 

guide the model optimization. It also shows an approach for evaluating the expected utility 

of such risk models in a simulated delivery of interventions.

9.1 Key New Insights

For estimating the risk for smoking lapse in newly abstinent smokers, the mRisk model 

led to several new insights. First, it helped determine the proportion of unlabeled data that 

is likely to represent a high-risk. Second, we find that determining the personal smoking 

spots during the pre-quit period and using them in risk estimation can lead to substantial 

improvement in the model performance. Third, via visual analysis of the continuous risk 

estimates produced by the mRisk model, we find that lapse risk peaks about 44 minutes 

prior to an impending lapse, providing sufficient opportunity to intervene. Fourth, we find 

that 85% of lapses can potentially be intervened upon with only 5.5 interventions per day. 

Finally, via explanation, we find that recent exposure to smoking spots has a large influence 

on the lapse risk together with being physically active and a high likelihood of recent stress.

9.2 Limitations and Future Works

This work is only a first step towards continuous estimation of risk for adverse behaviors 

using mobile sensors that can be used in real-life field settings. It has several limitations that 

present exciting opportunities for future research for both computing and health researchers. 

First, many smoking lapses captured in EMAs could not be used in our model development 

or evaluation as they were not detected by puffMarker, preventing a precise determination 

of the time of lapse. The EMAs locate the past smoking events (sometimes more than one) 

within a 2-hour long window. This does not allow a determination of which segments of 

sensor data within this 2-hour window correspond to moments prior to a lapse and can 

be labeled high-risk. Future work can explore novel ideas to make use of these temporally-

imprecise label sources to further improve the model.

Second, future work can also explore ways to identify moments of low risk via EMA 

responses and use them to train the usual two-class models. Third, this work shows the 

direct applicability of the presented mRisk framework to estimate the risk of smoking 

lapse. Applying it to other datasets of smoking cessation may require adaptation of some 

parameters such as the ϵ value in the RP loss function and the choice of percentiles in 

deciding the value of P. Future work can explore how well the mRisk framework may be 

used to estimate the risk of other adverse behaviors (e.g., alcoholism, drug addiction, etc.) 

that also have noisy data and incomplete and positive-only labels.

Fourth, the mRisk model achieves a good recall (IHR) using only the stress, location, and 

activity features. Future work can boost the performance further by supplementing them 

with craving, self-efficacy, presence of other cues such as noisy locations, graffiti, and other 

situational indicators that may affect the risk of lapse. Another idea to improve the model 

performance may be to use self-report data from EMAs in the context of research studies 

that collect EMAs for other purposes. Fifth, our simulation of intervention delivery only uses 

an intervention gap to avoid fatigue from frequent interventions. Future work can improve its 
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real-life applicability by incorporating other constraints such as users’ receptivity [37] and 

availability [59].

Sixth, our evaluations assume that interventions can be delivered as soon as high-risk 
moments are detected if permitted by other constraints. But, how the detection of high-
risk moments can be used to deliver the most efficacious intervention requires a just-in-

time-adaptive-intervention (JITAI) optimization trials (e.g., micro-randomized trial) [36] 

to determine the best conditions (e.g., high-risk, moderate risk, or low-risk) and the best 

corresponding combination of the intervention content, mode of delivery, and the adaptation 

mechanisms for personalizing the intervention to the individual based on his/her contexts. 

Seventh, risk scores produced by mRisk can potentially be used to evaluate the impact 

of interventions that target stress reduction, location exposure via geofences, nicotine 

medications, and others in reducing the lapse risk. Eight, the risk scores along with the 

driving factors can be presented to newly abstinent smokers at the end of the day to help 

them understand their vulnerabilities better. Finally, mRisk is an offline model, computed 

only from observational data after data has already been collected. However, to be widely 

used for sensor-triggered mobile intervention during micro-randomized trials, future work 

can implement an online version of the mRisk model to run on wearable devices or 

smartphones. Only then can the model be used to trigger real-time mobile interventions 

based on the online prediction of the risk of a lapse in the natural environment of the 

participants. These make for exciting future research agenda for the computing and health 

research community.

10 CONCLUSION

The majority of chronic diseases can be prevented or better managed by improving health-

related behaviors. Automated detection of risky contexts via mobile (and wearable) devices 

provides a new opportunity to improve the success rate with behavior modification. But, the 

overall risks depend on a multitude of factors, including internal states, personal behaviors, 

and environmental cues. Many of these factors can now be detected by applying machine 

learning models on data collected by wearable devices and smartphones. But, the challenge 

is noise in the data collected and lack of unambiguous labels of low- and high-risk moments. 

This work provides a new framework to estimate the overall risk of adverse behaviors 

despite noisy data, no labels of low-risk states, and availability of only a subset of high-risk 

states. It shows the successful application of this model on smoking cessation dataset, 

opening the doors for exciting new opportunities in the design and delivery of efficacious 

behavioral interventions to help people live healthier lives.
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A: APPENDIX

A.1 Positive-Unlabeled Learning

Traditional supervised classifiers usually need clearly marked positive and negative samples 

for training. Therefore, such methods become unsuitable when only positively-labeled and 

unlabeled training data are available. For such scenarios, a different learning framework 

called Positive-Unlabeled (PU) have been developed [4, 31].

In the classical PU learning algorithm [15] a standard binary classifier is trained from 

the nontraditional positive-unlabeled setup. They show that a classifier trained on positive 

unlabeled examples learns probabilities that differ from the true conditional probabilities of 

being positive by only a constant factor, equivalent to the constant probability that a positive 

sample is labeled in the given data set. Using different weights for false Negatives vs. false 

Positives in training have also been proposed for solving the classical PU-learning problem. 

For instance, the biased SVM approach in [40] solves the PU-learning problem by using 

soft margin SVM while giving high weights to false negative errors and low weights to false 

positive errors. However, these classic PU learning algorithms work only under the strong 

assumption that the set of labeled examples is a uniformly random subset of the positive 

examples (or the positive-label samples are ‘selected completely at random’ (SCAR)).

For scenario such as ours where the SCAR assumption does not hold, the PU-bagging or 

ensemble PU learning have been proposed [46]. The idea is to estimate a series of classifiers 

on datasets obtained by perturbing the original training set through bootstrap re-sampling 

with replacement, and to combine these classifiers by some aggregation technique. In each 

iteration, the base model is trained with all the high-risk labelled instances as positive 

and a random sample of the unlabeled class as negative class. We optimize the model by 

computing the cross entropy loss and the proposed RP-loss function. At each iteration, we 

keep the ratio of positive to sampled unlabeled instances balanced and apply the model 

trained on the test set to estimate the out-of-bag score (which is lapse likelihood in our case). 

The average out-of-bag score of k (= 100) such models act as the final risk score we obtain 

in the test set. We employ leave-one-participant-out-cross-validation (LOPOCV) to segment 

our dataset and train models. In each cross-validation fold, we segment one participant’s 

data as a test set and consider the rest as train set. We train an ensemble PU-Bagging model 

using the train set and apply it on the test set to obtain the lapse likelihood time-series for 

that participant.

A.2 Intervention Hit Rate (IHR)

Intervention Hit Rate (IHR) measures the probability that an intervention opportunity is 

provided by mRisk ahead of each lapse event, i.e., within our prediction window (Pw). More 

formally, we first choose a value for risk threshold, TL = c to achieve a desired frequency 

of interventions per day. An intervention opportunity at time t is created if the risk produced 

by mRisk, r(t) exceeds c and at least IG (intervention gap) minutes have elapsed from the 

most recent intervention moment. Let I(u) = t1i (u), t2i (u), t3i (u), …  be the set containing the 

timings of interventions for a user (u). Let L(u) = t1l (u), t2l (u), t3l (u), …  be the precise time of 
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a lapse events for user u (confirmed by EMA and Puffmarker). We consider the lapse event 

at time tkl (u) to be intervened (or covered or hit) if ∃j: tji(u) ≤ tkl (u): tkl (u) − tji(u) ≤ Pw. The IHR 

can then be defined as

∑u ∀k : ∃j : tji(u) ≤ tk
l (u) : tk

l (u) − tji(u) ≤ Pw
∑u L(u) .

We note that tji − tj + 1
i > IG, i.e., no successive interventions are at least IG minutes apart. 

Therefore, there exists a unique j for each lapse moment, if IG ≥ Pw.
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Fig. 1. 
Internal state and external cues from an observation window and prior to it are used 

to estimate the risk of a smoking lapse during the prediction window. The intervention 

window between the observation and prediction windows gives an opportunity to deliver an 

intervention.
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Fig. 2. 
(a) Sensors and extracted events used for model development. (b) A stress stream with a 

stress event
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Fig. 3. 
Overall architecture of the Deep Model with Recent Event Summarization (DRES).
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Fig. 4. 
Architecture of the Deep Model with Decaying Historical Influence (DDHI) that uses an 

explicit model of decaying influence of past events that are expected to wane over time.
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Fig. 5. 
P and R values when using different values of ϵ in the RP loss function, compared with that 

from using Triplet loss.

ULLAH et al. Page 39

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Evaluating mRisk model choices on PU-labeled data.
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Fig. 7. 
(a) Shows the EMA items corresponding to smoking report by individuals, (b) Intervention 

Hit Rate at 5.5 int. per day when considering a certain duration of EMA response as positive 

lapse.
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Fig. 8. 
Lapse Likelihood produced by the DDHI model with lapse, intervention and EMA report 

times shown with vertical lines. We only include those EMAs in which the participants 

confirmed that the last time they smoked was 0–2 hours ago.
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Fig. 9. 
Global Feature Importance showing top 10 features for DRES model using Deep SHAP.
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Table 1.

Intervention Hit Rate at Different Frequencies of Intervention for Different Models

IHR at Different Frequencies of Intervention

Model Loss Function 3 3.5 4 4.5 5 5.5 6 7 Mean IHR

PU-Bagging RF – 0.30 0.37 0.49 0.64 0.70 0.75 0.75 0.76 0.60

DRES Triplet loss 0.44 0.51 0.57 0.68 0.74 0.78 0.84 0.93 0.69

DRES RP loss 0.46 0.55 0.64 0.74 0.76 0.78 0.84 0.93 0.71

DDHI Triplet Loss 0.51 0.59 0.65 0.71 0.73 0.80 0.85 0.86 0.71

DDHI RP loss 0.50 0.62 0.68 0.74 0.76 0.85 0.89 0.93 0.74

DDHI Without Personal Smk. Spots RP loss 0.47 0.51 0.55 0.60 0.66 0.75 0.80 0.91 0.66
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Table 2.

Intervention Hit Rates obtained from DDHI model with different number of phenotypes.

IHR at Different Frequencies of Intervention

No. of Phenotypes 3 3.5 4 4.5 5 5.5 6 7 Mean IHR

No Phenotyping 0.53 0.56 0.59 0.70 0.74 0.77 0.88 0.93 0.71

2 0.52 0.58 0.66 0.70 0.71 0.81 0.89 0.93 0.73

4 0.50 0.62 0.68 0.74 0.76 0.85 0.89 0.93 0.74

6 0.51 0.62 0.64 0.71 0.76 0.81 0.87 0.93 0.73

8 0.52 0.60 0.65 0.71 0.75 0.81 0.83 0.93 0.73
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