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Abstract: The initial assessment of the depth of a burn injury during triage forms the basis for
determination of the course of the clinical treatment plan. However, severe skin burns are highly
dynamic and hard to predict. This results in a low accuracy rate of about 60 - 75% in the diagnosis
of partial-thickness burns in the acute post-burn period. Terahertz time-domain spectroscopy
(THz-TDS) has demonstrated a significant potential for non-invasive and timely estimation of the
burn severity. Here, we describe a methodology for the measurement and numerical modeling of
the dielectric permittivity of the in vivo porcine skin burns. We use the double Debye dielectric
relaxation theory to model the permittivity of the burned tissue. We further investigate the origins
of dielectric contrast between the burns of various severity, as determined histologically based on
the percentage of the burned dermis, using the empirical Debye parameters. We demonstrate that
the five parameters of the double Debye model can form an artificial neural network classification
algorithm capable of automatic diagnosis of the severity of the burn injuries, and predicting its
ultimate wound healing outcome by forecasting its re-epithelialization status in 28 days. Our
results demonstrate that the Debye dielectric parameters provide a physics-based approach for the
extraction of the biomedical diagnostic markers from the broadband THz pulses. This method
can significantly boost dimensionality reduction of THz training data in artificial intelligence
models and streamline machine learning algorithms.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Approximately 416,000 patients were treated for burn injuries in emergency departments across
the USA in 2018 [1]. Burn injuries can result in significant skin necrosis and deep tissue damage.
They have a tremendously deleterious impact on individual health, causing significant pain and a
negative influence on mental health, quality of life, the ability to return to work, and subsequent
mortality [2]. The initial assessment of the severity of a burn injury is paramount because it
forms the basis for all subsequent clinical treatment plans [3]. There are three categories of burns:
superficial, partial-thickness (PT), and full-thickness (FT). PT burns are further divided into
superficial partial-thickness (SPT) and deep partial-thickness (DPT) subcategories. SPT burns
only affect the papillary dermis, causing pain, blisters, and weeping, and generally do not require
surgical intervention. DPT burns, on the other hand, extend into the reticular dermis, partially
destroying the dermal appendages and potentially requiring surgery to aid in healing and prevent
infection and scarring. Also, PT burns are dynamic and potentially can progress to FT status.
In addition, the skin alterations caused by the PT burns are highly dynamic, leading to a low
accuracy rate of only 60 - 75 % in the diagnosis of PT burns (i.e., differentiation between SPT
and DPT) in the acute post-burn period [4,5]. The clinical diagnosis of the intermediate burns,
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which is mainly a subjective evaluation task [6], can be further improved by utilizing noninvasive
imaging devices, in addition to computer-aided burn depth determination softwares [7–12].

Over the past two decades, terahertz time-domain spectroscopy (THz-TDS) has emerged
as a promising tool for biosensing applications in general [13–36] and the assessment of skin
and monitoring burn injuries in particular [37–54]. The first demonstrations of the utility
of the THz-TDS technique for diagnosing the severity grade of cutaneous burn injuries were
limited to point-spectroscopy measurements, not accounting for the heterogeneity and the spatial
variations in burns. Furthermore, the THz spectroscopy setups were bulky, expensive and
required cumbersome optical alignments, making them unsuitable for real-world clinical use.
To address this challenge, we have designed and fabricated a handheld imaging device, named
the PHASR (Portable HAndheld Spectral Reflection) Scanner, for fast reflection imaging of
in vivo burn injuries using the THz-TDS technique [55]. The PHASR Scanner is compact
and portable and provides high-speed broadband (0.1 to about 2 THz) spectroscopic imaging
measurements. We have shown that the resolution of the images obtained using the PHASR
Scanner is diffraction-limited [56]. We have also implemented numerical feature extraction
and machine learning techniques to automatically estimate the severity grade of in vivo burn
injuries using the PHASR Scanner measurements [53,54,57]. However, previous works have not
investigated the dynamics and macroscopic changes of the dielectric functions of the skin burn
tissue. There are three main physical changes in burn injuries that can alter their THz reflectivity:
1) swelling of the burned tissue, which is largely caused by water and is highly correlated with
THz reflectivity [44]; 2) dermal adnexal structures that contribute to THz scattering and are
correlated with burn severity and THz reflectivity measurements [40]; and 3) changes in the
chemical structure and dielectric permittivity of biomolecules like proteins and collagen fibers
due to heat exposure, which can also affect THz reflectivity but is difficult to isolate from the
other two sources of THz signal contrast. These macroscopic alterations are hypothesized to be
responsible for the contrast in THz-TDS measurements of burns with different depths [38,58,59].
Several variations of the Debye model of dielectric relaxations have been used to describe the
complex permittivity of water and other polar liquids at THz frequencies [60–65]. In addition,
because liquid water is the main constituent of most biological tissues, the double Debye theory
has been employed successfully to explain the interaction of THz radiation with various biological
tissue types, including the human skin [66,67], human blood [68], breast cancer tissue [69], basal
cell carcinoma [70], and brain gliomas [71]. One of the acute features of cutaneous thermal
injuries is the swelling of the involved tissue caused by a fluid shift from the circulating plasma
or the interstitial edema predominantly composed of water [72]. Therefore, in this work, we
also employ the double Debye theory to investigate the mechanisms of dielectric relaxations in
cutaneous burn injuries to explain the origin of contrast observed between the refractive indices
of burns of different depths.

In the following, we explain our experimental design to obtain the THz-TDS images of the
burns using the PHASR Scanner. We describe our methodology for the measurement and
numerical modeling of the complex permittivity of burn injuries in vivo using a collocated
reflection measurement geometry. The extracted empirical double Debye parameters used to
explain the measured dielectric permittivities are utilized to create artificial neural network
(NN) algorithms capable of automatically diagnosing the burn severity group and predicting the
re-epithelialization status of the wounds in 28 days. The Debye parameters provide a feature
extraction strategy based on the complex dielectric function of the tissue instead of using purely
numerical features. Combined with the NN models, they can predict the outcome of the wound
healing process with an accuracy rate of 93% and estimate the severity group of the burns with
an average accuracy rate of 84.5%. Our technique additionally serves to reduce the number of
input variables of the NN models from all frequency-dependent components of the reflection
coefficient or index of refraction of a sample to only 5 Debye parameters, which represents a
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significant boost in dimensionality reduction. This unique feature is exceptionally critical in
processing large data sets obtained over large clinical trials.

2. Method

2.1. Burn protocol

The burn protocol and the induction procedure used in this study are reviewed and approved by
the Institutional Animal Care and Use Committee (IACUC) at Stony Brook University and are
described in detail elsewhere [73]. In summary, forty burns were created on the dorsum of two
Landrace pigs using two standardized models, including a metallic brass bar (N = 10) and a
hot water scald (N = 30) device, which represent the sources of many of the clinically-relevant
burn injuries [74]. Each burn was approximately 2.54 cm in diameter and 4 cm apart from the
adjacent burn sites. We varied both the device temperature and exposure time to create burns
of different severities. The percentage depth of the burned dermis and the re-epithelialization
rate of the burn wounds were measured histologically and used to assign the severity label of
each burn as the ground truth. The percentage of burn depth was assessed by measuring the
deepest point of injury in the dermis using Hematoxylin & Eosin (H&E) staining of four- or
eight-mm punch biopsies, which were extracted within twenty-four hours post-induction of the
burns. Burns with a partially-damaged dermis formed the partial-thickness (PT) burns group.
Burns with an entirely-damaged dermis create the full-thickness (FT) burns category. Burn
injuries are highly dynamic during the inflammatory period, and their severity can change over
the next few days post-burn onset. Therefore, we also measured the re-epithelialization rate
of the burns twenty-eight days post induction to deterministically identify which burn wounds
were fully-healed and which required a surgical intervention. The re-epithelialization rate was
calculated on each punch biopsy obtained on Day 28 by measuring the width of the new epidermis
and dividing by the total width of the section. If a burn was fully-re-epithelialized on Day 28,
it was included in the fully-healed (FH) group, while all other burns were accounted for in the
not-healed (NH) category. Table 1 provides a summary of the different abbreviated labels used
to denote various burn severity and wound healing outcome categories, along with the criteria
used to select each category and the number of observations (i.e., the total number of burns or
healthy samples belonging to each category).

Table 1. Burn labels’ abbreviations, categorization criteria, and number of samples in each
burn severity and wound healing group

Tissue Type Group Label Categorization Criteria Number of Samples

Healthy H Not burned 8

Partial-Thickness PT Percentage depth of burned dermis on Day
0 < 100%

25

Full-Thickness FT Percentage depth of burned dermis on Day
0 ≥ 100%

15

Fully-Healed FH Re-epithelialization rate on Day 28 = 100% 22

Not-Healed NH Re-epithelialization rate on Day 28 <100% 18

2.2. THz-TDS measurements

We used the PHASR Scanner, a collocated, telecentric imaging device, to obtain the in vivo
THz-TDS measurements [55]. Figure 1(a) shows the schematic configuration of the optical
and mechanical components inside the scanner housing. The beam is raster scanned across
the aperture of the f-θ lens by a mirror mounted on a gimbal composed of a goniometer and a
rotational stage in a heliostat configuration. Importantly, the f-θ lens design is customized such
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that a collimated beam passing through the front focus at a deflection angle of θ is focused at a
distance of f × θ from the lens optical axis [75]. Consequently, the focus is always parallel to the
optical axis of the lens and is perpendicular to the target plane. In this perpendicular trajectory,
the reflection coefficient of a tissue is independent of the polarization of light and is obtained
following the Fresnel equation given by,

rtissue =
Etissue

Ei
=

ñw − ñtissue
ñw + ñtissue

, (1)

where Etissue and Ei are the Fourier spectrum of the reflected and incident beams at the interface of
imaging window and tissue, ñ = n − iκ is the complex refractive index as a function of frequency,
where n is the refractive index and κ is the extinction coefficient, ñw represents the complex
refractive index of the imaging window, which is measured separately in transmission geometry.
Because Ei is not available directly, we can use an additional reference measurement from a
material with known optical properties such as the ambient air. Dividing the reflection coefficient
of tissue given by Eq. (1) with that of the reference air results in

R =
rtissue
rair

=
Etissue
Eair

=
(ñw − ñtissue)(ñw + ñair)

(ñw + ñtissue)(ñw − ñair)
, (2)

Because ñw and ñair are known in advance, Eq. (2) can be rearranged to calculate the complex
refractive index of the tissue according to

ñtissue =
(1 − R)n2

w + (1 + R)nw

1 − R + (1 + R)nw
. (3)
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Fig. 1. (a) the schematic configuration of the optical and mechanical components inside the
PHASR Scanner housing. (b) example THz-TDS traces of a burn and air samples.

Figure 1(b) shows example THz-TDS traces of a burn and air samples. All acquired pulses
are processed by wavelet denoising implemented as level-based hard-thresholding, explained
in detail elsewhere [54]. The first reflections in Fig. 1(b), marked as ①, were originated from
the interface of air and the imaging window. These reflections were used to calibrate the phase
information and accounting for any phase distortions caused by mechanical system drifts. In
addition, wavelet denoising was used to remove any ringing or baselines that may result from the
first reflections. The second reflections, marked as ②, were originated from the interface of the
imaging window and sample. Knowing the thickness of the imaging window, we were able to
estimate the location of the second reflections from the tissue interface. We used a Blackman
window around the second reflections with a 20-ps time width around the peak of the THz pulse.
Fourier transform of the windowed burn and air pulses yield the Etissue and Eair to be used for
calculating R. In calculating R by dividing Etissue with Eair, we use Wiener deconvolution to
prevent large spectral value artifacts caused by the ill-posed deconvolution implementation [54].
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2.3. Double Debye model

The double Debye (DD) dielectric relaxation theory has be used for explaining the permittivity of
water in the THz frequency range. The complex dielectric permittivity as a function of frequency
described by the DD model is given by,

ε̂DD
r = ε∞ +

εs − ε2
1 + jωτ1

+
ε2 − ε∞
1 + jωτ2

. (4)

The εs represents the static low-frequency permittivity, ε∞ is the permittivity at the high
frequency limit, τ1 and τ2 are the relaxation times of the slow and fast processes, respectively, and
ε2 represents the intermediate permittivity, describing the transition between these two processes.
Following Eq. (3), the measured dielectric permittivity of a burn tissue is given by,

ε̂measured
r = ñ2

tissue = (ntissue − iκtissue)
2, (5)

Therefore, the Debye parameters of a burn tissue can be obtained by fitting Eq. (4) to the
measured values obtained by Eqs. (3, 5) using an optimization procedure intended to minimize
the sum of the squared residuals given by,

SSR =
N∑︂

k=1
(ε̂measured

r (k) − ε̂DD
r (k))2. (6)

In this work, we used the nonlinear least squares function in MATLAB, choosing the Levenberg-
Marquardt algorithm [76]. All the five Debye parameters were optimized in our implementation.
The boundary values of each parameter during optimization, i.e., the lower and upper limits,
were chosen based on the previously published ranges of the DD parameters in the literature
[69,70]. Additionally, we set the initial value of each parameter to the average of its lower and
upper bounds.

2.4. Neural network

We developed two multi-layer fully-connected neural network (NN) models to address two
different tasks: one for estimating the depth of burn injuries in the healthy (H), partially-thickness
(PT), and full-thickness (FT) groups, and another for predicting the healing outcome of burn
wounds in the fully-healed (FH) and not-healed (NH) groups. The machine learning pipeline is
depicted in Fig. 2(a). Each THz-TDS measurement (examples shown in Fig. 1(b)) underwent
wavelet denoising in the time domain, followed by a Fourier transform and Wiener deconvolution
using reference air measurements. The Wiener deconvolution produced the R values required
to calculate the refractive index and dielectric permittivity of the burns using Eqs. (3) and (5).
The DD parameters were then obtained by fitting Eq. (4) to the measured dielectric permittivity
values. These four steps formed the signal processing and feature extraction block in the machine
learning pipeline. In previous work, we demonstrated that rough-surface and Mie scattering
can cause significant spectral artifacts in THz-TDS measurements of chemical and biological
samples [77–79]. To address this issue, we implemented a spatial averaging approach to mitigate
artifacts caused by skin appendages and rough surface scattering in tissue spectra. We divided
each image into all possible 5×5-pixel regions of interest (ROI) over the entire field of view of
each sample and used the average of the 25 pixels at each ROI as a single observation. This
resulted in 300, 556, and 569 observations from the H, PT, and FT categories, respectively.
The DD parameters obtained at each ROI, along with labels assigned to each burn based on
the histological assessment of punch biopsies, were used to train the NN models. For each
classification task, we randomly selected 80% of the observations for training the model and
reserved the remaining 20% as the test set. During the training process, we optimized the NN
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hyperparameters, including the number of layers and the number of nodes at each layer. We
performed this optimization using brute-force search over a range of possible values for each
parameter (number of layers: 2-4, nodes at each layer: 2-20) to minimize the error of a 5-fold
cross-validation (CV) on the training set. This involved dividing the entire training set into a 4:1
ratio for five trials, using 4/5 of the training set to train the model and calculating its error on the
remaining 1/5. We then found the combination of number of layers and number of nodes per
layer that yielded the least cross-validation error based on the average classification error of those
five folds. The best hyperparameters were used to train the model over the entire training set, and
this final model was tested using the 20% of observations that were set aside before training. It
is worth noting that the final performance of the model may be affected by the distribution of
observations into the 80% training set and the 20% test set. This means that choosing different
observations in each partition could yield different model performance values. To avoid this bias,
it is common to repeat the training and testing process multiple times and report the mean and
standard deviation of the model’s performance over those random trials. Therefore, we repeated
this process over one hundred iterations, with different observations randomly included in the
training and test groups at each iteration. In the Results section, we will evaluate the performance
of the models based on the mean and standard deviation across these hundred trials.

Figure 2(b) shows an example NN architecture used for classifying burns into the H, PT, and FT
groups. It can be seen that the input block in this architecture consists of the five DD parameters.
The two hidden layers have three and seven nodes, respectively, and a sigmoid activation function
is used at the output of each hidden layer. As previously mentioned, the number of layers and
number of nodes per layer in this example were determined by brute-force search to minimize the
5-fold cross-validation loss on the training set. The parameters W and b in Fig. 2(b) represent
the weight and bias vectors of each layer, which are adjusted by stochastic gradient descent
optimization based on the output loss function. We also used the SoftMax activation function
on the final output layer to calculate the probability of an observation belonging to each burn
severity or wound healing group. Given the limited number of observations and features (only
five DD parameters per observation), using deeper NN models or more complex algorithms, such
as those commonly used for computer vision tasks, was not justified in this case.
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Feature Extraction
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80%

Test
20%

Data curation CV
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Hyperparameter optimization
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Model

External model test

Model training
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Number of nodes: Number of nodes: 

Fig. 2. (a) the machine learning pipeline, (b) the architecture of a three-layer feed-forward
fully-connected neural network.
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To evaluate the performance of the models on the test set, we used receiver operating
characteristic (ROC) curves. These curves were generated using the predicted probability of each
observation belonging to each burn severity or wound healing group. An ROC curve plots the
true positive rate (TPR) against the false positive rate (FPR) at different thresholds chosen from
the predicted probabilities [80]. A higher ROC-AUC (area under the curve) value indicates better
predictive performance by the model [81].

3. Results and discussion

Figure 3 compares the refractive indices of three representative burn samples from H (blue), PT
(orange), and FT (red) groups. Here, the dashed lines with error bars show the mean and standard
deviation of the refractive indices measured over the entire field-of-view of the scanner. In
contrast, the solid lines with error regions show the mean and standard deviation of the DD model
fitted to each measurement. Figure 3(a) shows the real part of the refractive indices, n, over the
frequency range of 0.2 - 0.6 THz, while Fig. 3(b) compares the imaginary part of the refractive
indices (i.e., the extinction coefficient (κ)) of the three representative burns. First, it can be noticed
that there is great agreement between the measured and the numerically-modeled refractive
indices in both real and imaginary parts. In particular, the Pearson correlation coefficient between
the measurements and the fitted model is 1, 0.99, and 0.98 for H, PT, and FT samples, respectively.
Second, the origin of the difference between the refractive indices of the healthy sample and
the burn tissues with different severity grades can be explained based on the variations in the
water content of the tissue, in addition to the intactness of the skin adnexa, whose effect on
the THz spectra has been studied in our prior work [40]. Recent studies have proposed several
signal processing techniques using cepstral [82] and wavelet domain analysis [78] for mitigating
such granular scattering effects. Additionally, rough surface scattering can impact broadband
THz measurements from skin [51,83], which can also be addressed using wavelet domain signal
processing techniques [77,84].

(a) (b)

Fig. 3. (a) the refractive index and (b) the extinction coefficient of three representative
samples from H, PT, and FT groups.

To further investigate the contrast between the THz dielectric function of different samples,
Fig. 4 shows the statistical significance of the differences between the refractive indices in both
real and imaginary parts by plotting the p-values as a function of frequency. Here, we used the
Kruskal–Wallis analysis of variance (ANOVA) to determine the statistical significance. The
Kruskal–Wallis test is a nonparametric method which, unlike the analogous one-way (ANOVA),
does not assume that the residuals form a normal distribution. In this analysis, we have set the level
of significance to α = 0.05. Therefore, any p-value below 0.05 indicates a statistically-significant
difference between the two groups. It can be seen in Fig. 4(a) that the difference between the real
refractive indices among each pair of the three groups, i.e., H versus PT, H versus FT, and PT
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versus FT, is statistically significant over all the frequency components of the reliable bandwidth
of measurements. In addition, Fig. 4(b) shows that the difference in extinction coefficients
between the H and PT groups and also the H and FT groups is statistically significant over all
frequencies. However, the p-value of the difference between PT and FT samples is less than 0.05
only over the spectral range between 0.28 and 0.42 THz.

(a) (b)

Fig. 4. The p-values of the statistical significance of the difference between (a) the real
refractive indices and (b) the extinction coefficients of representative healthy and burn
samples as a function of frequency.

To further investigate the utility of the DD parameters in describing the difference among the
burns of different severity and the healthy control samples, Fig. 5 provides the distribution of
DD parameters over the entire sample set using box plots. The specific DD parameters whose
distributions are shown by the box-plot diagrams are given on the y-axes in Fig. 5(a-e). Here,
the blue, orange, and red boxes are associated with H, PT, and FT groups, respectively. The
horizontal line within each box indicates the median of the double Debye parameter in each group,
while the bottom and top edges of each box indicate the 25th and 75th percentiles. The whiskers
extend to the data points within the 1.5 times the interquartile range from either edge of the box.
The outliers outside this range are plotted individually using the * symbol. We performed further
statistical significance testing over each of DD parameters to differentiate between the groups.
We observed that the difference in the εs is only significant (i.e., p-value<0.05) between H and
PT groups. On the contrary, ε2 provides a statistically-significant difference between both H and
PT groups, and H and FT groups. Finally, the difference in the τ2 is only significant between H
and FT categories. We observed that ε∞ and τ1 cannot differentiate between various categories.
Results in Fig. 5 confirm that there is no single DD parameter that can separate between the burns
of different severity and the healthy samples. Therefore, in our classification models, we use all
these five parameters as inputs to the NN algorithms for identification of the best combination
that can achieve accurate burn diagnosis.

Figure 6 provides the ROC curves obtained using the two NN models, one for classification of
the samples into H, PT, and FT categories, Fig. 6(a), and one for classification of the samples into
FH and NH categories, Fig. 6(b). The solid lines and error regions in Fig. 6 represent the mean
and standard deviation of the ROC curves obtained over 100 random iterations. The average
ROC-AUC obtained for accurate diagnosis of each severity group of the burn injuries is included
in the legends of Fig. 6(a-b). We obtained the ROC-AUC values of 99%, 83%, and 86% in
recognition of H, PT, and FT groups (one-versus-all recognition), respectively. In addition, the
ROC-AUC value of predicting the burn healing outcome was 93%, corresponding to accuracy,
sensitivity, and specificity rates of 88%, 87%, and 90%, respectively.

It can be noticed that the THz-TDS measurements can predict the final result of the healing
process with a higher ROC-AUC value of 93% compared to the diagnosis of the burn severity
group with the average ROC-AUC value of 84.5% between the PT and FT burns. It has been
indicated in the literature that the biopsies obtained in the first 24-hours post-burn period can
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Fig. 5. the distribution of five DD parameters including (a) ε∞, (b) εs, (c) ε2, (d) τ1, and
(e) τ2 within each group over the entire sample set. The horizontal back lines over each
sub-plot shows a statistically-significant (p<0.05) difference between any two groups using a
specific parameter. For example, the horizontal line between H and PT groups in (b) means
that the difference between the εs values of all samples in H and PT categories is statistically
significant.

(a) (b)

ROC-AUC = 93%

Fig. 6. The ROC curves obtained using the two NN models, for (a) classification of the
samples into H, PT, and FT categories and (b) classification into FH and NH categories.
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underestimate the severity of the burns [85]. This can be either because of the burn wound
progression over the inflammatory cascade of the tissue or the inability of the H&E staining to
reveal the functional cell damage [85]. Further improvements might be obtained by using other
biopsy staining methodologies. Therefore, the re-epithelialization rate of the burns obtained
four weeks post-burn is a more reliable histological assessment for training machine intelligence
algorithms. It also should be noted that predicting the wound healing outcome is a binary
classification task, whereas estimation of the burn depth is a multi-class supervised machine
learning problem (the number of classes is three in this work). Defining a multi-class modeling
problem can result in a smaller number of observations within each group, affecting the accuracy,
sensitivity, and specificity rates of diagnosis, especially when limited measurements are available.
Therefore, similar to other automatic medical diagnosis applications, including more observations
helps to validate and improve the reported accuracy, sensitivity, and specificity rates. As a
result, expanding the available experimental data set is warranted for future studies. Overall, the
reported accuracy rates are all above 83%, which promises a robust feature extraction strategy for
diagnosis of the burn injuries that can be explained based on physical models instead of using
purely numerical feature extraction techniques, which are harder to interpret.

4. Conclusion

In this paper, we have provided a methodology for calculating the physical THz spectroscopic
features of in vivo burn injuries in the form of DD parameters. We have shown that the optimized
DD models agree well with the real and imaginary parts of the refractive indices measured using
our THz PHASR Scanner. Moreover, we demonstrated that although no single Debye parameter
can provide a statistically-significant differentiation between the burns of different severities and
healthy samples, the five DD parameters obtained using this strategy can be used for creating
diagnostic NN models for automatic estimation of the severity grade of the in vivo burn injuries.
In particular, we formed one NN model based on using the DD parameters for classification of
the burns according to their depth of injury into H, PT, and FT groups. The ground-truth burn
depth was estimated based on the histological assessment of punch biopsies collected from the
burn sites in the acute post-burn period, i.e., within 24-hours of the burn induction. The other
NN model was trained to predict the final healing outcome of the burn injuries into NH and FH
groups. To accomplish this task, THz-TDS measurements obtained 24-hours post burn were
used for predicting the wound healing status, which was determined histologically based on the
re-epithelialization rate of the wounds twenty-eight days post burn.

Future directions include investigation of other histological staining techniques to determine the
ground-truth for burn depth more reliably. In addition, THz-TDS measurements can be collected
longitudinally post-burn to assess the utility of DD parameters in capturing the dynamics of burn
conversion.
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