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ABSTRACT: Recent advances in wearable technologies have enabled ways for people to
interact with external devices, known as human—machine interfaces (HMIs). Among them,
electrooculography (EOG), measured by wearable devices, is used for eye movement-enabled
HMI. Most prior studies have utilized conventional gel electrodes for EOG recording.
However, the gel is problematic due to skin irritation, while separate bulky electronics cause
motion artifacts. Here, we introduce a low-profile, headband-type, soft wearable electronic
system with embedded stretchable electrodes, and a flexible wireless circuit to detect EOG
signals for persistent HMIs. The headband with dry electrodes is printed with flexible
thermoplastic polyurethane. Nanomembrane electrodes are prepared by thin-film deposition
and laser cutting techniques. A set of signal processing data from dry electrodes demonstrate
successful real-time classification of eye motions, including blink, up, down, left, and right.
Our study shows that the convolutional neural network performs exceptionally well compared % ;\\

to other machine learning methods, showing 98.3% accuracy with six classes: the highest ‘

performance till date in EOG classification with only four electrodes. Collectively, the real-time demonstration of continuous wireless
control of a two-wheeled radio-controlled car captures the potential of the bioelectronic system and the algorithm for targeting
various HMI and virtual reality applications.
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B INTRODUCTION the required stimulus for the detection of EMG.® EEG can be
another way, which exploits neural information as input
control for HMI. However, prior studies further indicated that
noninvasive EEG features do not contain sufficient information

The need for human—machine interface (HMI) technology
connecting healthcare applications is increasing rapidly. For
example, a touch screen and joystick are HMI, a user interface

connecting a person to a machine. The global HMI market is about small movements.” High-fidelity EEG is also difficult to
expected to generate more than $8 billion in revenue from acquire and not feasible for real-time and accurate HMI
2017 to 2023.' Among various HMI fields, the field of applications. When measured from the scalp, an EEG signal
healthcare is receiving a lot of attention. Recent studies have has an amplitude between about 10 and 100 uV. However,
shown that the wheelchair based on HMI was developed to aid EOG amplitude, which has an amplitude between about 0.05
disabled people in their dally activities.z_s Typical input signals and 3 mV, is quite larger than EEG arnplitude.lo_l3 Due to
for HMI are body motions such as hand or finger motion and frail grip strength and issues with controlling their bodies for
biopotential. Healthcare applications require an ergonomic existing motorized wheelchair users,"*™'® there are restrictions
approach and high precision.6 In this case, biopotential signals on the use of EMG and EEG. As one of the technologies for

are attractive candidates since biopotential is non-invasive,
requires minimal hardware, and contains user movement
information. That is why physiological biopotentials and
human activities that wearable devices can measure have
been suggested for HMI, such as controllers for various
healthcare applications. Physiological biopotentials, such as
electromyography (EMG), -electroencephalography (EEG),
and electrooculography (EOG), can be the control commands.
For example, EMG signals from muscle movements with a fast
response have proved possible to connect with HML’
However, muscle weakness due to disabilities cannot produce

tracking eye movements by measuring the potential via the
positively charged cornea and negatively charged retina, EOG
has gained interest in HML "’
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Figure 1. Overview of an integrated bioelectronic system for detecting eye movements and persistent HMI. (A) Photographs of an all-in-one
wireless wearable system for EOG-based HMI. (B) Photographs of a skin-like nanomembrane electrode with a zoom-in view (top) and skin-
mounted view (bottom) around the eye. (C) Comparison of EOG signals detected by a conventional gel electrode and a dry gold electrode,
capturing the higher performance of the dry one. (D) Skin rash after removal of the gel electrode from the skin (top-left) compared to no adverse
event for the skin with the dry electrode (bottom-left), continuous mounting of the dry one on the skin for multiple hours (right). (E) Overview of
signal processing steps from EOG detection to classification for an example of EOG-based RC car control, as demonstrated in this work.

In several papers, wearable EOG devices in the form of
glasses have been used because of their easy and fast wear. For
example, the conventional wearable EOG eyeglasses named
JINS MEME have one electrode on the bridge of the nose and
one on each of the nose pads of the eyeglasses.””’ Some
studies also manufactured 3D printed glasses-type wearable
EOG devices.”' However, a glasses-type device is inconvenient
to people who are already wearing glasses. These devices are
restricted when the electrode is secured to the skin or when
there is movement. In addition, glasses-type platforms can be
challenging to wear for people with a variety of head sizes
because glasses-type platforms are made with a fixed frame
width and temple length. Since the glasses-type platform was
not size-adjustable, it should be used by users who fit the
prescribed size of glasses. Also, wearing it in an inappropriate
head size can cause the glasses-type platform to come off
during active movements. From the perspective of electrodes,
prior studies using the gel electrode show high-fidelity
recording, the existing electrodes still have limitations, such
as poor breathability, skin irritation, and loss of performance
during long-term monitoring due to drying. The conventional
gel electrodes dehydrate and reduce the electrode performance
over time.>” For the aforementioned reasons, the gel electrodes
should be changed periodically. Constant changing of
electrodes is not convenient in healthcare applications and is
inefficient.”> On the other hand, prior work demonstrated
HMI using eye-tracking capability within wearable devices by
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integrating infrared cameras.”* This HMI using eye-tracking
has several problems. There should always be a camera that
blocks that person’s view. This system also requires clear pupil
and eye images of the user. Still, eyelashes and eyelids can
hinder the successful detection of the pupil and bright light can
also interfere with pupil detection.”

In this work, we introduce a soft material-based, all-in-one
headband EOG device integrating a flexible wireless circuit and
an array of fractal gold electrodes that compensate for the
limitations of the pre-existing devices mentioned above. The
headband platform is advantageous over glasses-type counter-
parts such as a size-adjustable and stable adhesion. In the case
of a glasses-type platform, the part that supports the face is
narrow, but the headband type platform has a wider electrode-
skin contact area, so multiple electrodes can be secured to the
face. To address the gel issues such as skin irritation and short-
term durability, we introduce ultrathin, dry electrodes. In
recent papers, with its well-studied biocompatibility and
processibility, mesh-patterned gold electrodes have been
widely used to measure biopotentials.””*” Specifically, the
ultrathin, fractal-designed gold electrode can help the electrode
accommodate dynamic skin deformation for a high-fidelity
recording of EOG and causes fewer skin irritations compared
to the existing gel electrodes. Also, the wearable EOG device
can acquire EOG data and classify eye directions in real-time.
Compared to prior articles within the scope of real-time
classification of eye movements based on wearable EOG
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devices, our device shows the highest accuracy in classifying six
different classes with only four electrodes. Overall, the
presented system can meet requirements such as an ergonomic
approach and high-precision interfaces. The wearable EOG
device with this system allows people to acquire EOG signals
stably and control various healthcare applications.

B RESULTS AND DISCUSSION

Overview of a Wireless, Portable Wearable EOG
Device. Figure 1 summarizes the overview of an integrated
bioelectronic system for detecting eye movements and
persistent HMI. A portable and wearable EOG system enables
real-time, continuous, and long-term recording of EOG signals
to classify eye movements. Figure 1A shows a subject wearing
the headband-type EOG device, integrated with the flexible
circuit and fractal gold electrodes. Based on the prior
studies,”®*° we selected the electrode locations to fit the
headband-type platform. Two electrodes were positioned 1 cm
above each eye. One electrode was placed 1 cm below the left
lower eyelid for vertical eye movement. A common grounding
electrode was placed on the middle of the forehead.”” The 3D-
printed wearable EOG device is composed of a tension string
for securing electrodes to the subject’s face. To accommodate
various head sizes, thermoplastic polyurethane (TPU), a
flexible rubber-like material, makes the headset platform.
Figure S1 shows the flexibility of the headband platform. A dry
nanomembrane electrode has a stretchable fractal pattern
(Figure 1B). The main contribution of this design is to offer
maximized stretchability and bending capability without
mechanical fracture. The graph in Figure 1C shows EOG
signals for left and right eye movements, recorded by two types
of electrodes. Then, the calculated signal-to-noise ratio (SNR)
compares the performance of the dry gold electrode with the
conventional gel electrode.’’ In the experiment, two electrodes
detected changes in EOG amplitudes according to angles of
eye direction. The electrodes were positioned 1 cm away from
each eye for concurrent comparison. Sensitivity measurements
are performed by tracing a series of marked targets, located 60
cm away from the eyes (Figure S2).'* The gold electrode’s
sensitivity is 12.3 + 0.5 uV/°, and the conventional gel
electrode’s sensitivity is 11.7 & 0.9 pV/°. The result in Figure
1C shows that the gold electrode (SNR: 22.1 + 1.7 dB) has a
slightly higher SNR than the commercial electrode (SNR: 19.2
+ 2.2 dB), capturing the performance of the dry electrode for
high-quality EOG detection. As shown in Figure S3, we
compared the skin-electrode contact impedance between a
conventional gel electrode and our dry electrode, showing
comparable values in the impedance density. In addition,
compared to the gel electrode causing skin irritation, the dry
gold electrode shows excellent skin compatibility while having
intimate contact with the skin (Figure 1D). The overall process
that uses EOG signals from eye movements for various
applications is well described in Figure 1E. With two electrode
channels, we measure EOG data that are preprocessed, filtered,
and classified. Figure 1E also shows an example of a radio-
controlled (RC) car via EOG, as demonstrated in this work.

Fabrication and Characterization of a Wearable EOG
Device System. Recent wearable devices use hard—soft
material integration, nanomanufacturing, and chip packaging
technologies.32_34 In this work, we combine thin-film
metallization, laser manufacturing, 3D printing, and system
integration to develop a fully integrated all-in-one wearable
EOG platform. The base structure uses TPU made by 3D
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printing, which includes a set of nanomembrane electrodes and
a flexible wireless circuit (Figure 2A). A subject can easily wear
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Figure 2. Materials, designs, and fabrication processes of the
headband wearable system. (A) Photographs of the fabricated
headband EOG system, integrating a flexible wireless circuit and an
array of nanomembrane electrodes. (B) Illustrations of a subject who
wears the wearable EOG device, showing the exact location of the
two-channel electrodes. (C) Photograph of the flexible circuit with
integrated chips for EOG signal detection and wireless transmission
via Bluetooth. (D) Photographs of the fractal-patterned gold electrode
on a soft fabric, connected to the circuit via a thin-film cable. (E)
Fabrication processes of the gold electrode using polymer coating,
thin-film deposition, and laser cutting.

the headband device with a size-adjustable mechanism (Figure
2B). For wireless signal detection, the system includes a low-
profile, flexible circuit having a Bluetooth-low-energy chip and
other chip components (Figure 2C; details are given in Figure
S4 and Table S2). Time-varying EOG signals are captured by
the fractal gold electrodes at 250 Hz and transmitted to the
front analog-to-digital converter (ADS1292). Next, to receive
sensor data and regulate circuit operation with a built-in
microprocessor, the multiprotocol system-on-chip module
(nRF52832), which can process and transmit data over 2.4
GHz, is used via the built-in microprocessor. For multiple uses
of the wearable device, the flexible circuit contains a
rechargeable lithium-polymer battery, charging magnets, and
a switch (Figure SS). In addition, the headband system
includes a set of fractal gold electrodes that are transfer-printed
to the adhesive side of the medical patch (9907T) using a
water-soluble tape (Figure 2D).*>** A flexible thin-film cable
connects the electrodes with the circuit (Figure 2D). The gold
electrodes used in this study were fabricated by following
multiple manufacturing steps using a coating of a polymer
(polyimide) on a soft PDMS substrate, metallization of Cr and
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Au, and laser micromachining to create stretchable patterns
(Figure 2E).

Characterization of Mechanical Behavior and Com-
patibility of the Membrane Electrodes. The mechanical
reliability of stretchable electrodes is critical to maintaining the
skin-contact quality during real-time continuous EOG
detection. Therefore, we conducted a set of computational
studies using finite element analysis (FEA), considering cyclic
stretching and bending situations when an electrode is
mounted on the skin. Figure 3A shows the FEA results of an
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Figure 3. Characterization of mechanical behavior and compatibility
of the membrane electrodes. (A) Computational study results of
mechanical behavior estimation of an electrode with stretching and
bending. (B) Experimental validation of the electrode’s reliability with
stretching and bending. (C) Resistance measurements of the
electrode to quantify the reliability, showing negligible changes
during stretching and bending. (D) Comparison of skin biocompat-
ibility of a gel electrode (left) and a gold dry electrode (right),
showing that the dry electrode has no side effects while the gel
electrode causes skin irritation and elevates temperature.

electrode, showing that the maximum principal strain applied
to Au is less than 1% under the tensile and bending strain. The
fractal-patterned design was used to manufacture electrodes,
and we validated the mechanical reliability (Figure 3B). A
microscopic investigation observes mechanical fractures before
and after stretching and bending tests, showing no visual
damage. In this test, the maximum tensile strain was applied up
to 30%, and the bending angle was 180° with a radius of
curvature: 6 mm. We chose 30% strain based on prior studies
showing that a human’s exterior epithelial tissue can be
stretched up to 20% without damage,36 and normal skin
deformations do not exceed the selected bending curvature.’”
The visual observation of mechanical fracture was further
validated by measuring electrical resistance. Figure 3C shows
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the negligible resistance changes during the electrode
stretching and bending. Furthermore, we investigated the
skin biocompatibility of a gel electrode and a dry gold
electrode using infrared thermography (Figure 3D). While the
dry electrode shows no side effects after 8 h of wearing, the gel
electrode causes skin irritation and temperature elevation after
4 h (Figure S6). When using the gel electrode, adhesive pads
mounting the rigid electrode to the skin remove dead skin cells
from the epidermis, causing skin rashes.

Optimization of Real-Time Classification via Signal
Processing and Feature Extraction. A flow chart in Figure
4A shows a step-by-step sequence of processing of measured
EOG signals from the wearable device; four corresponding
graphs on the right show examples of processed signals after
each step, including bandpass filter, DC offset, detrend, and
classification. In this process, the EOG raw data are received by
a Python program through Bluetooth. Since EOG data mainly
contain low frequencies (sampling rate: 250 Hz), a third-order
Butterworth finite impulse response filter (FIR) is used to
remove noise.”” FIR is a bandpass filter widely used in digital
signal processing, showing an excellent linear phase charac-
ter.” To remove the DC offset, the first offset value is removed
from others. As a result, measured signals can show trends that
are not intrinsic to the data. To eliminate this trend, detrend
function is used. Lastly, filtered data from three different steps
are classified by evaluating the magnitude. The classified data
are converted into a signal with a size of 1, and the direction of
the eye is classified according to the code. A set of
representative EOG signals in Figure 4B show raw data from
four different eye movements. Among them, the horizontal
direction of the eyes is channel 1, and the vertical direction of
the eyes is channel 2. After signal processing, these signals are
classified as left, right, up, and down motions (Figure 4C). A
real-time demonstration in Video S1 shows how this process
works.

Development and Comparison of Machine Learning
Algorithms for Data Classification. Prior studies show the
limitation of signal processing when detecting more than five
classes;*® with six classes, the accuracy was only 91.25%.
According to other studies, a kNN algorithm is more efficient
when classifying EOG signals than decision tree and support
vector machine methods.*”*' The kNN classification uses the
nearest distance metric and the neighbor’s number k value.
When one of the parameters is varying, another parameter is
fixed.*"** In this KNN algorithm, testing data are classified by
finding the greatest number, with the closest relative distance
to neighbors; each neighbor belongs to a specific class. Figure
SA shows an example of a kNN classification where the test
candidate is classified as either blue squares or red circles. If k =
3, the candidate is assigned to the red circles (2 red circles > 1
blue square). If k = 6, the candidate is again assigned to the red
circles (S red circles > 1 blue square). To compare the
performance of machine learning algorithms, we also
developed a CNN classifier. The details of the overall CNN
classification processes are shown in Figure SB. The CNN
model featuring layers of one-dimensional convolutions
consists of two kinds of modules. Then, this model is followed
by filters of flattening and a dense—softmax output. In this
study, EOG data collected by the wearable device are split into
the training set (75%) and the test set (25%). The
preprocessed data are transferred to either the kNN or the
CNN classifier. Then, the test data set is analyzed by
comparing the training data set. Each model predicts the test
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Figure 4. Optimization of signal processing and feature extraction for real-time data classification. (A) Step-by-step sequence of processing of
measured EOG signals from the wearable device; four different graphs on the right show examples of processed signals after each step, including
bandpass filter, remove DC offset, detrend, and classification. (B) Representative examples of raw EOG signals and corresponding eye movements,
including left, right, up, and down motions. (C) Set of classified signals after filtering and feature extraction.
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Table 1. Comparison of Wearable EOG Devices for Classification of Eye Movements and HMI Applications

circuit form factor integrated no. of

references type (em X cm)  single device electrode type electrodes

this work  flexible 2X3 yes dry, 4

membrane
(gold)

14 rigid, 12 X 15 no dry (gold) S
bulky

12 rigid, 6X6 no dry (gold) S
bulky

43 rigid, 4 X6 no dry, 3
bulky (graphene)

23 rigid, 5.5%x8 no dry, 3
bulky (graphene)

44 rigid, 6 X6 no dry S
bulky (Ag/AgCl)

45 rigid, SXS no dry 4
bulky (Ag/AgCl)

46 rigid, 3X20 no dry (silver) 3
bulky

47 rigid, SX7 no gel S
bulky (Ag/AgCl)

48 rigid, 4x8 no gel S
bulky (Ag/AgCl)

49 rigid, 11 X 16 no el S
bulky (Ag/AgCl)

28 rigid, 4 %8 no gel 4
bulky (Ag/AgCl)

no. of classification
classes  accuracy (%) platform HMI application
6 98.3 headband with a two-wheeled RC car
flexible circuit
4 94 wire-connection wheel-chair
with a circuit
S 92 wire-connection drone helicopter
with a circuit
S 98 headband with rigid ~ RC car
circuit
2 headband with rigid ~ LED array
circuit
4 eyeglass
1 headband with rigid
circuit
2 headband with rigid
circuit
S 75.5 eyeglass omnidirectional-robot
S 97 armband game
S 89 helmet keyboard
6 913 rigid headband wheelchair + keyboard

results and shows the results through the confusion matrixes.
Figure SC summarizes and compares the performance of signal
processing and two machine learning methods. There are
multiple eye movements, including up (U), down (D), left (L),
right (R), blink (B), and null (N), used in this study. The
signal processing method with six classes shows an accuracy of
95.5%. Compared to that, kNN and CNN methods with six
classes show higher accuracies, 96.9 and 98.3%, respectively.
Confusion matrixes from signal processing, kNN, and CNN
algorithms including accuracies of each class are shown in
Figure S7. Overall, the CNN classification result shows the
highest accuracy among reported articles that detect EOG
signals. Also, it takes less than a second from pre-processing to
real-time classification. Table 1 captures the advantages of our
wearable system and superior classification performance
compared to prior studies. Table 1 also shows that our
wearable system is compact and flexible by comparing previous
EOG devices based on the size and type of circuits.
Demonstration of Wireless Real-Time Control of a RC
Car with the Wearable Device. In this work, we
demonstrate an example of persistent wireless HMI using the
headband wearable device and EOG signals (Figure 6).
Multiple eye movements, detected by sensors, could
successfully control a two-wheeled RC car by accurately
following the designated pathway and avoiding an obstacle.
Figure 6A captures a photograph showing a subject who wears
the sensor-integrated headband, a tablet capturing the real-
time EOG signals, and a two-wheeled RC car to control. In
Figure 6B, the top photograph shows a control track with an
obstacle that the car follows, while the bottom photograph
captures the zoomed-in view of an Android app for displaying
EOG signals and real-time classification outcomes. In this
demonstration, we use five different control commands,
including up, down, blink, left (CCW; counter-clockwise),
and right (CW; clockwise) motions (Figure 6C). Considering
an emergency case during operation, the blink command
immediately stops the car when unintended eye movements
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are classified. The two-wheeled RC car follows eye movements
of a subject who wears the device, which moves the car from
the starting position to the parking location. Seven consecutive
commands are delivered to the car (Figure 6D), including (1)
go forward, (2) CCW rotation and go forward, (3) CW
rotation, (4) go forward, (5) CW rotation and go forward, (6)
CW rotation, and (7) go reverse to park. The real-time control
of this car using eye movements appears in Video S2.

B CONCLUSIONS

This paper reports a comprehensive set of studies that develop
a soft headband bioelectronic system and persistent HMI using
EOG signals. The wearable headband platform offers a firm
contact of stretchable electrodes with the skin, which also can
be worn by different users with various head sizes. A simplified
manufacturing process, including metal deposition and laser
cutting, fabricates an array of thin-film dry electrodes without
needing conductive gels for high-quality EOG recording. The
highly stretchable and flexible electrode shows reliability in
cyclic mechanical tests while demonstrating excellent skin
compatibility over 8 h. The fractal-patterned gold electrode
could be repeatedly used throughout this study, but
quantification of the reusability of the electrodes will be
included in future work. Measured EOG signals are filtered and
classified by a signal processing method and kNN and CNN
algorithms. Among them, the CNN-based classification shows
the highest accuracy of 98.3% with six classes. Demonstration
of wireless real-time control of a two-wheeled RC car captures
the performance of the wearable device for persistent HMI. In
this study, seven commands using eye movements could
successfully control a car on a confined track while avoiding an
obstacle. Future studies will address limitations, such as
crosstalk between vertical and horizontal channels or EEG and
EMG signals.
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Figure 6. Demonstration of wireless real-time control of a two-wheeled RC car with the wearable device. (a) Photograph showing a subject who
wears the wearable EOG device, a tablet capturing the real-time EOG signals, and a two-wheeled RC car to control. (b) Top photograph showing a
control track with an obstacle that the car follows, while the bottom photograph showing the zoomed-in view of an Android app for displaying
EOG signals and real-time classification outcomes. (c) Five different control commands used for the car, including up, down, blink, left (CCW;
counter-clockwise), and right (CW; clockwise) motions. (d) Top-view photograph capturing the pathway that the car follows while avoiding the
obstacle; in this demonstration, seven commands are used from starting to parking.

B EXPERIMENTAL SECTION

Fabrication of the Integrated Wearable System. The
wearable EOG device consists of a fractal gold electrode, headband-
type platform, and flexible circuit. PDMS (Sylgard 184, Dow) was
spin-coated on a clean glass slide. An 8.47 um thick polyimide sheet
(Kapton film, DuPont) was laminated onto the PDMS-coated glass
slide first, followed by a 5 nm thick Cr layer and 200 nm thick Au
layer that was deposited using an electron beam deposition tool
(Denton Explorer), respectively. We studied open-mesh structured
fractal patterns (a bending radius of 0.39 mm and a trace width of
0.16 mm). The fractal pattern was cut by a femtosecond IR laser
micromachining tool (WS-Flex, Optec), which is a multi-purpose,
high-precision processing tool for various materials. The cut fractal
pattern was transferred using the water-soluble tape (ASWT-2,
Aquasol) from the PDMS. The wearable 3D headband platform was
designed by SolidWorks and printed by a 3D printer (Cubicon Single
Plus 3DP-310F) with TPU filaments (Cubicon TPU Filament). TPU
filaments are flexible with superior strength. We designed the
headband-type platform that can be resized according to the head
size through the tension string and the auxiliary equipment (Figure
S8). Chip components on the flexible circuit were soldered to the
plate with a solder paste (SMDLTLFP10TS, Chip Quik) and then
heated at 100 °C. The set temperature increased by 10 °C every
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minute to a final temperature of 150 °C. A small lithium polymer
battery (capacity: 40 mA h, Digi-Key) was modified to allow for easy
charging by connecting two charging magnets and a switch to the
battery. The circuit with a 40 mA h battery lasted S.1 h, which is
around 8 mA power consumption.>’ The flexible circuit was attached
to the back of the headband-type platform. The fractal gold electrodes
were connected to the circuit via encapsulated ACF wires. Lastly, the
electrodes were attached to the tension string.

Finite Element Analysis. This work includes the results of
studied FEA to investigate a fractal gold electrode’s mechanical
behaviors using commercial software (ANSYS). This analysis focused
on the mechanical fracture of the electrode upon cyclic bending and
stretching. The modeling analyzed the maximum principal strain in
the electrode consisting of three layers: an 8.47 um thick polyimide
sheet, S nm thick Cr layers, and 200 nm thick Au layers (Figure S9).
Table SI shows the details of the material properties (Young's
modulus and Poisson’s ratio). One side of the substrate is fixed as a
support fix, and the other side is moved using the displacement
function. The boundary conditions were applied to the Ecoflex
substrate.

Experimental Study of Mechanical Behavior. A customized
stretcher conducted the axial stretching test. Two clamps held the
sample. The strains were determined by controlling the distance from
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0 to 30%. The bending test was conducted manually by a rigid circular
cylinder. The bendability from 0 to 180° of the fractal gold electrodes
was assessed manually with a bending radius of 6 mm (details are
given in Figure S10). A digital multimeter is used to measure and
record a resistance change on the fractal gold electrode.

Data Acquisition and Training. To detect EOG signals, two
electrodes were positioned 1 cm above each eye. One electrode was
placed 1 cm below the left lower eyelid for vertical eye movement. A
common grounding electrode was placed on the middle of the
forehead (Figure S11). Before obtaining the data, the skin (electrode
position) was optionally wiped with alcoholic cotton to remove
foreign matter. The eyes were moved in six eye movements (left,
right, up, down, blink, and null), and the gaze was within 1 s. The raw
EOG signals from the wearable EOG device were measured and
recorded by an Android tablet via Bluetooth. The custom Android
application simultaneously transmits and exports data for channels 1
and 2. As shown in Figure S12, MATLAB labeled the acquired EOG
data to train the CNN classifier. Then, the EOG data were trained
and modeled by a machine learning algorithm and TensorFlow
platform. The modeled file classifies the subject’s EOG signals in real-
time through the machine learning interface and TensorFlow platform
in the Android application.

Analysis of the SNR. The experiment was conducted by looking
left and right three times at regular intervals for S s in this recording.
The raw data were recorded into five s segments (five total). This
analysis involves the measurement of EOG signal size and removal of
the average value of the EOG signal using the following equation:
SNR (dB) = 10 Logo(rms_signal/rms_noise). The results and the
standard error were calculated as an average over the number of
recordings.

Human Subject Study. The human pilot study involved multiple
healthy volunteers; the study followed the approved IRB protocol
from the Georgia Institute of Technology (no. H20226). All
participants agreed and signed the consent form to allow the
experiment procedure.
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