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Abstract

CITE-seq, a single-cell multi-omics technology that measures RNA and protein expression 

simultaneously in single cells, has been widely applied in biomedical research, especially in 

immune related disorders and other diseases such as influenza and COVID-19. Despite the 

proliferation of CITE-seq, it is still costly to generate such data. Although data integration can 

increase information content, this raises computational challenges. First, combining multiple 

datasets is prone to batch effects that need to be addressed. Secondly, it is difficult to 

combine multiple CITE-seq datasets because the protein panels in different datasets may only 

partially overlap. Integrating multiple CITE-seq and single-cell RNA-seq (scRNA-seq) datasets is 

important because this allows the utilization of as many data as possible to uncover cell population 

heterogeneity. To overcome these challenges, we present sciPENN, a multi-use deep learning 

approach that supports CITE-seq and scRNA-seq data integration, protein expression prediction 

for scRNA-seq, protein expression imputation for CITE-seq, quantification of prediction and 

imputation uncertainty, and cell type label transfer from CITE-seq to scRNA-seq. Comprehensive 

evaluations spanning multiple datasets demonstrate that sciPENN outperforms other current state-

of-the-art methods.
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Introduction

The proliferation of single-cell multi-omics profiling in biological research has advanced 

our understanding of cell heterogeneity and subpopulations 1, 2. In particular, the increasing 

availability of the CITE-seq protocol has greatly contributed to these advances. CITE-seq 

allows simultaneous profiling of RNA gene expression along with a panel of cell surface 

proteins 3, 4. It is well-known that proteins are much more abundant than RNA and are 

functionally directly involved in cell signaling and cell-cell interactions 5, 6. CITE-seq holds 

the potential to uncover cellular heterogeneity that is missed by single-modality single-cell 

RNA-seq (scRNA-seq).

Despite the promises of CITE-seq multi-modality expression profiling, technical difficulties 

persist. CITE-seq data remain expensive to generate relative to scRNA-seq data. One 

potential solution is to learn the relationship between RNA and proteins, borrowing 

information from a large reference dataset, and then make protein predictions for the 

scRNA-seq data. Seurat 4 7 and totalVI 8 have been introduced to fulfill this function, 

but both face limitations. TotalVI and especially Seurat 4 are computationally expensive. 

Furthermore, investigating more complex scenarios where multiple CITE-seq datasets whose 

protein panels do not completely overlap are consolidated give researchers the ability to 

increase the number of cells. However, Seurat 4 does not have the capability to do so. While 

totalVI can do it in theory, this problem has not been explored.

To address these challenges, we developed sciPENN (single cell imputation Protein 

Embedding Neural Network), a deep learning framework for predicting and imputing 

protein expression, quantifying uncertainty, integrating datasets in a low-dimension 

embedding, and merging multiple CITE-seq datasets together. sciPENN can integrate 

multiple CITE-seq datasets, even when their protein panels do not totally overlap using 

a censored loss approach. sciPENN’s strengths lie in its capacity to provide more 

robust and accurate results than totalVI and Seurat 4, while also being highly scalable 

and computationally efficient. Through comprehensive evaluations, we demonstrate that 

sciPENN performs dramatically faster than its peers. As the scale of multi-modality datasets 

continues to grow, computational methods that are both accurate and efficient are of great 

importance for scaling their applications in practice.

Results

Overview of sciPENN and evaluation strategies

The model architecture of sciPENN is depicted in Fig. 1. The overall goal of sciPENN is 

to learn from one or more CITE-seq reference datasets. If the CITE-seq references do not 

completely overlap, sciPENN can impute the missing proteins for each reference dataset. 

After learning from CITE-seq references, sciPENN can predict all proteins for a scRNA-seq 
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query dataset and integrate multiple datasets together in a common embedding space. Our 

model estimates mean protein expression, quantifies estimation uncertainty, and optionally 

transfers cell type labels from the CITE-seq reference to the query data. The structure of the 

model consists of blocks, sequences of layers that are used repeatedly throughout the model.

sciPENN can be used to predict protein expression in an external scRNA-seq dataset using 

a training CITE-seq dataset. sciPENN can also integrate multiple CITE-seq datasets. More 

specifically, an investigator may wish to jointly analyze multiple CITE-seq datasets, whose 

protein panels are not identical. sciPENN can integrate these datasets and impute expression 

for the proteins missing in each dataset. We train our model jointly on the multiple CITE-seq 

datasets by using a censored loss function approach in which the loss is only computed for 

measured proteins and censored for unmeasured proteins for a given cell. The trained model 

can be used to then impute missing proteins for each CITE-seq dataset and also predict 

protein expression for external scRNA-seq datasets.

We compared sciPENN to totalVI 8 and Seurat 4 7 for multi-modality integration, protein 

expression prediction and imputation, uncertainty quantification, and cell type label transfer. 

We have multiple goals in our analyses. First, we wish to demonstrate that sciPENN can 

both make predictions on external scRNA-seq datasets accurately and effectively integrate 

multiple CITE-seq datasets. Furthermore, we aim to demonstrate that sciPENN consistently 

performs well across diverse settings, even when the single-cell protocols vary substantially 

between datasets, and can recover expression trends in specific protein biomarkers of 

interest.

Seurat PBMC to MALT prediction

In our first analysis, we used a dataset of 161,764 human peripheral blood mononuclear cells 

(PBMCs) reported in the Seurat 4 paper 7, which we refer to as the PBMC dataset. This 

dataset includes 224 proteins. For the test set, we used the Mucosa-Associated Lymphoid 

Tissue (MALT) dataset, which contains 8,412 cells generated by 10x Genomics. Among the 

17 proteins in the MALT dataset, 10 overlapped with the proteins in the PBMC data. We 

held out the protein expression for the MALT data and evaluated how well each method can 

recover the protein expression. Among proteins sequenced in both datasets, average protein 

expression was over four times higher in the MALT dataset than in the PBMC dataset, 

highlighting inherent differences between these two datasets.

We analyzed these data using each of the three approaches. First, we embedded the PBMC 

CITE-seq reference and MALT RNA query data together into a single latent space using 

each method (Fig. 2a). Owing to the substantial differences between the PBMC and MALT 

query data, sciPENN, totalVI, and Seurat 4 all struggled to fully mix the two datasets 

together in the latent embedding space even with the internal batch correction strategies 

incorporated into all three methods. However, sciPENN did the best at integrating the two 

datasets and achieved partial mixing in its latent embedding.

Next, we examined the protein expression prediction accuracy of each method. We 

quantified prediction accuracy both by computing Pearson correlation and the root mean 

squared error (RMSE) between the predicted and observed protein expression, where the 
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RMSE for each protein was calculated in the z-score standardized feature space. Fig. 2b 

shows that sciPENN achieved the highest protein prediction accuracy among all proteins, as 

quantified by both correlations and RMSEs.

We further evaluated the coverage probabilities of sciPENN and totalVI’s prediction 

intervals. We could not include Seurat 4 in this comparison as it does not quantify protein 

expression prediction uncertainty. Fig. 2c shows that for both the nominal 50% and 80% 

prediction intervals (PIs), sciPENN’s PIs have much better coverage than totalVI’s PIs. 

sciPENN’s 50% and 80% PIs have 22.1% and 44.6% median empirical coverage, while 

totalVI’s median coverages were only 9.8% and 18.3%, respectively.

Lastly, we examined feature plots for individual proteins (Fig. 2d). Again, sciPENN 

performs the best overall. For example, for CD8a, the cells are embedded into three clusters 

roughly and CD8a is expressed much more highly in the bottom left cluster than the 

other clusters when using the true protein expression. sciPENN recovered this trend for the 

test data, predicting much higher expression in the bottom cluster than the other clusters. 

totalVI incorrectly predicted moderately high expression in the upper right cluster. Seurat 

4 struggled the most and predicted moderately high expression in all three clusters. We 

observed similar patterns for other proteins. For example, CD45RO is expressed in both left 

clusters but not the right cluster. sciPENN recovered this trend, but totalVI underestimated 

expression in the bottom left cluster. Seurat 4 again failed to distinguish all three clusters. 

However, totalVI performed well in some scenarios. For example, it outperformed sciPENN 

for CD19.

Monocyte to monocyte prediction

In this next evaluation, we consider a more even-handed balance between the query and 

reference sets. We used a human blood monocyte and dendritic cell CITE-seq dataset, 

referred to as the Monocyte dataset, which we generated. Monocytes play distinct, but 

poorly defined, roles in human cardiovascular disease 9. Human circulating monocytes 

can be divided into three subsets based on surface protein markers, classical (CD14++/

CD16−), intermediate (CD14++/CD16+), and non-classical “patrolling” (CD14dim/CD16+

+) subpopulations. Clinical cardiovascular disease outcomes are directly associated with 

levels of circulating monocytes, specifically with higher proportions of classical and 

intermediate subsets 10-15. To better understand the role of monocyte subpopulations in 

homeostasis and disease, we generated a CITE-seq dataset that consists of 37,212 cells and 

283 proteins obtained from 8 samples in 4 subjects. To create a reference and query dataset, 

we allocated 4 samples to the reference and the other 4 samples to the query. We held out 

true expression for the test set to see how well each method can recover it. Fig. 3a shows that 

sciPENN achieved complete mixing of the two datasets in its embedding. totalVI achieved 

nearly complete mixing as well, with only minor non-overlapping of the two datasets. Seurat 

4 did not mix the two datasets as well as the other methods, but the two datasets still 

overlapped substantially with considerable mixing.

Next, we examined the correlations and RMSEs between predictions and truth for each 

protein (Fig. 3b). On the correlation scale, all three methods performed highly effectively 

in this analysis. sciPENN was the leader when considering RMSE as the metric of interest, 
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likely because its estimates not only were correlated with the truth but also were close to it 

resulting in an overall lower error. We also repeated the random split of training and testing 

samples 10 times and found the degree of randomness for the prediction is small (Extended 

Data Fig. 1a).

Additionally, we evaluated both sciPENN and totalVI’s empirical test coverage probabilities 

(Fig. 3c). sciPENN performed reasonably well: its 50% PI achieved a 41.9% median 

coverage probability across all proteins, while its 80% PI achieved 71.7% median coverage. 

totalVI struggled to quantify uncertainty: its median coverage probabilities were only 16.7% 

and 21.2%, respectively, which are well below the nominal coverage rates.

Lastly, we examined feature plots for proteins CD14, CD16, and CD303 (Fig. 3d). These 

three proteins are of special interest because CD14 is a marker for classical monocytes and 

CD16 is a marker for nonclassical monocytes 16, while CD303 is a marker for dendritic 

cells 17. All three methods performed relatively well for all three proteins, exhibiting similar 

correlations with the truth and recovering the main trends observed in the true expression 

data.

PBMC to PBMC prediction

For this evaluation, we randomly split the full PBMC data into a training half and a test 

half. First, we consider sciPENN’s ability to recover marker protein trends (Fig. 4a). We 

chose three proteins: CD45RA, CD44-2, and CD38-1, representing protein markers for CD8 

subtypes identified in the Seurat 4 paper 7. CD8 T cells are mediators of adaptive immunity 

and they respond adaptively to the type of encountered pathogens 18. It is important to 

characterize CD8 T cell subpopulations and understand how different factors, e.g., tissue 

site, type of pathogens and stimuli, influence T cell persistence and function. For each 

protein, we first checked the expression dynamics of its encoding RNA gene (PTPRC, 

CD44, and CD38, respectively) and verified that the encoding RNA gene alone is not 

enough to identify CD8 cell subtypes. We then examined the true protein expression across 

CD8 subtypes for each protein to see which cell subtypes express each protein highly. 

Lastly, we examined the magnitude of predicted expression across CD8 subtypes to see 

how well each prediction method recovers the truth and can be used to identify marker 

proteins. We examined that CD45RA is an apparent marker for CD8 Naïve, CD44-2 is an 

apparent marker for CD8 TEM3 and for CD8 TCM2 to a lesser extent, and CD38-1 is 

an apparent marker for CD8 Naïve 2. sciPENN’s protein predictions accurately recovered 

these trends, allowing the investigator to detect which cell subtypes a protein is expressed 

highly in using sciPENN predictions only. totalVI and Seurat 4 also performed well, albeit 

marginally worse. Seurat 4 underestimated the expression of CD44-2 in CD8 TEM3, and 

totalVI underestimated the expression of CD38-1 in CD8 Naïve 2. We also repeated the 

random split of training and testing samples 10 times and found the degree of randomness 

for the prediction is small (Extended Data Fig. 1b).

Next, we evaluated sciPENN and Seurat 4’s abilities to transfer cell type labels from a 

CITE-seq reference to a scRNA-seq test set (Fig. 4b). We omitted totalVI since it is not 

designed for cell type label transfer. The PBMC dataset has three resolutions of cell type 

labels provided by the Seurat 4 paper: L1 (8 types), L2 (30 types), and L3 (57 types). 
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We evaluated the performance using L3 labels in the main text as this represents the most 

challenging task due to the close relatedness of the 57 cell types. Fig. 4b shows a row-

normalized confusion matrix, where rows represent true cell types and columns represent 

predicted cell types. Overall, sciPENN outperformed Seurat 4 for predicting cell type labels, 

in spite of using the labels originally assigned using Seurat 4. sciPENN achieved 83.9% 

accuracy, while Seurat 4 achieved only 78.5% accuracy. The confusion matrices suggest 

this performance gap arises because sciPENN correctly classified certain cell subtypes 

significantly better than Seurat 4. We also evaluated the performance of sciPENN using L2 

labels and the results are shown in Extended Data Fig. 2.

Lastly, we evaluated sciPENN’s ability to recover protein expression trends triggered by 

stimuli. Donors in the PBMC dataset were administered a VSV-vectored HIV vaccine. 

Expression of cells were profiled from patients immediately before, 3 days after, and then 

7 days after the vaccine. In the Seurat 4 paper, Hao et al. 7 reported that CD169 protein 

showed a clear response to the vaccine in CD14 Monocytes, CD16 Monocytes, and cDC2 

cells. In all three cell types, CD169 expression spiked 3 days after the vaccine was received 

when patients were experiencing their immune response to the vaccine, and then returned 

their pre-vaccine baseline after 7 days once the immune response ended. This suggests that 

CD169 is a biomarker for immune response to the vaccine. Identifying biomarkers like 

CD169 can be of great importance to understanding diseases and corresponding vaccine 

development.

We visualized CD169’s expression in CD14 monocytes, CD16 monocytes, and cDC2 cells 

at each of the three time points (Fig. 4c). sciPENN recovered the CD169’s response to the 

vaccine, while totalVI struggled with this, and Seurat 4 did a reasonable job. For sciPENN, 

a clear spike in the predicted expression of CD169 is observed at Time 3 for all three cell 

types. In totalVI, the spike in CD169 is observed for cDC2, but it appears to be small in 

CD14 Monocytes and nearly non-existent in CD16 monocytes. In Seurat 4, the spike in 

CD169 is clear in CD14, but less so in the other two cell types. To assess this quantitatively, 

we tested whether the mean CD169 expression is not the same across the three times within 

each method using the Kruskal Wallis test and sciPENN had the highest −log10(p-value) 

for all three cell types. For CD14, sciPENN’s −log10(p-value) was greater than 100 while 

totalVI’s was 87 and Seurat 4’s was also greater than 100. For CD16, sciPENN’s metric 

was 27.4 while totalVI’s was just 2.34 and Seurat 4’s was 50.8. Finally, for cDC2, sciPENN 

achieved a metric of 27.4, while totalVI was 17.7 and Seurat 4 was 19.8. Results from 

this analysis indicate that sciPENN can help identify stimulus biomarkers like this vaccine 

immune response biomarker.

PBMC to H1N1 prediction

In this evaluation, we consider a situation where the query set is moderately different from 

the reference set. Specifically, we reused the Seurat 4 PBMC dataset as the reference, but 

used a new H1N1 influenza dataset 19 as the query. The H1N1 dataset includes CITE-seq 

data of 53,201 cells and 87 proteins from PBMCs in healthy donors, which was used to 

investigate the response of these donors to influenza vaccination. Since the H1N1 dataset 

also contains PBMCs, the Seurat 4 PBMC dataset is a natural reference to use to recover the 
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held-out protein expression of the H1N1 data. 59 of the proteins in the H1N1 and the Seurat 

4 PBMC datasets overlapped. Fig. 5a shows that sciPENN and totalVI were both mixed 

these relatively different datasets in the embedding space reasonably well. On the other 

hand, Seurat 4 was not effective in mixing these dataset batches. Additionally, sciPENN and 

totalVI predicted protein expression effectively than Seurat 4, as measured by correlation 

and RMSE between the predicted and true protein expression (Fig. 5b). sciPENN and 

totalVI had near-identical performance when using correlation as the metric. sciPENN leads 

in prediction accuracy when considering RMSE, but the gap between the three methods is 

not substantial.

sciPENN quantified uncertainty prediction for its protein predictions much more effectively 

than totalVI in this analysis (Fig. 5c). sciPENN’s 50% nominal PI achieved 34.9% median 

coverage probability, and its 80% nominal PI also achieved 63.7% median coverage. 

By contrast, the median coverage probabilities for totalVI are only 5.69% and 11.1%, 

respectively.

Integration of COVID datasets

In the last evaluation, we consider a more complex problem of integration in which we 

combine multiple CITE-seq datasets as reference. Since different CITE-seq datasets may 

have different protein panels, some proteins are sequenced in only some of the CITE-seq 

datasets we wish to combine. Our challenge is to fill in the unmeasured proteins for 

each CITE-seq dataset. To evaluate this scenario, we consider two CITE-seq datasets 

generated from a mix of healthy people and patients infected with COVID-19. The first 

dataset consists of 647,366 cells and 192 proteins generated by the Haniffa Lab 20, and 

the second dataset consists of 240,627 cells and 192 proteins generated by the Sanger 

Institute 21. 110 proteins overlapped between these two datasets. Being able to effectively 

integrate and impute protein expression for these datasets are of great clinical interest, as 

the Coronavirus pandemic has massively disrupted societies around the world, increasing 

interest in understanding this coronavirus.

To set up our experiment, we identified the 110 proteins shared between the datasets, and 

dropped all other proteins. To mimic the situation of merging two CITE-seq datasets with 

partially overlapping protein panels, we randomly partitioned the 110 proteins into three 

groups of equal size: proteins only present in Haniffa, proteins only in Sanger, and proteins 

present in both. For each of the two datasets, we set aside the true protein expression for 

the proteins designated as missing. For the Sanger data we set aside the expression data 

for proteins designated as present only in Haniffa (the Haniffa proteins). Likewise, for the 

Haniffa data we set aside the expression data for proteins designated as present only in 

Sanger (the Sanger proteins).

We then took our two partially overlapping CITE-seq datasets and trained both sciPENN 

and totalVI to integrate the datasets and impute the missing protein expression for each 

dataset, where the imputation used RNA expression only and the protein expression levels 

were not included in the imputation. We did not include Seurat 4 in this evaluation because 

it is only able to map a reference CITE-seq dataset to a query RNA dataset. This integration 

experiment was quite challenging for both sciPENN and totalVI due to the large number of 
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cells. However, sciPENN was able to integrate the two datasets into a common embedding 

efficiently, mixing the two datasets well (Fig. 6a). totalVI struggled considerably, failing to 

mix the two datasets.

Next, we examined protein imputation accuracy. Fig. 6b shows that imputing the Sanger 

proteins in the Haniffa data was a difficult task for both methods because the sequencing 

depth in the Haniffa data is only ~50% of the Sanger data, making RNA expression 

in the Haniffa data less predictive for protein expression. Despite this, sciPENN clearly 

outperformed totalVI in both correlation and RMSE with the truth. On the other hand, 

imputing the Haniffa proteins into the Sanger data was a much easier problem for both 

methods. sciPENN outperformed totalVI on both the correlation and RMSE metrics (Fig. 

6b), but totalVI still made useful imputations.

We also examined feature plots for a few selected proteins (Fig. 6c). The first two proteins, 

CD7 and TCR_Va7.2, were Sanger proteins imputed into the Hannifa dataset. sciPENN 

and totalVI performed decently well at imputing CD7, with sciPENN leading totalVI. In 

TCR_Va7.2, both methods struggled and totalVI failed to predict the protein, a reflection 

of how difficult imputing into the Haniffa dataset is. The latter two proteins, CD123 and 

HLA-DR, were Haniffa proteins imputed into the Sanger dataset. Both methods did much 

better with sciPENN leading totalVI, but only by modest margins. This better performance 

is a reflection of the lower difficulty at imputing protein expression in the Sanger data.

Finally, we examined the ability of sciPENN to predict protein expression in the PBMC and 

the H1N1 RNA-seq data. We did not compare with totalVI because its loss function rapidly 

decayed to NaN. For the proteins predicted in each test dataset, we categorized them into 

three categories: only present in Haniffa, only present in Sanger, and present in both. As 

shown in Extended Data Fig. 3, the common proteins are more accurately predicted than 

the unique proteins, which is expected because larger sample size in the training set yields 

better predictions. These results underscore the importance of combining multiple CITE-seq 

datasets for protein expression prediction.

Discussion

We have developed sciPENN, a deep learning model that can predict and impute protein 

expression, integrate multiple CITE-seq datasets, and quantify prediction and imputation 

uncertainty. We accomplish this by designing both the internal network structure, as well 

as the loss function and optimization strategy of sciPENN in order to maximize its protein 

prediction and imputation accuracy. The network is built as a stack of dense, batchnorm, 

PReLU, dropout layer blocks which help the model learn progressively finer latent cell 

representations. These design choices enabled sciPENN to perform well for supervised 

protein prediction.

Across the three supervised analyses we considered, sciPENN consistently integrated the 

reference CITE-seq dataset with the query dataset in the latent embedding the best when 

compared to totalVI and Seurat 4. sciPENN also consistently had the highest protein 
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prediction accuracy both by the correlation and RMSE metrics. This high protein prediction 

accuracy allows sciPENN to recover protein expression patterns accurately.

One challenge in CITE-seq analysis is the integration of multiple CITE-seq datasets. 

Such integration is not trivial because the protein panels for different CITE-seq datasets 

usually have some non-overlap, which prevents simple concatenation. To circumvent this, 

we introduced a censored loss function scheme for sciPENN, where a protein loss is 

masked and does not contribute to backpropagation whenever it is missing from a cell. This 

allows sciPENN to learn from multiple CITE-seq datasets with partially non-overlapping 

protein panels, impute the missing proteins of each constituent CITE-seq dataset, and even 

predict protein expression in external scRNA-seq datasets after learning from the partially 

overlapping CITE-seq datasets, a task that was not achievable by totalVI and Seurat 4. 

Additionally, sciPENN is an order of magnitude faster than totalVI and Seurat 4 (Extended 

Data Fig. 4), which makes it a desirable tool for integrative CITE-seq and scRNA-seq data 

analysis.

Methods

The sciPENN workflow (Fig. 1) involves four main steps: preprocessing, training, 

imputation, and prediction. Below we describe each of these steps in detail.

Step 1: preprocessing

Suppose there are k CITE-seq datasets that we wish to integrate with a possibly query 

scRNA-seq data for which we wish to predict proteins. Let the ith CITE-seq dataset of ni 

cells be represented by an ni × gi RNA array Xi and ni × pi protein array Yi. Additionally, 

let the query scRNA-seq dataset of nq cells be denoted by an nq × gq RNA-array Xq. For 

each CITE-seq dataset and the query scRNA-seq dataset, a cell is removed if the number 

of expressed RNA genes is less than 200, and a gene is removed if the number of cells 

expressing the gene is less than 30.

Next, we normalize expression values for both RNA genes and proteins. In the first step, 

cell level normalization is performed in which expression for a given gene in each cell is 

divided by the total gene expression across all genes in the cell, multiplied by the median 

total expression for that gene across all cells in that specific dataset, and then transformed 

to a natural log scale. We also do this cell level normalization for the protein modality of 

each CITE-seq dataset. In the second step, we find the set of RNA genes that are available 

in every dataset (all CITE-seq datasets, and the query dataset If one exists). We then proceed 

by finding highly variable RNA genes (HVGs) among them. HVGs are selected based 

on the log-normalized counts using the approach introduced by Stuart and Butler 22 and 

implemented in the “pp.highly_variable_genes” function with “batch_key” parameter in the 

SCANPY Python package (version >=1.4) 23, where each dataset is treated as a batch. In the 

last major step of preprocessing, we z-score normalize features in the dataset by batch for 

both RNA genes and proteins.

After the last major step of preprocessing, we do a few final operations before wrapping up 

preprocessing. First, we merge the protein data together across multiple CITE-seq datasets. 
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When proteins are not available in a cell, we fill the missing protein values of this cell 

with 0. The merged protein dataset Ytrain is of dimension ntrain × p, where ntrain = Σini and 

p is the number of proteins available in the union of all available proteins. If we have a 

query dataset, we create a corresponding test set by splitting the full gene array Xall into a 

training RNA-array Xtrain of dimension ntrain × g and the now-normalized query array Xq of 

dimension nq × g. If no query dataset exists, then Xtrain can be taken as Xall.

Step 2: Training the network

In the next step we perform minibatch gradient descent to train the model. We obtain input 

gene expression vectors for the minibatch cells from Xtrain, pass the inputs through the 

network, and then use these outputs, along with the corresponding true protein expression 

data for the minibatch from the protein array Ytrain to compute the loss function. The 

gradients are computed using reverse mode automatic differentiation and used to update the 

weights of the network.

To help manage overfitting and optimize model performance, we use an early stopping 

strategy with learning rate decay to fit the model. Precisely speaking, we set aside a 

prespecified, randomly selected fraction f of our available training cells to use as a validation 

set, and then leave the remaining 1 – f fraction of cells for training. For each epoch, we 

loop over the training cells, grabbing random minibatches of these cells, computing the loss 

and the gradients of the loss with respect to model weights, and update the network weights 

using the Adam optimizer 24 before proceeding to the next randomly selected minibatch. 

Once we have looped over all training cells, we then check the validation loss. We loop over 

the validation dataset, grabbing minibatches of cells and updating the running validation 

minibatch loss, but not using these cells to compute gradients. Once we have looped over the 

validation dataset, we record the validation minibatch loss for the epoch. After computing 

the minibatch validation loss, we check learning rate decay and early stopping conditions. 

For details, please see Supplementary Note 1.

Step 3: Imputation of protein expression in CITE-seq data

In the application of sciPENN, the user may want to integrate multiple CITE-seq datasets 

with protein panels that only partially overlap. The proteins which are not measured in 

the specific CITE-seq dataset from which the cell is sequenced are missing, so they are 

arbitrarily filled with 0s as a placeholder when creating the merged protein array Ytrain that 

spans all CITE-seq datasets. Once sciPENN has been trained, the user can opt to impute the 

missing proteins for each cell. The main focus of imputation is to fill the missing values of 

Ytrain with predicted expression values, but in addition we will also store quantile estimates 

and optionally transferred cell type labels as well. Let Qtrain,qi be an ntrain × p array storing 

the estimates of quantile qi, and Yj, Qj,qi, and Xj represent row j of Ytrain, Qtrain,qi, and Xtrain, 

respectively.

sciPENN passed Xi (j = 1 to ntrain) as input to obtain corresponding estimates y(Xj; W ), 
σ(Xj; W ), p(Xj; W ) of the protein mean, quantiles, and predicted cell type class probabilities 

of cell j, respectively, as described in the “Model architecture” section. Since we have true 

cell type labels for the training data, we discard p(Xj; W ). σ(Xj; W ) will be an array of all 
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the quantile estimates of shape p × k where k is the number of quantiles. Simply loop over 

the columns from s = 1 to k and set Qj,qs equal to the sth column of σ(Xj; W ), where qs 

denotes the quantile represented by column s of σ(Xj; W ). To update Ytrain, we want to fill in 

predictions only for proteins that are missing. To do so, let bj be a vector of length p whose 

sth element equals 1 if and only if the sth protein is sequenced for cell j. Then we update Yj 

as follows:

Y j (1 − bj) ⋅ y Xj; W + Y j

where “·” represents the dot-product operator. We perform these updates for each individual 

cell in the training data.

Step 4: Prediction of protein expression in scRNA-seq data

The last step a user may consider is predicting protein expression in scRNA-seq, which is 

distinct from imputation described in Step 3. Let Xq be the ntest × 1000 test set RNA gene 

expression array after we selected the top 1000 HVGs. Similar to the imputation process, 

let Qtest,qi be an ntest array storing the estimates of quantile qi, and Ytest store the protein 

predictions, and C be an ntest length vector to store predicted cell type labels. Let Yj, Qj,qi, 

and Xj represent row j of Ytest, Qtest,qi, and Xtest, respectively.

Take Xj (j = 1 to ntest), and pass it as input to sciPENN, and obtain corresponding estimates 

y(Xj; W ), σ(Xj; W ), p(Xj; W ). σ(Xj; W ) is used to update Qj,qi, for i = 1, 2, … , ntest, as 

described in the imputation section. Unlike with imputation where we only needed protein 

mean estimates for missing proteins, we want to store predictions for all proteins for test set 

prediction. For this reason, we simply set Yj equal to y(Xj; W ) to update Ytest. To store the 

predicted cell type label for cell j, we set the jth element of C equal to argmax p(Xj; W ).

Model architecture

Suppose we have a (merged) CITE-seq RNA-array Xtrain of shape ntrain × g and 

a corresponding (merged) protein-array Ytrain of shape ntrain × p with some missing 

proteins that we wish to impute. Suppose further that we wish to estimate k quantiles 

for each corresponding protein prediction to quantify uncertainty. Here, y(x; W ) is an 

estimate of a protein’s mean expression for a cell with gene expression vector x. 

σ(x; W ) = [yq1(x; W ), yq2(x; W ), … , yqk(x; W )] is a vector estimate of the k prediction 

quantiles for the protein’s expression, and yqi(x; W ) is the estimate of quantile qi. Lastly, 

p(x; W ) is a vector of predicted cell type class probabilities. S(x; W) is our neural network,

y(x; W ), σ(x; W ), p(x; W ) = S(x, W )

parametrized by weights W. The network structure is best described using the concept of 

blocks: sequences of elementary layers that are stacked together in a standard way and 

used as smaller parts for building a more complex model. The two key blocks used by the 

network are an Input Block and a FeedForward block. The Input Block is described first.
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Input Block

Receive as input: gene expression vector x

x ← BatchNorm(x; W1)
x ← Dropout(x)
x ← Dense(x; W2)
x ← BatchNorm(x;W3)
x ← PReLU (x; W4)
x ← Dropout(x)

return x

The FeedForward Block is described next. This block receives an embedding as input and 

will only runs BatchNorm and Dropout after passing the embedding through a dense layer. 

Otherwise, this block is similar to the Input Block.

FeedForward Block

Receive as input: embedding vector x

x ← Dense(x; W1)
x ← BatchNorm(x; W2)
x ← PReLU(x; W3)
x ← Dropout(x)

return x

With these blocks introduced, we can now discuss the construction of the network S(x, W). 

First, the gene expression x is passed into an Input Block, which computes an embedding 

from the gene expression data. Then, we pass this embedding to a sequence of FeedFoward 

Blocks. After we compute the output of each FeedForward Block, we pass this output to 

a recurrent cell, which maintains a hidden embedding of features that it updates using the 

FeedForward block’s output. Note that the hidden embedding is initialized as vector of 0s. 

Once the hidden embedding is updated, we pass the FeedForward Block’s output to the next 

FeedForward Block and repeat the process. After we obtain the final updated RNN hidden 

state from the last FeedForward Block, we use it as the final embedding for visualization 

of the data integration. We further use this hidden embedding to compute estimates y(x; W ), 
σ(x; W ), p(x; W ). We do this by passing the hidden embedding through three dense layers 

(one for each of the three estimated quantities). The entire computation graph is described 

in Fig. 1. In our computation graph, the symbol ⨁ represents the “detach” operation, which 

satisfies the following condition:

∂
∂W detachW g(W ) = 0 ∀g .

Essentially, the detach operation treats the output of any function of weights as a constant 

with respect to the weights, so that all operations downstream of the detached function 

output will not contribute to gradient updates of the function’s weights. In this context, if h 
is the hidden embedding after the last update from the RNN Cell and g(x; W) is a function 
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which encapsulates all of the layers used to map the input to this embedding, then the detach 

operation is used in the

p(x; W ) = Dense3(detachW g(x; W ) ) .

Loss function for minibatch gradient descent

We are interested not only in predicting protein expression, but also in quantifying the 

uncertainty of our prediction using interval estimation. To that end, we will want to 

estimate not only the mean expected protein expression given the RNA expression profile 

of the cell (y(x; W )), but also a vector of quantiles which can be used to construct 

prediction intervals. To train the model to estimate these quantities, we need a loss 

function to minimize. For the remainder of this section, we will suppress the notational 

dependence of y, σ, x on input genes x and weights W. Define SE(y, y) = (y − y)2 and 

Lq y, yq = I yq > y ∗ (1 − q) + I yq < y ∗ q ∣ yq − y ∣. Let Q = {q1, q2, … , qk} be the set of 

quantiles we wish to estimate. Then we want to estimate y and yq for q ∈ Q such that we 

minimize the following objective

Lprot = SE(y, y) + Lquantile(y, σ)
Lquantile(y, σ) = 1

k ∑
q ∈ Q

Lq(y, yq) .

Since we wish to predict cell type assignment probability, we also need a loss function for 

cell type classification. A natural choice is the categorical cross-entropy function, which is 

simply the log-probability of the true class. Let the true class for the cell be denoted by ct 

and the random variable which represents a cell’s class be denoted by C, then the loss is

Ltype = − log(Pr(C = ct)) .

The total loss for a cell is then as follows:

L = Lprot + Ltype .

Recall that for any given cell, only a subset of the proteins may have been measured since 

we allow for the merging of multiple CITE-seq datasets whose protein panels do not totally 

overlap. Accordingly, we must handle the loss and gradient computation with care, since 

not all of the p predicted proteins will necessarily have true sequenced expression values 

for us to compute losses with for any given cell. The missing proteins for a cell were filled 

with artificial 0 values when merging the CITE-seq protein arrays, but these 0s are simply 

placeholders with no biological significance.

To handle the missing proteins, we dynamically compute the loss function of a cell only 

over sequenced proteins, and this set of sequenced proteins is permitted to vary from cell 

to cell in a minibatch to accommodate minibatches with cells from different datasets. When 

computing our loss function for backpropagation for a cell, we average the protein-specific 
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losses only of proteins sequenced for the cell. Specifically, let Lij be the total loss for protein 

j in cell i. Define the set Pi such that j ∈ Pi if and only if protein j is expressed in cell i. The 

loss for cell i is computed as follows:

Li = 1
p ∑

j ∈ Pi
Lij

This can be thought of as a “censored loss” approach in which the contribution of a protein 

to the total loss is censored if the protein is not sequenced for that cell. For a minibatch of 

cells, we simply average these cell losses across the minibatch of cells to obtain a single 

minibatch loss and then update the network weights, just as we would do for any typical 

application of minibatch gradient descent. The key idea here is that the cell-specific loss 

varies functionally from cell to cell due to protein censoring. As a consequence, each protein 

contributes to the overall minibatch gradient only through cells for which the protein was 

sequenced in the panel.

CITE-seq data generation in the Monocyte study

4 mL of blood was drawn into sodium heparin tubes and processed immediately in the 

Clinical Research Center at Columbia University Irving Medical Center. PBMCs were 

isolated by Ficoll-paque (GE Healthcare: 17-5442-02) density gradient centrifugation from 

four human subjects. Cells were then incubated with Human TruStain FcX (BioLegend: 

422302) for 10 minutes at room temperature. Subsequently, samples were simultaneously 

stained with a pre-titrated pool of TotalSeq-A antibodies from BioLegend (99787) and 

fluorescent antibodies (CD14-AF488, CD16-PE-Cy7, HLA-DR-APC-eFluor 780, and 

Lineage markers) for 30 minutes at 4°C then washed 3 times in staining buffer (2% FBS, 

5mM EDTA, 20mM HEPES, 100mM sodium pyruvate). Cells were then incubated with 

Sytox Blue viability die. Monocytes and monocytes/dendritic cells were sorted on a BD 

FACSAriaII for 10x genomics and sequencing analysis.

Extended Data
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Extended Data Fig. 1. Evaluation of the robustness of sciPENN by randomly splitting training 
and testing data.
a, Boxplot for correlations between predicted and observed protein expression based on a 

random split of the Monocyte data into training and testing. The lower and upper hinges 

correspond to the first and third quartiles, and the center refers to the median value. The 

upper (lower) whiskers extend from the hinge to the largest (smallest) value no further (at 

most) than 1.5 × interquartile range from the hinge. Displayed are results for 10 random 

splits. The number of cells in the analysis is 37,122. b, Boxplot for correlations between 

predicted and observed protein expression based on a random split of the PBMC data into 

training and testing. The lower and upper hinges correspond to the first and third quartiles, 

and the center refers to the median value. The upper (lower) whiskers extend from the hinge 

to the largest (smallest) value no further (at most) than 1.5 × interquartile range from the 

hinge. Displayed are results for 10 random splits. The number of cells in the analysis is 

161,764.

Extended Data Fig. 2. Cell type label transfer accuracy for L2 labels of Seurat 4 PBMC data.
In this figure, we demonstrate the accuracy of cell type label transfer for both Seurat 4 and 

sciPENN using the L2 labels of the Seurat 4 PBMC data. The color intensity of cell type (i, 
j) in the confusion matrix reflects the proportion of cells of type i that were misclassified as 

cells of type j. a, Confusion matrix of Seurat 4. b, Confusion matrix of sciPENN.

Lakkis et al. Page 15

Nat Mach Intell. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3. Protein expression prediction in the PBMC and the H1N1 datasets 
using the combined Haniffa (covid1, 647,366 cells) and Sanger (covid2, 240,627 cells) CITE-seq 
datasets as reference.
a, Percentage of cells whose protein expression is correctly predicted within the of 1st and 

3rd quantiles of the prediction interval in the PBMC data. The lower and upper hinges 

correspond to the first and third quartiles, and the center refers to the median value. The 

upper (lower) whiskers extend from the hinge to the largest (smallest) value no further (at 

most) than 1.5 × interquartile range from the hinge. The number of cells in the PBMC 

data is 161,764. b, Correlation between predicted and observed protein expression in the 

PBMC data. The lower and upper hinges correspond to the first and third quartiles, and the 

center refers to the median value. The upper (lower) whiskers extend from the hinge to the 

largest (smallest) value no further (at most) than 1.5 × interquartile range from the hinge. 

The number of cells in the PBMC data is 161,764. c, Percentage of cells whose protein 

expression is correctly predicted within the of 1st and 3rd quantiles of the prediction interval 

in the H1N1 data. The lower and upper hinges correspond to the first and third quartiles, 

and the center refers to the median value. The upper (lower) whiskers extend from the hinge 

to the largest (smallest) value no further (at most) than 1.5 × interquartile range from the 

hinge. The number of cells in the H1N1 data is 53,201. d, Correlation between predicted 

and observed protein expression in the H1N1 data. The lower and upper hinges correspond 

to the first and third quartiles, and the center refers to the median value. The upper (lower) 
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whiskers extend from the hinge to the largest (smallest) value no further (at most) than 1.5 × 

interquartile range from the hinge. The number of cells in the H1N1 data is 53,201.

Extended Data Fig. 4. Runtime comparison of methods.
In this figure, we demonstrate the speed of sciPENN relative to other methods. Specifically, 

we use the Seurat 4 PBMC data as reference (161,746 cells) and the H1N1 data (53,201 

cells) as query. Given a fraction f, we train each method using (100 * f)% of the Seurat 4 

PBMC data and predict on (100 * f)% of the query data and record how long this process 

takes. We perform this for various fractions f for each method and plot the results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

We analyzed multiple published CITE-seq datasets throughout the 

evaluations. These data are available as follows (accession numbers 

provided where possible): 1) Mucosa-Associated Lymphoid Tissue (MALT) 

dataset (https://www.10xgenomics.com/resources/datasets/10-k-cells-from-a-malt-tumor-
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gene-expression-and-cell-surface-protein-3-standard-3-0-0); 2) Seurat 4 human peripheral 

blood mononuclear cells (PBMCs) (GEO: GSE164378); 3) H1N1 influenza PBMC 

dataset (https://doi.org/10.35092/yhjc.c.4753772, ref. 25 ); 4) human monocyte 

dataset (https://upenn.box.com/s/64c9fsex50g1bhv67893cpdg9c5jqjzo). All participants 

provided written informed consent under Columbia University IRB protocol 

AAAR5004. 5) Haniffa COVID Dataset (https://www.ebi.ac.uk/arrayexpress/experiments/

E-MTAB-10026/); 6) Sanger COVID Dataset (https://covid19.cog.sanger.ac.uk/submissions/

release2/vento_pbmc_processed.h5ad); Details of these datasets can be found from Details 

of these datasets were described in Supplementary Table 1.

Code Availability

An open-source implementation of the sciPENN algorithm is available at the online 

data warehouse: https://github.com/jlakkis/sciPENN. The codes are available via Zenodo 

at https://doi.org/10.5281/zenodo.6944521 (ref. 26). All analyses conducted in this paper 

can be reproduced using this repository at the online data warehouse: https://github.com/

jlakkis/sciPENN_codes. The codes are available via Zenodo at https://doi.org/10.5281/

zenodo.6944525 (ref. 27).
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Fig. 1 ∣. Overview of sciPENN.
a, sciPENN is a flexible method which supports completion of multiple CITE-seq references 

(by imputing missing proteins for each reference) as well as protein expression prediction 

in an scRNA-seq test set, all in one framework. Simultaneously, sciPENN can transfer cell 

type labels from a training set to a test set, and can also integrate cells from the multiple 

datasets into a common latent space. b, sciPENN’s model architecture is comprised by an 

input block, followed by a sequence of FeedForward blocks interleaved with updates to an 

internally maintained hidden state updated via an RNN cell. The final hidden state is passed 

through three dense layers to compute protein predictions, protein prediction bounds, and 

cell type class probability vectors.
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Fig. 2 ∣. Protein expression prediction in the MALT dataset using the Seurat 4 PBMC dataset as 
reference.
a, UMAP Embeddings visualizing the integrated hidden representation of the data, for each 

method. Each cell is colored according to the dataset from which it was sequenced. b, 
Box plots that display the correlation (left) and the RMSE (right) between each MALT 

protein’s predicted and true values for each method. The lower and upper hinges correspond 

to the first and third quartiles, and the center refers to the median value. The upper (lower) 

whiskers extend from the hinge to the largest (smallest) value no further (at most) than 

1.5 × interquartile range from the hinge. Results are based on the analysis of 8,412 cells 
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in the MALT dataset and 161,764 cells in the Seurat 4 PBMC dataset. c, Box plots that 

visualize the empirical test coverage of nominal 50% and 80% PIs per protein computed 

with sciPENN and totalVI. The lower and upper hinges correspond to the first and third 

quartiles, and the center refers to the median value. The upper (lower) whiskers extend from 

the hinge to the largest (smallest) value no further (at most) than 1.5 × interquartile range 

from the hinge. Results are based on the analysis of 8,412 cells in the MALT dataset and 

161,764 cells in the Seurat 4 PBMC dataset. d, Feature plots for every MALT protein. The 

scatterplot is a UMAP representation of the true protein counts for the MALT data. In each 

feature plot, we color each cell in the scatterplot according to the intensity of its relative 

value for the specified protein. In the first row, we use the true values to guide the feature 

plot color mapping. In the subsequent rows, we color each cell according to the protein’s 

predicted expression, as predicted by sciPENN, totalVI, and Seurat 4. The number in the 

top right in each plot is the correlation between the gold standard (true) protein expression 

counts and the predicted counts.
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Fig. 3 ∣. Protein expression prediction in the Monocyte dataset.
This figure illustrates the prediction of proteins in the Monocyte test data (samples 

RPM215A, RPM215B, RPM218A, RPM218B) using the Monocyte training data (samples 

RPM211A, RPM211B, RPM232A, RPM232B) as reference. a, UMAP embeddings 

visualizing the integrated hidden representation of the data, for each method. Each cell is 

colored according to the dataset from which it was sequenced. “Monocyte 1” represents the 

training data, “Monocyte 2” represents the test data. b, Box plots that display the correlation 

(left) and the RMSE (right) between each Monocyte protein’s predicted and true values for 

each method. The lower and upper hinges correspond to the first and third quartiles, and the 

center refers to the median value. The upper (lower) whiskers extend from the hinge to the 

largest (smallest) value no further (at most) than 1.5 × interquartile range from the hinge. 
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Results are based on the analysis of 37,112 cells in the monocyte study (19,516 cells in 

training and 17,596 cells in testing). c. Box plots that visualize the empirical test coverage of 

nominal 50% and 80% PIs per protein computed with sciPENN and totalVI. The lower and 

upper hinges correspond to the first and third quartiles, and the center refers to the median 

value. The upper (lower) whiskers extend from the hinge to the largest (smallest) value no 

further (at most) than 1.5 × interquartile range from the hinge. Results are based on the 

analysis of 37,112 cells in the monocyte study (19,516 cells in training and 17,596 cells in 

testing). d, Feature plots for selected proteins CD14, CD16, and CD303. The scatterplot is 

a UMAP representation of the true protein counts for the Monocyte data. In each feature 

plot, we color each cell in the scatterplot according to the intensity of its relative value for 

the specified protein. In the first row, we use the true values to guide the feature plot color 

mapping. In the subsequent rows, we color each cell according to the protein’s predicted 

expression, as predicted by sciPENN, totalVI, and Seurat 4. The number in the top right of 

each plot is the correlation between the gold standard (true) protein expression counts and 

the predicted counts.
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Fig. 4 ∣. Protein expression prediction and cell type label transfer in the PBMC dataset.
This figure illustrates the prediction of proteins and cell type label transfer in the PBMC 

test data (donors P2, P5, P6, P8) using the PBMC training data (donors P1, P3, P4, P7) as 

reference. a, UMAP plot on the left shows the CD8 cell subtypes reported in the Seurat 4 

paper. UMAP plots on the right demonstrate the necessity of protein data to identify cell 

subpopulations by comparing UMAP colored by the true protein to the UMAP colored by 

the protein’s encoding RNA gene. Additional UMAPs colored by sciPENN, totalVI and 

Seurat 4 protein predictions demonstrate the utility of protein predictions for recovering 

these subpopulation behaviors when true protein data are missing, and sciPENN’s utility 
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compared to other methods for most consistently recovering such trends. b, Confusion 

matrices which demonstrate the cell type prediction accuracy of sciPENN and Seurat 4 

for each true cell type. Rows represent true cell type and columns represent predicted cell 

type. The raw matrix is first computed, and then normalized by each row’s sum, i.e., by 

the number of cells of each type. Element i, j of the numeric matrix can be thought of as 

the proportions of cells of type i which were classified as type j. c, Violin plots visualizing 

the CD169 protein’s feature values immediately before reception of a VSV-vectored HIV 

vaccine (Time = 0), 3 days after administration of the vaccine (Time = 3), and 7 days after 

administration (Time = 7). We examine the true CD169 expression with respect to Time, as 

well as sciPENN predicted, totalVI predicted, and Seurat 4 predicted CD169 expression with 

respect to time.
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Fig. 5 ∣. Protein expression prediction in the H1N1 dataset using the Seurat 4 PBMC dataset as 
reference.
a, UMAP Embeddings visualizing the integrated hidden representation of the data, for each 

method. Each cell is colored according to the dataset from which it was sequenced. b, Box 

plots that display the correlation (left) and the RMSE (right) between each H1N1 protein’s 

predicted and true values for each method. The lower and upper hinges correspond to 

the first and third quartiles, and the center refers to the median value. The upper (lower) 

whiskers extend from the hinge to the largest (smallest) value no further (at most) than 1.5 

× interquartile range from the hinge. Results are based on the analysis of 53,201 cells in the 

H1N1 dataset and 161,764 cells in the Seurat 4 PBMC dataset. c, Box plots that visualize the 

empirical test coverage of nominal 50% and 80% PIs per protein computed with sciPENN 

and totalVI. The lower and upper hinges correspond to the first and third quartiles, and the 

center refers to the median value. The upper (lower) whiskers extend from the hinge to the 

largest (smallest) value no further (at most) than 1.5 × interquartile range from the hinge. 

Results are based on the analysis of 53,201 cells in the H1N1 dataset and 161,764 cells in 

the Seurat 4 PBMC dataset.
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Fig. 6 ∣. Integration of two COVID CITE-seq datasets.
a, UMAP Embeddings visualizing the integrated hidden representation of the data, for each 

method. Each cell is colored according to the dataset from which it was sequenced. b, Box 

plots that plot the correlation (left) and the RMSE (right) between each imputed protein’s 

predicted and true values for each method. Note that the box plots for Haniffa involves the 

proteins that were missing from Haniffa and imputed, and likewise the box plots for Sanger 

involves the proteins that were missing from Sanger and were imputed. The lower and upper 

hinges correspond to the first and third quartiles, and the center refers to the median value. 

The upper (lower) whiskers extend from the hinge to the largest (smallest) value no further 
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(at most) than 1.5 × interquartile range from the hinge. Results are based on the analysis of 

647,366 cells in the Haniffa data and 240,627 cells in the Sanger data. c, Feature plots for 

selected proteins CD7, TCR_Va7.2, CD123, and HLA-DR. The first two are proteins that 

were imputed into the Haniffa dataset, the second two are proteins that were imputed into 

the Sanger dataset. The scatterplot is a UMAP representation of the true protein expression 

for the missing protein data. One UMAP representation is computed for the missing proteins 

in the Haniffa data, and another UMAP representation is computed for the missing proteins 

in the Sanger data. In each feature plot, we color each cell in the scatterplot according to 

the intensity of its relative value for the specified protein. In the first row, we use the true 

values to guide the feature plot color mapping. In the subsequent rows, we color each cell 

according to the protein’s predicted expression, as predicted by sciPENN and totalVI. The 

number in the top right is the correlation between the gold standard (true) protein expression 

counts and the predicted counts.
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