
ARTICLE COMMENTARY

Treatment and diagnosis of severe KPC-producing Klebsiella pneumoniae
infections: a perspective on what has changed over last decades

Daniele Roberto Giacobbea,b� , Vincenzo Di Pilatoc� , Ilias Karaiskosd , Tommaso Gianie,f ,
Anna Marchesec,g, Gian Maria Rossolinie,f� and Matteo Bassettia,b�
aDepartment of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; bUO Clinica Malattie Infettive, IRCCS Ospedale Policlinico
San Martino, Genoa, Italy; cDepartment of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy;
dFirst Department of Internal Medicine – Infectious Diseases, Hygeia General Hospital, Athens, Greece; eDepartment of Experimental
and Clinical Medicine, University of Florence, Florence, Italy; fClinical Microbiology and Virology Unit, Careggi University Hospital,
Florence, Italy; gUO Microbiologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy

ABSTRACT
Antimicrobial resistance is a global health threat. Among Gram-negative bacteria, resistance to
carbapenems, a class of b-lactam antibiotics, is usually a proxy for difficult-to-treat resistance,
since carbapenem-resistant organisms are often resistant to many classes of antibiotics.
Carbapenem resistance in the Gram-negative pathogen Klebsiella pneumoniae is mostly due to
the production of carbapenemases, enzymes able to hydrolyze carbapenems, and K. pneumoniae
carbapenemase (KPC)-type enzymes are overall the most prevalent carbapenemases in K. pneu-
moniae. In the last decade, the management of severe infections due to KPC-producing K. pneu-
moniae (KPC-Kp) in humans has presented many peculiar challenges to clinicians worldwide. In
this perspective, we discuss how the treatment of severe KPC-Kp infections has evolved over
the last decades, guided by the accumulating evidence from clinical studies, and how recent
advances in diagnostics have allowed to anticipate identification of KPC-Kp in infected patients.

KEY MESSAGES

� In the last decade, the management of severe infections due to KPC-Kp has presented many
peculiar challenges to clinicians worldwide

� Following the introduction in clinical practice of novel b-lactam/b-lactamase inhibitor combi-
nations and novel b-lactams active against KPC-producing bacteria, the management of
severe KPC-Kp infections has witnessed a remarkable evolution

� Treatment of severe KPC-Kp infections is a highly dynamic process, in which the wise use of
novel antimicrobials should be accompanied by a continuous refinement based on evolving
clinical evidence and laboratory diagnostics
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Introduction

Antimicrobial resistance has been estimated to cause

at least 700,000 people deaths worldwide each year,

possibly rising to 10 million by 2050 [1]. Since early

1990s, resistance to carbapenems, a class of b-lactam

antibiotics, has been reported with increasing fre-

quency among Gram-negative bacteria [2], usually as

a proxy for difficult-to-treat resistance. Indeed, carba-

penem-resistant organisms are often resistant to

many classes of antibiotics, thereby complicating the

treatment of infections caused by these bacteria in

humans [3].

Among major Gram-negative pathogens, Klebsiella
pneumoniae is one of the most affected by carbape-
nem resistance. In this species, carbapenem resistance
is mostly due to the production of b-lactamases able
to hydrolyze carbapenems (i.e. carbapenemases),
although combinations of other different mechanisms
may also occur [4,5]. K. pneumoniae carbapenemase
(KPC)-type enzymes are overall the most prevalent
acquired carbapenemases in K. pneumoniae and
became of major relevance after their emergence and
global spread during the first decade of the 21st cen-
tury [6]. KPC enzymes belong to molecular class A of
b-lactamases (Ambler classification), whose active site
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contains a serine residue, are usually plasmid-encoded,
and are able to hydrolyze a very broad spectrum of
b-lactam substrates, including penicillins, cephalospor-
ins, monobactams and carbapenems. They are weakly
inhibited by traditional b-lactam inhibitors (i.e. clavu-
lanic acid and tazobactam), but efficiently inhibited by
the novel b-lactamase inhibitors (i.e. diazabicyclooc-
tanes and boronates) [7,8].

In the last decade, following the introduction in
clinical practice of novel b-lactam/b-lactamase inhibi-
tor combinations and novel b-lactams active against
KPC-producing bacteria, the management of severe
infections due to KPC-producing K. pneumoniae (KPC-
Kp) in humans has witnessed a remarkable evolution.
In this perspective, we discuss how the treatment of
severe KPC-Kp infections has evolved over the last
decades, guided by the accumulating evidence from
clinical studies, and how recent advances in diagnos-
tics have allowed to anticipate identification of KPC-Kp
in infected patients.

Evolution of treatment algorithms and
clinical studies

The old era (2013–2018)

Back to the early 2010s, the treatment of severe infec-
tions due to KPC-Kp mostly relied on combinations of
two or even three antibacterial agents, almost invari-
ably including a polymyxin or an aminoglycoside, that
belong to two classes of antibiotics potentially associ-
ated with significant nephrotoxicity [9,10]. To under-
stand such a peculiar prescribing pattern, it should be
first reminded that, besides being resistant to carbape-
nems, KPC-Kp are very often resistant to other classes
of commonly used antibiotics, such as penicillins, third
and fourth-generation cephalosporins, and fluoroqui-
nolones (owing both to the broad spectrum of activity
of KPC-type enzymes against b-lactams other than car-
bapenems and to the genetic linkage of blaKPC to
other resistance determinants located on the same
plasmid, commonly including genes conferring resist-
ance to aminoglycosides, quinolones, trimethoprim,
sulphonamides, and tetracyclines) [11,12]. It was thus
not uncommon for aminoglycosides or, more fre-
quently, polymyxins, to remain the only class/classes
of antibiotics showing in vitro activity against KPC-Kp
isolates from infected patients, and polymyxins were
thus frequently selected as first-line treatment.

The fact that polymyxins retained activity against
KPC-Kp on most occasions was no surprise.
Polymyxins, of which those currently available for use
in humans are polymyxin B and polymyxin E (the

latter also known as colistin), are bactericidal lipopep-
tides mainly exerting their antimicrobial activity
through interaction with the lipopolysaccharide of
Gram-negative bacteria and permeabilization of their
outer membrane [13]. They became available in the
1950s, but their use in humans was soon abandoned,
with few exceptions, because of concerns about their
nephrotoxicity and the concomitant availability of
other less toxic classes of antibiotics. The lack of wide-
spread use of polymyxins for several decades is
thought to have massively relieved the selective pres-
sure for polymyxin resistance in human pathogens,
thereby justifying the very high frequency of suscepti-
bility even among KPC-Kp isolates when, at the begin-
ning of the current century, polymyxins started to be
used again and conspicuously, for the treatment of
severe infections due carbapenem-resistant Gram-
negative bacteria. However, crude mortality rates of
severe KPC-Kp infections treated with polymyxins
were generally higher than those registered in
patients with severe infections due to carbapenem-
susceptible Kp (CS-Kp) infections treated with carbape-
nems [14]. The reasons for such worse mortality rates
are still not completely clear even today. The principal
suspected culprits are a suboptimal efficacy of poly-
myxins and an increased frequency of inappropriate
empirical therapy in KPC-Kp infections than in CS-Kp
infections. Other reasons such as increased KPC-Kp
virulence are overall far less likely, although still
remaining to be definitely ruled out [14,15].
Suboptimal efficacy of polymyxins is a plausible argu-
ment. Certainly, polymyxins have been tremendously
useful for treating severe KPC-Kp infections in the last
20 years (in the presence of scant alternatives), but
several shortcomings could have played a role in
unfavorably influencing their efficacy. The first is that
also studies on the pharmacokinetic/pharmacody-
namic (PK/PD) properties of polymyxins were largely
abandoned starting from the middle of the past cen-
tury, therefore, around twenty years ago, the available
PK/PD data guiding administration of polymyxins were
not updated according to current standards. For
example, it is now known that intravenous polymyxins
have a reduced lung penetration and that, for colistin,
there could be an interpatient variability in the con-
version of the prodrug (colistimethate) into the active
moiety (colistin) [16]. In addition, some other factors
likely and unfavorably influenced efficacy of polymyx-
ins before the availability of updated PK/PD guidance
(the international guidelines for optimizing the use of
polymyxins in clinical practice, that represented the
sum of all the crucial efforts of different research
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groups worldwide, were released only at the begin-
ning of 2019) [15]. In the early 2010s, colistin mainten-
ance dosages were usually of 6 million international
units (MIU), and without a loading dose, whereas it is
now well recognized that maintenance doses in
patients with normal kidney function should be of 9
MIU daily (and possibly even >9 MIU in critically ill
patients with augmented renal clearance), after an ini-
tial loading dose of 9 MIU [17]. In addition, gradient
tests were widely used for colistin susceptibility testing
at the time, but it was lately recognized that false sus-
ceptibility results could arise in a non-negligible pro-
portion of cases [18].

The suspicion of reduced polymyxins efficacy even-
tually led clinicians to consider the addition of other
agents to polymyxins, in turn leading to the adminis-
tration of polymyxin-based combination regimens (see
Figure 1 for a summary of the most frequently used

companion agents and of their characteristics).
Polymyxin-based combination regimens have been
used for many years between 2010 and 2018. During
the same period, many observational studies were
conducted to compare clinical outcomes (mainly
short-term mortality) between patients with severe
KPC-Kp infections treated with polymyxin monother-
apy and patients with severe KPC-Kp infections treated
with polymyxin-based combinations. However,
although some large Italian and Greek studies sug-
gested an advantage of combinations over monother-
apy in terms of mortality, this topic remained debated
for several years, partly due to many inherent weak-
nesses of observational, nonrandomized studies in
evaluating this topic [19,20]. In 2017, the results of the
large, multinational INCREMENT study seemed to tip
the balance more solidly in favor of combinations,
although certainty of evidence still remained low due

Figure 1. Combination therapies frequently employed before availability of novel b-lactam/b-lactam inhibitor (BL/BLI) combina-
tions and b-lactams (BL) for the treatment of severe infections caused by KPC-producing Klebsiella pneumoniae. CNS: central ner-
vous system; KPC-Kp: Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae; MIC: minimum inhibitory
concentration; PK/PD: pharmacokinetic/pharmacodynamic. Information included in the table is from Refs. [9,15,19–34].
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to the observational, retrospective nature of the study
[35]. Furthermore, as shown in Figure 1, the employed
combinations were highly heterogeneous (they were
mostly colistin-based regimens, but with heteroge-
neous companion agent/s). Such a large heterogeneity
in the type of selected companion agent/s possibly
reflected the lack of high-level evidence (and, in turn,
solid guidelines) dictating which combinations to use
in the different clinical scenarios.

Overall, while certainly having been useful for
improving our ability to treat severe KPC-Kp infections
with the few available agents from 2010 to 2018,
observational studies conducted in those years even-
tually led to sufficient consensus only after 2017. This
is not a criticism, but rather a consideration reminding
us about the importance of the following: (i) pursuing
high certainty evidence from randomized controlled
trials; (ii) improving national and multinational efforts
to conduct large and well-designed observational
studies (to provide lower but still acceptable evidence
whenever randomized studies are unfeasible). Indeed,
although we now have novel agents that have revolu-
tionized the treatment of severe KPC-Kp infections
(see next section), we cannot exclude that we will
face again a similar situation in the future, since
antimicrobial resistance has proved to be highly
dynamic and disseminate very rapidly. We should not
remain unprepared.

The era of novel b-lactam/b-lactamase inhibitor
combinations and b-lactams active against KPC-
Kp (2019–onward)

Novel b-lactam/b-lactamase inhibitor (BL/BLI) combina-
tions showing in vitro activity against KPC-Kp and
currently approved for use in humans are ceftazidime-
avibactam, meropenem-vaborbactam, and imipenem-
cilastatin-relebactam [8]. The first that became
available is ceftazidime/avibactam (first approved by
the Food and Drug Administration [FDA] and the
European Medicines Agency [EMA] in 2015 and 2016
in the US and Europe, respectively), followed by mero-
penem/vaborbactam (first approved by the FDA and
the EMA in 2017 and 2018, respectively) and imi-
penem/relebactam (first approved by the FDA and the
EMA in 2019 and 2020, respectively). In addition, the
recently approved siderophore cephalosporin cefidero-
col (first approved by the FDA and the EMA in 2019
and 2020, respectively) also shows activity against
KPC-Kp [36,37]. Two important considerations should
be made regarding these novel agents. The first is
that they made KPC-Kp treatable again with b-lactams,

thereby removing the label of ‘difficult-to-treat
resistance’ (i.e. resistance to all b-lactams and fluoro-
quinolones) [21]. The second is that, for some of these
novel agents, besides classical indication-based
randomized trials (e.g. patients with complicated
urinary infection, nosocomial pneumonia), also patho-
gen-directed randomized trials (i.e. patients with
carbapenem-resistant Gram-negative bacteria infec-
tions) were conducted [38,39]. Nonetheless, while
these pathogen-directed studies are certainly a crucial
innovation, it still remains difficult to enroll a high
number of patients with infections due to resistant
organisms (KPC-Kp included) in randomized trials, thus
their populations are frequently small. This inherently
reduces the potential to generalize their results, as
well as possibly precluding adequate mitigation of
both measured and unmeasured confounding. The
solution to this issue is still debated. Indeed, it is also
true that pragmatically widening the classically strict
inclusion criteria of randomized trials (for allowing
enrollment of larger samples of patients with infection
due to resistant organisms) could confound results by
leading to inclusion of several patients with other fac-
tors contributing to their prognosis (e.g. too severe
acute conditions or high burden of baseline comorbid-
ities). Novel designs and methods for randomized tri-
als are in development or under evaluation for
improving our ability to deal with this issue [40]. In
the meantime, high certainty evidence guiding the
use of novel agents for KPC-Kp infections remains
mostly indirect, drawn from large, randomized trials
conducted predominantly in patients with infection
due to carbapenem-susceptible bacteria, and thus
with some inherent uncertainty about the legitimacy
of extrapolating results also to KPC-Kp infections.

Nonetheless, two important considerations can be
firmly made: (i) differently from efficacy, safety can be
more directly extrapolated to patients with KPC-Kp
infections, with novel BL and BL/BLI combinations
being less nephrotoxic than previously polymyxin-
based or aminoglycoside-based regimens; (ii) initial
observational evidence on the use of novel agents for
treating severe KPC-Kp infections is suggesting lower
mortality than previously registered with the use of
previous standard of care [41,42]. Although with lower
certainty of evidence than randomized trials, this
observational evidence has guided the development
of two much awaited guidance document/guidelines
for the treatment of resistant organisms of concerns,
including also KPC-Kp, from the infectious Diseases
Society of America (IDSA) and the European Society of
Clinical Microbiology and Infectious Diseases (ESCMID)
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[36,37]. A summary of current recommendations for
the treatment of KPC-Kp infections, as well as of the
evidence underlying their development, is available in
Table 1. Certainly, there are still some important
unanswered questions that will need to be addressed
in the forthcoming years (e.g. to optimize the use of
novel agents in patients with impaired renal function,
renal replacement therapy, and/or pneumonia
[43–46]), but it cannot be denied that we are entering

a completely new era in the treatment of severe KPC-
Kp infections. This also considering that other BL or
BL/BLI showing in vitro activity against KPC-Kp such as
ARX-1796, aztreonam/avibactam, cefepime/taniborbac-
tam, cefepime/zidebactam, ceftaroline/avibactam,
meropenem/nacubactam, ETX1317, QPX7728, and
VNRX-7145 are under clinical development and may
become available in the future [47].

Table 1. Current IDSA and ESCMID recommendations for the treatment of severe infections caused by KPC-producing
Klebsiella pneumoniae.

Guidelines/Guidance document
Recommended treatment for severe

KPC-Kp infections Comments

ESCMID guidelines [36] � For patients with severe infections due to
CRE, including KPC-Kp, the guidelines
suggest meropenem/vaborbactam or
ceftazidime/avibactam if active in vitro
(Conditional recommendation with low/
moderate level of evidence)

� In patients with CRE infections resistant to
meropenem/vaborbactam and ceftazidime/
avibactam, the guidelines conditionally
recommend cefiderocol
(Conditional recommendation with low level
of evidence)

� The guidelines state that there is currently
no evidence to recommend for or against
the use of imipenem/relebactam for severe
CRE infections
(No recommendation)

� For patients with CRE infections susceptible
to and treated with ceftazidime-avibactam,
meropenem-vaborbactam, or cefiderocol, the
guidelines do not recommend combination
therapy
(Strong recommendation with low level
of evidence)

� For the targeted treatment of severe
infections caused by CRE resistant to novel
agents and susceptible in vitro only to
polymyxins, aminoglycosides, tigecycline
and/or fosfomycin, the guidelines suggest
treatment with more than one drug active
in vitro, with no recommendation for or
against specific combinations
(Conditional recommendation with moderate
level of evidence)

� The ESCMID recommendations refer to targeted
treatment (i.e. after susceptibility test results,
whereas the optimal place in therapy of novel
agents for the empirical treatment (i.e. before the
identification of the causative agent and
susceptibility test) of severe infections in patients
at risk of KPC-Kp etiology remains to be provided
in official documents of major infectious diseases
scientific societies

� Recommendations of ESCMID are mostly similar to
those of IDSA, although a difference, likely relying
on the different development methods, is the lack
of recommendations on the role of imipenem/
relebactam in the ESCMID guidelines, while this
agent is among first-line choices recommended by
IDSA. This possibly relied on the fact that the in
IDSA guidance document (the first version was
released before the ESCMID guidelines) was
conceived to delineate the way to correctly use
novel agents that had become available and were
(are) less toxic than previously used approaches. In
turn, this prioritized urgency toward extensive and
comprehensive methodological adherence to
GRADE methodology and guidelines development.
On the other hand, ESCMID guidelines are
methodologically in line with standard
requirements for guidelines development. This
nonetheless does not allow to provide
recommendations for those areas (e.g. use of
imipenem/relebactam) for which clinical evidence
for the treatment of CRE infections is still
preliminary or absent despite well supported by
preclinical evidence. In this regard, it has been
suggested that ESCMID and IDSA approaches
should be considered as complementary, with a
joint approach being required for future
refinement of current recommendations with the
availability of novel evidence [48]

IDSA guidance document [37] (No
strength of recommendation and
level of evidence provided)

� Ceftazidime-avibactam, meropenem-
vaborbactam, and imipenem/relebactam are
preferred treatment options for severe
infections caused by KPC-Kp resistant to
both ertapenem and meropenem.
Cefiderocol is a further alternative in the
case of pyelonephritis and complicated
urinary tract infections

� Polymyxin B and colistin should be avoided
for the treatment of severe infections
caused by CRE

� Combination of a novel b-lactam agent with
an aminoglycoside, fluoroquinolone, or
polymyxin is not routinely recommended for
the treatment of infections caused by CRE

� The IDSA recommendations refer to targeted
treatment (i.e. after susceptibility test results,
whereas the optimal place in therapy of novel
agents for the empirical treatment (i.e. before the
identification of the causative agent and
susceptibility test) of severe infections in patients
at risk of CRE etiology remains to be provided in
official documents of major infectious diseases
scientific societies

CRE: carbapenem-resistant Enterobacterales; ESCMID: European Society of Clinical Microbiology and Infectious Diseases; GRADE: Grading of
Recommendations Assessment, Development, and Evaluation; IDSA: Infectious Diseases Society of America; KPC-Kp: Klebsiella pneumoniae carbapene-
mase-producing Klebsiella pneumoniae.
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The availability of novel agents is a true revolution
and may help reducing the high mortality of KPC-Kp
infections we frequently witnessed in the past decade.
However, we should not let our guard down and
allow indiscriminate use of these novel agents, in line
with antimicrobial stewardship principles. Notably, this
does not mean that we should not use novel agents,
but that they will need to be used wisely and appro-
priately. Indeed, reports of resistance to novel agents
are increasing worldwide. More in detail, resistance to
ceftazidime/avibactam has been increasingly docu-
mented among KPC-Kp over the last few years, mostly
owing to the emergence of mutated KPC variants [49],
although other mechanisms (e.g. increased production
of KPC, permeability defects, overexpression of efflux
pumps, and production of other transferable –
mutated – class A or class C and class D b-lactamases)
may also contribute [49–53]. In addition, cases of KPC-
Kp resistant also to meropenem/vaborbactam have
been recently reported. To this regard, it should be
noted that a marked overproduction of KPC associated
with impairment of major porins may led to develop-
ment of cross-resistance to ceftazidime/avibactam,
meropenem/vaborbactam, and imipenem/relebactam
in KPC-Kp [53–58]. Finally, some KPC variants have
also been associated with reduced susceptibility to
cefiderocol [59,60]. Concerted efforts aimed at slowing
down the development of resistance to these novel
agents are therefore needed to minimize this problem
and its potential unfavorable impact on patients’ out-
come in the forthcoming future.

The key role of the laboratory for the rapid
diagnosis of KPC-Kp infections: what has
changed over the years?

Until the first decade of the new century, from the
diagnostic laboratory perspective, the principal strat-
egies for the diagnosis of KPC-Kp infections were
based on phenotypic screening followed by confirma-
tory tests. The screening relied upon the detection of
a reduced susceptibility to carbapenems, since carba-
penemase production does not necessarily confer
resistance to carbapenems and may cause an increase
in minimum inhibitory concentration (MIC) that
remains below the clinical breakpoints for resistance.
Nonsusceptibility to ertapenem was considered by the
Clinical and Laboratory Standards Institute (CLSI) as
the most sensitive indicator of carbapenemase produc-
tion [61], while a meropenem MIC � 0.125mg/L (i.e.
above the epidemiological cut-off value [ECOFF]) was
considered the best compromise of sensitivity and

specificity for screening of carbapenemase producers
by the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) [62]. The phenotypic
screening could be performed with standard anti-
microbial susceptibility testing (AST), provided that the
adopted system measured MIC values low enough to
intercept the screening breakpoints, or disk diffusion
was used.

Since a reduced carbapenem susceptibility could
also be due to different mechanisms (e.g. outer mem-
brane permeability defects coupled with production of
extended-spectrum b-lactamases [ESBL]) [63], and
since several different carbapenemases can be found
in K. pneumoniae in addition to KPC (e.g. class B [IMP,
VIM, NDM] or class D [OXA-48-like] b-lactamases),
confirmatory tests were needed to confirm\rule out a
carbapenemase activity and to identify the carbapene-
mase type [64]. The modified Hodge test (MHT) was
initially recommended by CLSI to confirm carbapene-
mase production in isolates positive to the phenotypic
screening [61]. However, this test proved difficult to
interpret in some cases and suffered from several limi-
tations (Table 2), which led the CLSI to abandon its
endorsement in 2018. Easier and faster phenotypic
tests for the detection of carbapenemase production
were developed, such as the modified carbapenem
inactivation method (mCIM) and the carba NP test.
However, also these tests (like MHT) did not inform
about the carbapenemase type [65], except for subse-
quent updates of carba NP which allow discrimination
between the different classes of carbapenemases (i.e.
classes A, B, and D) and identification of KPC pro-
ducers [66]. Other phenotypic assays were developed
based on the inhibitory properties that several mole-
cules retain against KPC enzymes, such as boronic
acid and its derivatives (i.e. phenylboronic [PBA] and
3-aminophenylboronic acid [APBA]), a feature
exploited by combined-disk tests (CDTs), also known
as disc-inhibitors synergy tests. CDTs, which are per-
formed by comparing the diameter of the growth-
inhibitory zone around an indicator b-lactam disk
(containing cefepime or imipenem, meropenem and/
or ertapenem) plus the inhibitor to that around the
corresponding b-lactam disk alone, exhibit high sensi-
tivities and specificities for the detection of KPC, and
can also provide accurate information about isolates
expressing KPC plus ESBL or class B carbapenemases
(i.e. metallo-b-lactamases [MBL]) when coupled with
inhibitors of these enzyme types (i.e. clavulanic acid
for ESBL, and ethylenediaminetetraacetic acid [EDTA]
for MBL) [65]. Following a similar approach, addition
of PBA to gradient MIC strip susceptibility tests (e.g. E-
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test) has also been used as confirmation assay for rec-
ognition of KPC producers (or MBL using EDTA)
[66,67]. Although these tests are simple, unexpensive,
and relatively efficient in detecting specific carbapene-
mases, all require prior bacterial culture from the clin-
ical specimen, so that the long time to results
represents the main drawback for most of them (Table
2). Moreover, as with all phenotypic tests, potential
false negative results can be achieved in the case of
unexpressed or minimally expressed carbapenemase
genes [68].

The recent development of rapid multiplex lateral-
flow immunochromatographic assays (LFIAs), based on
immunological detection of epitopes of carbapene-
mase enzymes, has partially overcome the above limi-
tations. LFIAs represent easy, rapid, and reliable
confirmatory tests for the detection of the most wide-
spread and clinically important carbapenemases found
in Enterobacterales (i.e. NDM-, KPC-, IMP-, VIM-and
OXA-48-like enzymes) from bacterial cultures on solid
media and were also proven useful for the detection
of carbapenemases directly from positive blood cul-
tures with high sensitivities and specificities (>96%)
[71,77]. It should be noted, however, that some
recently emerged KPC variants showing reduced sus-
ceptibility to ceftazidime-avibactam (e.g. KPC-31) can
be associated with relevant detection issues with
LFIAs [78]. The possible use of matrix-assisted laser
desorption ionization-time of flight mass spectrometry
(MALDI-TOF MS) for the detection of a gene product
encoded by the pKpQIL plasmid, the most successful
genetic support driving the global spread of blaKPC,
has also been investigated. This approach relies on
the detection of a �11,109-Da mass peak correspond-
ing to the cleavage product of a hypothetical protein
(designated p019 or pKpQIL_019) that is fairly closely
linked to pKpQIL-like plasmids, and could be of help
for the rapid and unexpensive tracking of KPC-
producing strains [70,79], although suffering from
some limitations (Table 2).

During the past two decades, following the techno-
logical advances in diagnostics and the need to
increase rapidity of microbiologic diagnosis, several
molecular tools based on different nucleic acid
amplification tests (NAATs) (e.g. real-time PCR and
loop-mediated isothermal amplification), possibly in
combination with microarrays, have rapidly taken a
prominent place in the clinical laboratory [72,73].
Overall, NAATs are advantageous over phenotypic
methods due to faster turnaround times, higher sensi-
tivity, possible use directly with clinical samples, and
ability to give direct information about the nature of

the carbapenemase genes (Table 2), that nowadays
has relevant therapeutic implications. In fact, while
knowledge of the carbapenemase type was initially
relevant only for epidemiological and infection control
purposes, the exact and rapid identification of carba-
penemase genes has become of the utmost import-
ance following the advent of novel BL and BL/BLI
combinations, which differentially cover class A, B and
D carbapenemases [7,80]. Although in early stages
NAATs mainly consisted of laboratory-developed
assays, typically employed by diagnostic laboratories
with advanced technical expertise, at present, several
FDA-cleared and CE-cleared in vitro diagnostic (IVD)
commercial assays are available in automated formats,
of which some are also suitable for point-of-care test-
ing. These assays allow for confirmation of blaKPC, as
well as of other carbapenemase-encoding genes (i.e.
blaNDM, blaIMP, blaVIM and blaOXA 48-like) from bacterial
isolates exhibiting a reduced susceptibility to carbape-
nems or even directly from clinical specimens, with a
short time to results (Table 2).

In the last decade, molecular testing of carbapene-
mase genes has also been incorporated into syn-
dromic panels, providing a marked reduction of the
time to diagnosis and significant benefits for anti-
microbial stewardship for bloodstream infections,
starting from positive blood cultures, for lower respira-
tory tract infections, starting from bronchoalveolar lav-
age or bronchial aspirate specimens, and for bone and
joint infections, starting from synovial fluid [74]
(Table 2); similar platforms can provide identification
of the most common pathogens, and of the most clin-
ically-relevant associated resistance genes, in a time-
frame of 1–5 h directly from blood or deep respiratory
samples [75,81], and invariably include the blaKPC tar-
get. However, although syndromic panels are powerful
tools that may assist in a timely manner diagnosis of
infections, it should also be noted that these assays
only detect a predefined range of carbapenemases
and/or pathogens, proving of major value only when
they render a positive result. Moreover, in some cases,
potential interpretation issues may occur upon detec-
tion of the KPC-encoding gene, since this does not
always correlate with the susceptibility phenotype
against certain b-lactamase inhibitors (i.e. the inhibi-
tory activity of avibactam and vaborbactam can be
hindered by the presence of overexpressed enzymes
or mutated KPC variants) [82–84].

In recent years, identification of KPC-producing
organisms has been increasingly centered on molecu-
lar testing, also including whole genome sequencing
(WGS). Although WGS can potentially provide
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untapped information regarding novel KPC enzymes
as well as the whole resistance genes’ content, not
suffering from the major limitations of other molecular
assays (i.e. off-target pathogens and/or carbapene-
mases), the long time to results, costs and infrastruc-
ture limitations actually make its implementation in
the routine laboratory workflow a big challenge [76],
so that its use is primarily demanded for epidemio-
logical purposes.

Conclusion

As with other b-lactamases, a notable diversification has
been observed with KPC enzymes, following their emer-
gence in the clinical setting. Currently, at least 136 dif-
ferent allelic variants have been assigned (https://www.
ncbi.nlm.nih.gov/pathogens/refgene/#KPC; last access on
30 November 2022), of which some already exhibit
modification of the functional properties that may pro-
vide resistance also to the novel agents [85]. This should
further remind us that the treatment of severe KPC-Kp
infections is a highly dynamic process, in which the
wise use of novel antimicrobials should be accompanied
by a continuous refinement based on evolving clinical
evidence and laboratory diagnostics. We should not
waste all the tremendous steps forward made in the
last decade.
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