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Abstract  

The link between metabolic syndrome (MetS) and neurodegenerative as well cerebrovascular 

conditions holds substantial implications for brain health in at-risk populations. This study 

elucidates the complex relationship between MetS and brain health by conducting a 

comprehensive examination of cardiometabolic risk factors, cortical morphology, and 

cognitive function in 40,087 individuals. Multivariate, data-driven statistics identified a latent 

dimension linking more severe MetS to widespread brain morphological abnormalities, 

accounting for up to 71% of shared variance in the data. This dimension was replicable across 

sub-samples. In a mediation analysis we could demonstrate that MetS-related brain 

morphological abnormalities mediated the link between MetS severity and cognitive 

performance in multiple domains. Employing imaging transcriptomics and connectomics, our 

results also suggest that MetS-related morphological abnormalities are linked to the regional 

cellular composition and macroscopic brain network organization. By leveraging extensive, 

multi-domain data combined with a dimensional stratification approach, our analysis 

provides profound insights into the association of MetS and brain health. These findings can 

inform effective therapeutic and risk mitigation strategies aimed at maintaining brain 

integrity. 
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1 Introduction  

Metabolic syndrome (MetS) represents a cluster of cardiometabolic risk factors, including 

abdominal obesity, arterial hypertension, dyslipidemia, and insulin resistance [1]. With a 

prevalence of 23-35% in Western societies, it poses a considerable health challenge, 

promoting neurodegenerative and cerebrovascular diseases such as cognitive decline, 

dementia, and stroke [2–6]. As lifestyle and pharmacological interventions can modify the 

trajectory of MetS, advancing our understanding of its pathophysiological effects on brain 

structure and function as potential mediators of MetS-related neurological diseases is crucial 

to inform and motivate risk reduction strategies [7]. 

Magnetic resonance imaging (MRI) is a powerful non-invasive tool for examining the 

intricacies of neurological conditions in vivo. Among studies exploring MetS and brain 

structure, one of the most consistent findings has been alterations in cortical grey matter 

morphology [8]. Still, our understanding of the relationship between MetS and brain structure 

is constrained by several factors. To date, there have been only few studies on MetS effects 

on grey matter integrity that are well-powered [9–12]. The majority of analyses are based on 

small sample sizes and report effects only on global measures of brain morphology or a 

priori-defined regions of interest, limiting their scope [12–14]. As a result, reported effects 

are heterogeneous and most likely difficult to reproduce [15]. Existing large-scale analyses 

on the isolated effects of individual risk factors (such as hypertension or obesity) do not 

account for the high covariance of MetS components driven by interacting 

pathophysiological effects, which may prevent them from capturing the whole picture of 

MetS as a risk factor composite [16–19]. In addition, analyses addressing the complex 

interrelationship of MetS, brain structure and cognitive functioning by investigating them in 

conjunction are scarce [8]. Lastly, while previous studies adopted a case-control design 
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treating MetS as a broad diagnostic category [10–12], a dimensional approach viewing MetS 

as a continuum could offer a more nuanced representation of the multivariate, continuous 

nature of the risk factor composite. 

Despite reports on MetS effects on brain structure, the determinants and spatial effect patterns 

remain unclear. A growing body of evidence shows that spatial patterns of brain pathology 

are shaped by multi-scale neurobiological processes, ranging from the cellular level to 

regional dynamics to large-scale brain networks [20]. Accordingly, disease effects can not 

only be driven by local properties, when local patterns of tissue composition predispose 

individual regions to pathology, but also by topological properties of structural and functional 

brain networks [20,21]. Guided by these concepts, multi-modal and multi-scale analysis 

approaches could advance our understanding of the mechanisms influencing MetS effects on 

cortical morphology. 

We argue that further research leveraging extensive clinical and brain imaging data is 

required to explore MetS effects on brain morphology. These examinations should integrate 

1) a research methodology that strikes a balance between resolving the multivariate 

connection of MetS and brain structure while accounting for the high covariance of MetS 

components; 2) the recognition of impaired cognitive function as a pertinent consequence of 

MetS; and 3) the analysis of the spatial effect pattern of MetS and its possible determinants. 

To meet these research needs, we investigated cortical thickness and subcortical volumetric 

measurements in a pooled sample of two large-scale population-based cohorts from the UK 

Biobank (UKB) and Hamburg City Health Study (HCHS) comprising in total 40,087 

participants. Partial least squares correlation (PLS) analysis was employed to characterize 

MetS effects on regional brain morphology. PLS is especially suitable for this research task 

as it identifies overarching latent relationships by establishing a data-driven multivariate 
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mapping between MetS components and brain morphometric indices. Furthermore, 

capitalizing on the cognitive phenotyping of both investigated cohorts, we examined the 

interrelation between MetS, cognitive function and brain structure in a mediation analysis. 

Finally, to uncover factors associated to brain region-specific MetS effects, we mapped local 

cellular as well as network topological attributes to observed MetS-associated cortical 

abnormalities. With this work, we aimed to advance the understanding of the fundamental 

principles underlying the neurobiology of MetS. 

2 Materials and methods  

2.1 Study population – the UK Biobank and Hamburg City Health Study 

Here, we investigated cross-sectional clinical and imaging data from two large-scale 

population-based cohort studies: 1) the UK Biobank (UKB, n = 39,668, age 45-80 years; 

application number 41655) and 2) the Hamburg City Health Study (HCHS, n = 2637, age 45-

74 years) [22,23]. Both studies recruit large study samples with neuroimaging data alongside 

a detailed demographic and clinical assessment. Respectively, data for the first visit including 

a neuroimaging assessment were included. Individuals were excluded if they had a history or 

a current diagnosis of neurological or psychiatric disease. Field IDs of the used UKB 

variables are presented in supplementary table S1. UKB individuals were excluded based on 

the non-cancer illnesses codes (http://biobank.ndph.ox.ac.uk/showcase/coding.cgi?id=6). 

Excluded conditions were Alzheimer’s disease; alcohol, opioid and other dependencies; 

amyotrophic lateral sclerosis; brain injury; brain abscess; chronic neurological problem; 

encephalitis; epilepsy; haemorrhage; head injury; meningitis; multiple sclerosis; Parkinson’s 

disease; skull fracture. Same criteria were applied on HCHS individuals based on the 

neuroradiological evaluation and self-reported diagnoses variables. To enhance comparability 

to previous studies we supplemented a case-control analysis enabling to complement 
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continuous multivariate statistical analyses by group statistics. Therefore, a MetS sample was 

identified based on the consensus definition of the International Diabetes Federation 

(supplementary text S2) and matched to a control cohort. 

2.2 Ethics approval 

The UKB was ethically approved by the North West Multi-Centre Research Ethics 

Committee (MREC). Details on the UKB Ethics and Governance framework are provided 

online (https://www.ukbiobank.ac.uk/media/0xsbmfmw/egf.pdf). The HCHS was approved 

by the local ethics committee of the Landesärztekammer Hamburg (State of Hamburg 

Chamber of Medical Practitioners, PV5131). Good Clinical Practice (GCP), Good 

Epidemiological Practice (GEP) and the Declaration of Helsinki were the ethical guidelines 

that governed the conduct of the HCHS [24]. Written informed consent was obtained from all 

participants investigated in this work.  

2.3 Clinical assessment 

In the UK Biobank, a battery of cognitive tests is administered, most of which represent 

shortened and computerized versions of established tests aiming for comprehensive and 

concise assessment of cognition [25]. From this battery we investigated tests for executive 

function and processing speed (Reaction Time Test, Symbol Digit Substitution Test, Tower 

Rearranging Test, Trail Making Tests A and B), memory (Numeric Memory Test, Paired 

Associate Learning Test, Prospective Memory Test) and reasoning (Fluid Intelligence Test, 

Matrix Pattern Completion Test). Detailed descriptions of the individual tests can be found 

elsewhere [26]. Furthermore, some tests (Matrix Pattern Completion Test, Numeric Memory 

Test, Paired Associate Learning Test, Symbol Digit Substitution Test, Trail Making Test and 

Tower Rearranging Test) are only administered to a subsample of the UKB imaging cohort 

explaining the missing test results for a subgroup of participants. 
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In the HCHS, cognitive testing was administered by a trained study nurse and included the 

Animal Naming Test, Trail Making Test A and B, Verbal Fluency and Word List Recall 

subtests of the Consortium to Establish a Registry for Alzheimer’s Disease 

Neuropsychological Assessment Battery (CERAD-Plus), as well as 

the Clock Drawing Test [27,28]. 

2.4 MRI acquisition 

The full UKB neuroimaging protocol can be found online 

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) [22]. MR images were 

acquired on a 3-T Siemens Skyra MRI scanner (Siemens, Erlangen, Germany). T1-weighted 

MRI used a 3D MPRAGE sequence with 1-mm isotropic resolution with the following 

sequence parameters: repetition time = 2000 ms, echo time = 2.01 ms, 256 axial slices, slice 

thickness = 1 mm, and in-plane resolution = 1 x 1 mm. In the HCHS, MR images were 

acquired as well on a 3-T Siemens Skyra MRI scanner. Measurements were performed with a 

protocol as described in previous work [24]. In detail, for 3D T1-weighted anatomical 

images, rapid acquisition gradient-echo sequence (MPRAGE) was used with the following 

sequence parameters: repetition time = 2500 ms, echo time = 2.12 ms, 256 axial slices, slice 

thickness = 0.94 mm, and in-plane resolution = 0.83 × 0.83 mm.  

2.5 Estimation brain morphological measures 

To achieve comparability and reproducibility, the preconfigured and containerized CAT12 

pipeline (CAT12.7 r1743; https://github.com/m-wierzba/cat-container) was employed for 

surface reconstruction and cortical thickness measurement building upon a projection-based 

thickness estimation method as well as computation of subcortical volumes [29]. Cortical 

thickness measures were normalized from individual to 32k fsLR surface space (conte69) to 

ensure vertex correspondence across subjects. Subcortical volumes were computed for the 
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Melbourne Subcortex Atlas parcellation resolution 1 [30]. Volumetric measures for the 

anterior and posterior thalamus parcel were averaged to obtain a single measure for the 

thalamus. Individuals with a CAT12 image quality rating lower than 75% were excluded 

during quality assessment. To facilitate large-scale data management while ensuring 

provenance tracking and reproducibility, we employed the DataLad-based FAIRly big 

workflow for image data processing [31]. 

2.6 Statistical analysis 

Statistical computations and plotting were performed in python 3.9.7 leveraging bctpy (v. 

0.6.0), brainstat (v. 0.3.6), brainSMASH (v. 0.11.0), the ENIGMA toolbox (v. 1.1.3). 

matplotlib (v. 3.5.1), neuromaps (v. 0.0.1), numpy (v. 1.22.3), pandas (v. 1.4.2), pingouin (v. 

0.5.1), pyls (v. 0.0.1), scikit-learn (v. 1.0.2), scipy (v. 1.7.3), seaborn (v. 0.11.2) as well as in 

matlab (v. 2021b) using ABAnnotate (v. 0.1.1). 

2.6.1 Partial least squares correlation analysis 

To relate MetS components and cortical morphology, we performed a PLS using pyls 

(https://github.com/rmarkello/pyls). PLS identifies covariance profiles that relate two sets of 

variables in a data-driven double multivariate analysis [32]. Here, we related regional cortical 

thickness and subcortical volumes to clinical measurements of MetS components, i.e., obesity 

(waist circumference, hip circumference, waist-hip ratio, body mass index), arterial 

hypertension (systolic blood pressure, diastolic blood pressure), dyslipidemia (high density 

lipoprotein, low density lipoprotein, total cholesterol, triglycerides) and insulin resistance 

(HbA1c, non-fasting blood glucose). Before conducting the PLS, missing values were 

imputed via k-nearest neighbor imputation (nneighbor = 4) with imputation only taking into 

account variables of the same group, i.e., MetS component variables were imputed based on 

the remaining MetS component data only and not based on demographic variables. To 
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account for age, sex, education and cohort (UKB/HCHS) as potential confounds, they were 

regressed out of brain morphological and MetS component data.  

We then performed PLS as described in previous work [33]. Methodological details are 

covered in figure 1a and supplementary text S3. Brain morphological measures were 

randomly permuted (nrandom = 5000) to assess statistical significance of derived latent 

variables and their corresponding covariance profiles. Subject-specific PLS scores, including 

a clinical score and an imaging score, were computed. Higher scores indicate stronger 

adherence to the respective covariance profiles: a high clinical score signifies pronounced 

expression of the clinical profile, and a high imaging score reflects marked adherence to the 

brain morphological profile. Bootstrap resampling (nbootstrap = 5000) was performed to assess 

the contribution of individual variables to the imaging-clinical relationship. Confidence 

intervals (95%) of singular vector weights were computed for clinical variables to assess the 

significance of their contribution. To estimate contributions of brain regions, bootstrap ratios 

were computed as the singular vector weight divided by the bootstrap-estimated standard 

error. A high bootstrap ratio is indicative of a region’s contribution, as a relevant region 

shows a high singular vector weight alongside a small standard error implying stability across 

bootstraps. The bootstrap ratio equals a z-score in case of a normally distributed bootstrap. 

Hence, brain region contributions were considered significant if the bootstrap ratio was >1.96 

or <-1.96 (95% confidence interval). Overall model robustness was assessed via a 10-fold 

cross-validation by correlating out-of-sample PLS scores within each fold. 

2.6.2 Mediation analysis 

In a post-hoc mediation analysis, we investigated how the subject-specific clinical PLS score 

of the first latent variable, reflecting the degree of an individual’s expression of the identified 

MetS risk profile, relates to cognitive test outcomes, and whether this relationship is 

influenced by the imaging PLS score of the first latent variable, which represents the degree 
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of brain morphological differences (figure 1b). This analysis allows to separate the total 

effect of the clinical PLS score on cognitive performance into: (1) a direct effect (the 

immediate impact of clinical scores on cognition), and (2) an indirect effect (the portion 

influenced by the imaging PLS score). This approach helps to disentangle the complex 

interplay between MetS and cognitive function by examining the role of brain structural 

effects as a potential intermediary. We considered an indirect effect as mediating if there was 

a significant association between the clinical and imaging PLS scores, the imaging PLS score 

was significantly associated to the cognitive outcome, and if the link between clinical scores 

and cognitive outcomes weakened (partial mediation) or became insignificant (full 

mediation) after accounting for imaging scores. The significance of mediation was assessed 

using bootstrapping (nbootstrap=5000), with models adjusted for age, sex, and education. To 

obtain standardized estimates, mediation analysis inputs were z-scored beforehand. Given the 

variation in cognitive test batteries between the UKB and HCHS cohorts, only individuals 

with results from the respective tests were considered in each mediation analysis. To account 

for the different versions of the Trail Making Tests A and B used in both cohorts, test results 

were harmonized through z-scoring within the individual subsamples before pooled z-

scoring. 

2.6.3 Contextualization analysis 

We investigated the link of MetS and regional brain morphological measurements in the 

context of cell-specific gene expression profiles and structural and functional brain network 

characteristics (figure 1c). Therefore, we used the Schaefer-parcellated (400x7 and 100x7, 

v.1) bootstrap ratio map and related it to indices representing different gene expression and 

network topological properties of the human cortex via spatial correlations (Spearman 

correlation, ���) on a group-level [34]. 
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Virtual histology analysis. We performed a virtual histology analysis leveraging gene 

transcription information to quantify the density of different cell populations across the cortex 

employing the ABAnnotate toolbox [35,36]. Genes corresponding with specific cell 

populations of the central nervous system were identified based on a classification derived 

from single nucleus-RNA sequencing data [37]. The gene-celltype mapping is provided by 

the PsychENCODE database 

(http://resource.psychencode.org/Datasets/Derived/SC_Decomp/DER-

19_Single_cell_markergenes_TPM.xlsx) [38]. The abagen toolbox (v. 0.1.3) was used to 

obtain regional microarray expression data of these genes for Schaefer100x7 parcels based on 

the Allen Human Brain Atlas (AHBA) [39]. The Schaefer100x7 atlas was used as it better 

matches the sampling density of the AHBA eventually resulting in no parcels with missing 

values. Regional expression patterns of genes corresponding to astrocytes, endothelial cells, 

excitatory neuron populations (Ex1-8), inhibitory neuron populations (In1-8), microglia, and 

oligodendrocytes were extracted. Instead of assessing the correspondence between MetS 

effects and the expression pattern of each gene directly, we employed ensemble-based gene 

category enrichment analysis (GCEA) [40]. This approach represents a modification to 

customary GCEA addressing the issues of gene-gene dependency through within-category 

co-expression which is caused by shared spatial embedding as well as spatial autocorrelation 

of cortical transcriptomics data. In brief, gene transcription indices were averaged within 

categories (here cell populations) and spatially correlated with the bootstrap ratio map. 

Statistical significance was assessed by comparing the empirical correlation coefficients 

against a null distribution derived from surrogate maps with preserved spatial embedding and 

autocorrelation computed via a spatial lag model [41]. Further details on the processing steps 

covered by ABAnnotate can be found elsewhere (https://osf.io/gcxun) [42]. 
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Brain network topology. To investigate the cortical MetS effects pattern in the context of 

brain network topology, three connectivity metrics were leveraged based on data from 

structural and functional brain imaging: weighted degree centrality, neighborhood 

abnormality as well as macroscale functional connectivity gradients as described previously 

[33]. These were computed based on functional and structural consensus connectomes on 

group-level derived from the Human Connectome Project Young Adults dataset comprised in 

the ENIGMA toolbox [43,44]. Computation and derivation of the metrics are described in the 

supplementary text S4. For this analysis, statistical significance of spatial correlations was 

assessed via spin permutations (n = 1,000) which represent a null model preserving the 

inherent spatial autocorrelation of cortical information [45]. Spin permutations are performed 

by projecting parcel-wise data onto a sphere which then is randomly rotated. After rotation, 

information is projected back on the surface and a permuted ��� is computed. A p-value is 

computed comparing the empirical correlation coefficient to the permuted distribution. To 

assure that our results do not depend on null model choice, we additionally tested our results 

against a variogram-based null model implemented in the brainSMASH toolbox 

(https://github.com/murraylab/brainsmash) as well as a network rewiring null model with 

preserved density and degree sequence [46,47].  

All p-values resulting from both contextualization analyses were FDR-corrected for multiple 

comparisons. As we conducted this study mindful of the reuse of our resources, the MetS 

effect maps are provided as separate supplementary files to enable further analyses. 

2.6.4 Sensitivity analyses 

For a sensitivity analysis, we reperformed the PLS separately within the UKB and HCHS 

cohorts. In contrast to the PLS main analysis, in these subset specific PLS analyses cognitive 

test performances were also incorporated as clinical variables as cognitive batteries were 
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subset specific. This approach was employed to evaluate the stability of the results and to 

determine if cognitive tests contribute to the latent variables. 

To test whether the PLS indeed captures the link of MetS and brain morphology, we 

conducted a group comparison as in previous studies of MetS. Besides descriptive group 

statistics, the cortical thickness of individuals with MetS and matched controls was compared 

on a surface vertex-level leveraging the BrainStat toolbox (v 0.3.6, 

https://brainstat.readthedocs.io/) [48]. A general linear model was applied correcting for age, 

sex, education and cohort effects. Vertex-wise p-values were FDR-corrected for multiple 

comparisons. To demonstrate the correspondence between the t-statistic and cortical 

bootstrap ratio maps, we related them via spatial correlation analyses. The t-statistic map was 

also used for sensitivity analysis of the virtual histology analysis and brain network 

contextualization. 

To ensure that the brain network contextualization results were not biased by the connectome 

choice, we reperformed the analysis with structural and functional group consensus 

connectomes based on resting-state functional and diffusion-weighted MRI data from the 

HCHS. The corresponding connectome reconstruction approaches were described elsewhere 

[33]. 

3 Results  

3.1 Sample characteristics 

Application of exclusion criteria and quality assessment ruled out 2,188 UKB subjects and 30 

HCHS subjects resulting in a final analysis sample of 40,087 individuals. For a flowchart 

providing details on the sample selection procedure please refer to supplementary figure S5. 

Descriptive statistics are listed in table 1. To sensitivity analyze our results, as well as to 
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facilitate the comparison with previous reports which primarily rely on a case-control design, 

we supplemented group statistics comparing individuals with clinically defined MetS and 

matched controls, where applicable. Corresponding group analysis results are described in 

more detail in supplementary materials S6-12. 

3.2 Partial least squares correlation analysis 

We investigated the relationship between brain morphological and clinical measures of MetS 

(abdominal obesity, arterial hypertension, dyslipidemia, insulin resistance) in a PLS 

considering all individuals from both studies (n=40,087). By this, we aimed to detect the 

continuous effect of any MetS component independent from a formal binary classification of 

MetS (present / not present). A correlation matrix relating all considered MetS component 

measures is displayed in supplementary figure S13. Before conducting the PLS, brain 

morphological and clinical data were deconfounded for age, sex, education and cohort 

effects.  

PLS identified seven significant latent variables which represent clinical-anatomical 

dimensions relating MetS components to brain morphology (supplementary table S14). The 

first latent variable explained 71.20% of shared variance and was thus further investigated 

(figure 2a). Specifically, the first latent variable corresponded with a covariance profile of 

lower severity of MetS (figure 2c; loadings [95% confidence interval]; waist circumference: -

.230 [-.239,-.221], hip circumference: -.187 [-.195,-.178], waist-hip ratio: -.167 [-.176,-.158], 

body mass index: -.234 [-.243,-.226], systolic blood pressure: -.089 [-.098,-.080], diastolic 

blood pressure: -.116 [-.125,-.107], high density lipoprotein: .099 [.090,.108], low density 

lipoprotein: -.013 [-.022,-.004],  total cholesterol: .003 [-.006,.012], triglycerides: -.102 [-

.111,-.092], HbA1c: -.064 [-.073,-0.54], glucose: -.049 [-.058,-.039]). Notably, the obesity-

related measures showed the strongest contribution to the covariance profile as indicated by 

the highest loading to the latent variable. Age (<.001 [-.009,.009]), sex (<.001 [-.009,.009]), 
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education (<.001 [-.009,.009]) and cohort (<-.001 [-.008,.007]) did not significantly 

contribute to the latent variable, which is compatible with sufficient effects of deconfounding. 

Details on the second latent variable which explained 22.33% of shared variance are provided 

in supplementary figure S15. In brief, it predominantly related lower HbA1c and blood 

glucose to higher thickness and volume in lateral frontal, posterior temporal, parietal and 

occipital regions and vice versa. 

Bootstrap ratios (�  
�������	 ��
��	 ������

������	������������ ������	� �		�	
) were computed to identify brain 

regions with a significant contribution to the covariance profile (see Methods). Cortical 

thickness in orbitofrontal, lateral prefrontal, insular, anterior cingulate and temporal areas as 

well as all volumes of all investigated subcortical regions contributed positively to the 

covariance profile as indicated by a positive bootstrap ratio (figure 2d). Thus, a higher 

cortical thickness and subcortical volume in these areas corresponded with less obesity, 

hypertension, dyslipidemia and insulin resistance and vice versa, i.e., lower cortical thickness 

and subcortical volumes with increased severity of MetS. A negative bootstrap ratio was 

found in superior frontal, parietal and occipital regions indicating that a higher cortical 

thickness in these regions corresponded with a more pronounced expression of MetS 

components. This overall pattern was confirmed via conventional, vertex-wise group 

comparisons of cortical thickness measurements based on the binary classification of 

individuals with MetS and matched controls (supplementary figure S12) as well as subsample 

analyses considering the UKB and HCHS participants independently (supplementary figure 

S16-17). The correlation matrix of all spatial effect maps investigated in this study (bootstrap 

ratio and Schaefer400-parcellated t-statistic from group comparisons) is visualized in 

supplementary figure S18. All derived effect size maps were significantly correlated (���=.67 

- .99, ���� < .05) [34]. 
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Subject-specific imaging and clinical scores for the first latent variable were computed. These 

scores indicate to which degree an individual expresses the corresponding covariance 

profiles. By definition, the scores are correlated (��� = .201, �<.005, figure 2b) indicating that 

individuals exhibiting the clinical covariance profile (severity of MetS components) also 

express the brain morphological pattern. This relationship was robust across a 10-fold cross-

validation (avg. ��� = .19, supplementary table S19). 

These results were consistent in separate PLS analyses for both the UKB and HCHS samples, 

as displayed in supplementary figures S16 and S17. In these subset-specific analyses, 

cognitive test performances significantly contributed to the first latent variable when included 

in the PLS. Consequently, the first latent variable associated more severe MetS with both 

brain morphological abnormalities and poorer cognitive performance. 

3.3 Mediation analysis of cognitive outcomes 

To gain a better understanding of the link between MetS, brain morphology, and cognitive 

function, we performed a mediation analysis on cognitive test results and subject-specific 

PLS scores. Therefore, we investigated whether the imaging PLS score (representing MetS-

related brain structural abnormalities) acts as a mediator in the relationship between the 

clinical PLS score (representing MetS severity) and cognitive test performances. Importantly, 

scores of  the main PLS analysis, which did not include cognitive measures, were considered. 

The corresponding path plots are shown in figure 3. The imaging score was found to fully 

mediate the relationship of the clinical score and results of the Trail Making Test B (ab = -

.011, PFDR < .001; c’ = -.012, PFDR =  .072; c = -0.023, PFDR < 0.001), Fluid Intelligence Test 

(ab = .017, PFDR < .001; c’ = .011, PFDR = .072; c = .028, PFDR < .001) as well as Matrix 

Pattern Completion Test (ab = .015, PFDR < .001; c’ = .010, PFDR = .172; c = .025, PFDR < 

.001). Further, the imaging score partially mediated the relationship of the clinical score and 

results of the Symbol Digit Substitution Test (ab = .010, PFDR < .001; c’ = .036, PFDR <  .001; 
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c = 0.046, PFDR < 0.001), Numeric Memory Test (ab = .014, PFDR < .001; c’ = .044, PFDR <  

.001; c = 0.058, PFDR < 0.001) and Paired Associate Learning Test (ab = .015, PFDR < .001; c’ 

= .044, PFDR <  .001; c = 0.059, PFDR < 0.001). For the remaining cognitive tests, no 

significant mediation was found. 

3.4 Contextualization of MetS-associated brain morphological abnormalities 

We investigated whether the pattern of MetS effects on cortical structure is conditioned by 

the regional density of specific cell populations and global brain network topology in a 

surface-based contextualization analysis (see Methods).  

Therefore, we first used a virtual histology approach to relate the bootstrap ratio from PLS to 

the differential expression of cell-type specific genes based on microarray data from the 

Allen Human Brain Atlas [49]. The results are illustrated in figure 4. The bootstrap ratio was 

significantly positively correlated with the density of endothelial cells (�	��
 = .190, ���� = 

.016), microglia (�	��
 = .271, ���� = .016), excitatory neurons type 8 (�	��

 = .165, ���� = 

.016), inhibitory neurons type 1 (�	��
 = .363, ���� = .036) and excitatory neurons type 6 

(�	��
 = .146, ���� = .034) indicating that MetS-related brain morphological abnormalities are 

strongest in regions of the highest density of these cell types. No significant associations were 

found with regard to the remaining excitatory neuron types (Ex1-Ex5, Ex7), inhibitory 

neurons (In2-In8), astrocytes and oligodendrocytes (supplementary table S20). Virtual 

histology analysis results for bootstrap ratios corresponding with latent variables 2 and 3 are 

shown in supplementary figure S21. As a sensitivity analysis, we contextualized the t-statistic 

map derived from group statistics. The results remained stable except for excitatory neurons 

type 6 (�	��
 = .145, ���� = .123) and inhibitory neurons type 1 (�	��

 = .432, ���� = .108), 

which no longer showed a significant association (supplementary materials S22-23). 
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Second, we associated the bootstrap ratio with three pre-selected measures of  brain network 

topology derived from group consensus functional and structural connectomes of the Human 

Connectome Project (HCP) (figure 5): weighted degree centrality (marking brain network 

hubs), neighborhood abnormality and macroscale functional connectivity gradients [33]. The 

bootstrap ratio showed a medium positive correlation with the functional neighborhood 

abnormality (��� = .464, ����� < .001, ������  < .001, �	���	�  < .001) and a strong positive 

correlation with the structural neighborhood abnormality (��� = .764, ����� = <.001, ������  < 

.001, �	���	�  < .001) indicating functional and structural interconnectedness of areas 

exhibiting similar MetS effects. These results remained significant when the t-statistic map 

was contextualized instead of the bootstrap ratio as well as when neighborhood abnormality 

measures were derived from consensus connectomes of the HCHS instead of the HCP 

(supplementary figure S24-25). We found no significant associations for the remaining 

indices of network topology, i.e., functional degree centrality (��� = .163, ����� = .365, 

������  = .406, �	���	� = .870), structural degree centrality (��� = .029, ����� = .423, ������  = 

.814, �	���	�  = .103) as well as functional cortical gradient 1 (��� = .152, ����� = .313, 

������  = .406, �	���	�  = .030)  and gradient 2 (��� = -.177, ����� = .313, ������  = .406, 

�	���	�  < .001).  

4 Discussion  

We investigated the impact of MetS on brain morphology and cognitive function in a large 

sample of individuals from two population-based neuroimaging studies. We report three main 

findings: 1) multivariate, data-driven statistics revealed a latent variable relating MetS and 

brain health: participants were distributed along a clinical-anatomical dimension of 

interindividual variability, linking more severe MetS to widespread brain morphological 

abnormalities. Negative MetS-related brain morphological abnormalities were strongest in 
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orbitofrontal, lateral prefrontal, insular, cingulate and temporal cortices as well as subcortical 

areas. Positive MetS-related brain morphological abnormalities were strongest in superior 

frontal, parietal and occipital regions. 2) The severity of MetS was associated with executive 

function and processing speed, memory, and reasoning test performances, and was found to 

be statistically mediated by MetS-related brain morphological abnormalities. 3) The pattern 

of MetS-related brain morphological abnormalities appeared to be linked to regional cell 

composition as well as functional and structural connectivity. These findings were robust 

across sensitivity analyses. In sum, our study provides an in-depth examination of the 

intricate relationship between MetS, brain morphology and cognition. 

4.1 PLS reveals a latent clinical-anatomical dimension relating MetS and brain health 

MetS adversely impacts brain health through complex, interacting effects on the cerebral 

vasculature and parenchyma as shown by histopathological and imaging studies [19]. The 

pathophysiology of MetS involves atherosclerosis, which affects blood supply and triggers 

inflammation [50,51]; endothelial dysfunction reducing cerebral vasoreactivity [52]; 

breakdown of the blood-brain barrier inciting an inflammatory response [53]; oxidative stress 

causing neuronal and mitochondrial dysfunction [54]; and small vessel injury leading to 

various pathologies including white matter damage, microinfarcts and cerebral microbleeds 

[55].   

To address these interacting effects, we harnessed multivariate, data-driven statistics in form 

of a PLS in two large-scale population-based studies to probe for covariance profiles relating 

the full range of MetS components (such as obesity or arterial hypertension) to regional brain 

morphological information in a single analysis. PLS identified seven significant latent 

variables with the first variable explaining the majority (71.20%) of shared variance within 

the imaging and clinical data (figure 2a). This finding indicates a relatively uniform 

connection between MetS and brain morphology, implying that the associative effects of 
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various MetS components on brain structure are comparatively similar, despite the distinct 

pathomechanisms each component entails. 

PLS revealed that all MetS components were contributing to this latent signature. However, 

waist circumference, hip circumference, waist-hip ratio and body mass index consistently 

contributed higher than the remaining variables across conducted analyses which highlights 

obesity as the strongest driver of MetS-related brain morphological abnormalities.  

We interpret these findings as evidence that MetS-associated conditions jointly contribute to 

the harmful effects on brain structure rather than affecting it in a strictly individual manner. 

This notion is supported by previous work in the UKB demonstrating overlapping effects of 

individual risk factors on cortical morphology [56]. Specifically, the first latent variable 

related increased severity of obesity, dyslipidemia, arterial hypertension and insulin 

resistance with lower thickness in orbitofrontal, lateral prefrontal, insular, cingulate and 

temporal cortices as well as lower volume across subcortical regions (figure 2c and d). This 

profile was consistent in separate PLS analyses of UKB and HCHS participants as well as 

group comparisons (supplementary figures S12 and S16-17). Previous research aligns with 

our detection of a MetS-associated frontotemporal morphometric abnormality pattern 

[9,13,57]. As a speculative causative pathway, human and animal studies have related the 

orbitofrontal, insular and anterior cingulate cortex to food-related reward processing, taste 

and impulse regulation [58,59]. Conceivably, structural alterations of these brain regions are 

linked to brain functions and behaviors that exacerbate the risk profile leading to MetS 

[60,61]. We also noted a positive MetS-cortical thickness association in superior frontal, 

parietal and occipital lobes, a less intuitive finding that has been previously reported [62,63]. 

Although speculative, the positive effects might be due to MetS compensating cholesterol 

disruptions associated with neurodegenerative processes [64].  
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The second latent variable accounted for 22.33% of shared variance and linked higher 

markers of insulin resistance and lower dyslipidemia to lower thickness and volume in lateral 

frontal, posterior temporal, parietal and occipital regions. The distinct covariance profile of 

this latent variable, compared to the first, likely indicates a separate pathomechanistic 

connection between MetS components and brain morphology. Given that HbA1c and blood 

glucose were the most significant contributors to this variable, insulin resistance might drive 

the observed clinical-anatomical relationship. 

4.2 Brain morphological abnormalities mediate the relationship between MetS and 

cognitive deficits 

Cognitive performance has been consistently linked to cardiometabolic risk factors in health 

and disease [65]. Yet, the pathomechanistic correlates of this relationship remain to be 

understood. Our mediation analysis revealed that increased MetS severity correlates with 

worse performance in executive function and processing speed (Symbol Digit Substitution 

Test, Trail Making Test B), memory (Numeric Memory Test, Paired Associate Learning 

Test), and reasoning (Fluid intelligence, Matrix Pattern Completion Test), with brain 

morphological abnormalities statistically mediating these relationships. Additionally, group 

comparisons indicated poorer cognitive performance in MetS subjects (supplementary tables 

S9-10) and including cognitive outcomes in the PLS as clinical variables revealed a 

significant contribution to the first latent variable (supplementary materials S16b and S17b). 

These results suggest that MetS is significantly associated with cognitive deficits across 

various domains, and brain morphological abnormalities are a crucial pathomechanistic link 

in this relationship. In support of this, previous studies have shown that brain structure 

mediates the relationship between MetS and cognitive performance in a pediatric sample and 

elderly patients with vascular cognitive impairment [66–68]. The detected latent variable 

might represent a continuous disease spectrum spanning from minor cognitive deficits due to 
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a cardiometabolic risk profile to severe cognitive deficits due to dementia. In support of this 

hypothesis, the determined brain morphological abnormality pattern is consistent with the 

atrophy pattern found in vascular mild cognitive impairment, vascular dementia and 

Alzheimer’s dementia [67–69].  

Collectively, these findings highlight the role of MetS in cognitive impairment and 

underscore the potential impact of therapies targeting cardiometabolic risk factors. Although 

the definitive role of such therapies in preventing cognitive decline is not yet fully 

established, emerging evidence suggests that these interventions can mitigate the adverse 

cognitive effects of MetS [70–72]. As our results highlight obesity as a key factor in the 

observed clinical-anatomical relationship, we think that future studies should further 

investigate weight-reducing interventions to examine their effects on cognitive outcomes. 

Advanced neuroimaging techniques promise to refine these therapeutic approaches by 

enabling to identify MetS patients at risk of cognitive decline that would benefit the most 

from targeted interventions for cognitive health protection. 

4.3 MetS-related brain morphological abnormalities link to cellular tissue composition 

and network topology 

To better understand the emergence of the spatial pattern of MetS-related brain 

morphological abnormalities, we conducted two contextualization analyses leveraging 

reference datasets of local gene expression data as well as properties of brain network 

topology. 

Using a virtual histology approach based on regional gene expression data, we investigated 

MetS effects in relation to cell population densities (figure 4).  As the main finding, we report 

that higher MetS-related brain morphological abnormalities coincide with a higher regional 

density of endothelial cells. This aligns with the known role of endothelial dysfunction in 
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MetS compromising tissues via chronic vascular inflammation, increased thrombosis risk and 

hypoperfusion due to altered vasoreactivity and vascular remodeling [52]. As endothelial 

density also indicates the degree of general tissue vascularization, well-vascularized regions 

are also likely more exposed to cardiometabolic risk factor effects in general [50]. Our results 

furthermore indicate that microglial density determines a brain region’s susceptibility to 

MetS effects. Microglia are resident macrophages of the central nervous system sustaining 

neuronal integrity by maintaining a healthy microenvironment. Animal studies have linked 

microglial activation mediated by blood-brain barrier leakage and systemic inflammation to 

cardiometabolic risk [73,74]. Activated microglia can harm the brain structure by releasing 

reactive oxygen species, proinflammatory cytokines and proteinases [75]. Lastly, we found 

an association with the density of excitatory neurons of subtype 8. These neurons reside in 

cortical layer 6 and their axons mainly entertain long-range cortico-cortical and cortico-

thalamic connections [37,76]. Consequently, layer 6 neurons might be particularly 

susceptible to MetS effects due to their exposition to MetS-related white matter disease 

[24,77]. Taken together, the virtual histology analysis indicates that MetS-related brain 

morphological abnormalities are associated to local cellular fingerprints. Our findings 

emphasize the involvement of endothelial cells and microglia in brain structural 

abnormalities due to cardiometabolic risk, marking them as potential targets for therapies 

aimed at mitigating MetS effects on brain health. 

For the second approach, we contextualized MetS-related brain morphological abnormalities 

using principal topological properties of functional and structural brain networks. We found 

that regional MetS effects and those of functionally and structurally connected neighbors 

were correlated (figure 5c and 5d) – i.e., areas with similar MetS effects tended to be 

disproportionately interconnected. Put differently, MetS effects coincided within functional 

and structural brain networks. Therefore, our findings can be interpreted as evidence that a 
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region’s functional and structural network embedding – i.e., its individual profile of 

functional interactions as well as white matter fiber tract connections – are associated to its 

susceptibility to morphological MetS effects. Multiple mechanisms might explain how 

connectivity might be associated to MetS-related morphological alterations. For example, 

microvascular pathology might impair white matter fiber tracts leading to joint degeneration 

in interconnected cortical brain areas: that is, the occurrence of shared MetS effects within 

functionally and structurally connected neighborhoods is explained by their shared (dis-

)connectivity profile [78]. In support of this, previous work using diffusion tensor imaging 

suggests that MetS-related microstructural white matter alterations preferentially occur in the 

frontal and temporal lobe, which spatially matches the frontotemporal morphometric 

differences observed in our work [79]. Furthermore, we speculate on an interplay between 

local and network-topological susceptibility in MetS: functional and structural connectivity 

may provide a scaffold for propagating MetS-related perturbation across the network in the 

sense of a spreading phenomenon – i.e., a region might be influenced by network-driven 

exposure to regions with higher local susceptibility. Observed degeneration of a region might 

be aggravated by malfunctional communication to other vulnerable regions including 

mechanisms of excitotoxicity, diminished excitation and metabolic stress [80]. These findings 

underscore the relevance of brain network organization in understanding the 

pathomechanistic link of MetS and brain morphology. 

While this work’s strengths lie in a large sample size, high-quality MRI and clinical data, 

robust image processing, and a comprehensive methodology for examining the link of MetS 

and brain health, it also has limitations. First, the virtual histology analysis relies on post-

mortem brain samples, potentially different from in-vivo profiles. In addition, the 

predominance of UKB subjects may bias the results, and potential reliability issues of the 

cognitive assessment in the UKB need to be acknowledged [81]. Lastly, the cross-sectional 
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design restricts the ability for demonstrating causative effects. Longitudinal assessment of the 

surveyed relationships would provide more robust evidence and therefore, future studies 

should move in this direction. 

5 Conclusion 

Our analysis revealed associative effects of MetS, structural brain integrity and cognition, 

complementing existing efforts to motivate and inform strategies for cardiometabolic risk 

reduction. In conjunction, a characteristic and reproducible structural imaging fingerprint 

associated with MetS was identified. This pattern of MetS-related brain morphological 

abnormalities was linked to local histological as well as global network topological features. 

Collectively, our results highlight how an integrative, multi-modal and multi-scale analysis 

approach can lead to a more holistic understanding of the neural underpinnings of MetS and 

its risk components. As research in this field advances, leveraging neuroimaging may 

improve personalized cardiometabolic risk mitigation approaches. 
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11 Figures 
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Figure 1. Methodology. a) Illustration of the partial least squares correlation analysis. 

Starting from two input matrices containing per-subject information of regional 

morphological measures as well as clinical data (demographic and MetS-related risk factors) 

a correlation matrix is computed. This matrix is subsequently subjected to singular value 

decomposition resulting in a set of mutually orthogonal latent variables. Latent variables each 

consist of a left singular vector (here, clinical covariance profile), singular value and right 

singular vector (here, imaging covariance profile). In addition, subject-specific clinical and 

imaging scores are computed. b) The interplay between MetS, brain structure and cognition 

was investigated in a post-hoc mediation analysis. We tested whether the relationship 

between the clinical score, representing MetS severity, and different cognitive test 

performances was statistically mediated by the imaging score. c) Contextualization analysis. 

Upper row: based on microarray gene expression data, the densities of different cell 

populations across the cortex were quantified. Middle and lower row: based on functional and 

structural group-consensus connectomes based on data from the Human Connectome Project, 

metrics of functional and structural brain network topology were derived. Cell density as well 

as connectomic measures were related to the bootstrap ratio via spatial correlations. Modified 

from Petersen et al. and Zeighami et al. [33,82]. 

Abbreviations: Astro – astrocytes; DWI – diffusion-weighted magnetic resonance imaging; 

Endo – endothelial cells; Ex – excitatory neuron populations (Ex1-8); In – inhibitory neuron 

populations (In1-8); Micro – microglia; Oligo – oligodendrocytes; rs-fMRI – resting-state 

functional magnetic resonance imaging; SVD – singular value decomposition. 
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Figure 2. Partial least squares (PLS) analysis. a) Explained variance and p-values of latent 

variables. b) Scatter plot relating subject-specific clinical and imaging PLS scores. Higher 

scores indicate higher adherence to the respective covariance profile. c) Clinical covariance 

profile. 95% confidence intervals were calculated via bootstrap resampling. Note that 

confound removal for age, sex, education and cohort was performed prior to the PLS. d) 

Imaging covariance profile represented by bootstrap ratio. A high positive or negative 

bootstrap ratio indicates high contribution of a brain region to the overall covariance profile. 

Vertices with a significant bootstrap ratio (> 1.96 or < -1.96) are highlighted by colors. 

Abbreviations:  - Spearman correlation coefficient.  
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Figure 3. Mediation analysis results. Mediation effects of subject-specific imaging PLS 

scores on the relationship between MetS represented by the clinical PLS score and cognitive 

test performances. Path plots display standardized effects and p-values: (a) clinical score to 

imaging score, (b) imaging score to cognitive score, (ab) indirect effect (c’) direct effect and 

(c) total effect. Significant paths are highlighted in blue; non-significant in light gray. If the 

indirect effect ab was significant, the text for ab is highlighted in blue. A blue dot in the path 

plot indicates if a relationship is significantly mediated, i.e., the indirect effect ab was 

significant and the direct effect c’ was reduced or non-significant compared to the total effect 

c. An empty dot indicates a partial mediation, a full dot indicates a full mediation. 

Abbreviations:  - false discovery rate-corrected p-values; PLS – partial least squares 

correlation; TMT-A – Trail Making Test A; TMT-B – Trail Making Test B. 
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Figure 4. Virtual histology analysis. The correspondence between MetS effects (bootstrap 

ratio) and cell type-specific gene expression profiles was examined via an ensemble-based 

gene category enrichment analysis. a) Barplot displaying spatial correlation results. The bar 

height displays the significance level. Colors encode the aggregate z-transformed Spearman 

correlation coefficient relating the Schaefer100-parcellated bootstrap ratio and respective cell 

population densities. Asterisks indicate statistical significance. The significance threshold of 

<.05 is highlighted by a vertical dashed line. b) Scatter plots illustrating spatial 

correlations between MetS effects and exemplary cortical gene expression profiles per cell 

population significantly associated across analyses – i.e., endothelium, microglia and 

excitatory neurons type 8. Top 5 genes most strongly correlating with the bootstrap ratio map 

were visualized for each of these cell populations. Icons in the bottom right of each scatter 

plot indicate the corresponding cell type. A legend explaining the icons is provided at the 
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bottom. First row: endothelium; second row: microglia; third row: excitatory neurons type 8. 

Virtual histology analysis results for the bootstrap ratios of latent variables 2 and 3 are shown 

in supplementary figure S21. A corresponding plot illustrating the contextualization of the t-

statistic derived from group statistics is shown in supplementary figure S22. Abbreviations: 

���	
����� – negative logarithm of the false discovery rate-corrected p-value derived from 

spatial lag models [36,41]; � – Spearman correlation coeffient. �
���� – aggregate z-

transformed Spearman correlation coefficient. 
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Figure 5. Brain network contextualization. Spatial correlation results derived from relating 

Schaefer400x7-parcellated maps of MetS effects (bootstrap ratio) to network topological 

indices (red: functional connectivity, blue: structural connectivity). Scatter plots that illustrate 

the spatial relationship are supplemented by respective surface plots for anatomical 

localization. The color coding of cortical regions and associated dots corresponds. a) & b) 

Functional and structural degree centrality rank. c) & d) Functional and structural 

neighborhood abnormality. e) & f) Intrinsic functional network hierarchy represented by 

functional connectivity gradients 1 and 2. Complementary results concerning t-statistic maps 
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derived from group comparisons between MetS subjects and controls are presented in 

supplementary figure S24. Corresponding results after reperforming the analysis with HCHS 

derived group-consensus connectomes are presented in supplementary figure S25. 

Abbreviations: HCHS – Hamburg City Health Study; �	���	�  - p-value derived from network 

rewiring [47]; ������  - p-value derived from brainSMASH surrogates [46]; ����� - p-value 

derived from spin permutation results [45]; ��� - Spearman correlation coefficient. 
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12 Tables 

Table 1. Descriptive statistics UKB and HCHS 

Metric  Stata 

Age (years) 63.55 ± 7.59 (40087) 

Sex (% female) 46.47 (40087) 

Education (ISCED) 2.62 ± 0.73 (39944) 

 

Metabolic syndrome components 

Waist circumference (cm) 88.47 ± 12.71 (38800) 

Hip circumference (cm) 100.90 ± 8.79 (38801) 

Waist-hip ratio 0.88 ± 0.09 (38800) 

Body mass index 26.47 ± 4.37 (38701) 

RRsystolic (mmHg) 138.30 ± 18.57 (31234) 

RRdiastolic (mmHg) 78.88 ± 10.09 (31238) 

Antihypertensive therapy (%) 6.96 (39976) 

HDL (mg/dL) 61.76 ± 23.69 (34468) 

LDL (mg/dL) 137.38 ± 36.29 (37456) 

Cholesterol (mg/dL) 211.29 ± 56.42 (37531) 

Triglycerides (mg/dL) 148.90 ± 83.84 (37510) 

Lipid lowering therapy (%) 14.44 (39976) 

HbA1c (%) 5.37 ± 0.48 (37284) 

Blood glucose (mg/dL) 90.29 ± 17.58 (34432) 

Antidiabetic therapy (%) 0.45 (39976) 
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Imaging 

Mean cortical thickness (mm) 2.40 ± 0.09 (40087) 

  

Cognitive variables of the UK Biobank  

Fluid Intelligence 6.63 ± 2.06 (36510) 

Matrix Pattern Completion 7.99 ± 2.13 (25771) 

Numeric Memory Test 6.69 ± 1.52 (26780) 

Paired Associate Learning 6.92 ± 2.63 (26048) 

Prospective Memory 1.07 ± 0.39 (37192) 

Reaction Time (sec) 594.16 ± 109.08 (37015) 

Symbol Digit Substitution 18.96 ± 5.25 (25810) 

Tower Rearranging Test 9.91 ± 3.23 (25555) 

Trail Making Test A (sec) 223.03 ± 86.51 (26048) 

Trail Making Test B (sec) 550.01 ± 270.09 (26048) 

  

Cognitive variables of the Hamburg City Health Study  

Animal Naming Test 24.78 ± 6.92 (2416) 

Clock Drawing Test 6.43 ± 1.12 (2479) 

Trail Making Test A (sec) 40.09 ± 14.33 (2290) 

Trail Making Test B (sec) 90.05 ± 37.30 (2264) 

Multiple-Choice Vocabulary Intelligence Test 31.27 ± 3.58 (2026) 

Word List Recall 7.75 ± 1.84 (2342) 

Abbreviations: cm = centimeter, dL = deciliter, HDL = high density lipoprotein, ISCED = International 
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Standard Classification of Education, mg = milligram, mm = millimeters, mmHg = millimeters of mercury, 

RR = Blood pressure, sec = seconds 

aPresented as mean ± SD (N) 
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