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Abstract

BACKGROUND—UIltrasound is indispensable to gestational age estimation and thus to quality
obstetrical care, yet high equipment cost and the need for trained sonographers limit its use in
low-resource settings.

METHODS—From September 2018 through June 2021, we recruited 4695 pregnant volunteers
in North Carolina and Zambia and obtained blind ultrasound sweeps (cineloop videos) of the
gravid abdomen alongside standard fetal biometry. We trained a neural network to estimate
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gestational age from the sweeps and, in three test data sets, assessed the performance of the
artificial intelligence (Al) model and biometry against previously established gestational age.

RESULTS—In our main test set, the mean absolute error (MAE) (£SE) was 3.9+0.12 days for
the model versus 4.7+0.15 days for biometry (difference, —0.8 days; 95% confidence interval [CI],
-1.1to —0.5; P<0.001). The results were similar in North Carolina (difference, —0.6 days; 95%
Cl, —0.9 to —-0.2) and Zambia (-1.0 days; 95% CI, —1.5 to —-0.5). Findings were supported in the
test set of women who conceived by in vitro fertilization (MAE of 2.8+0.28 vs. 3.6+0.53 days for
the model vs. biometry; difference, —0.8 days; 95% CI, —1.7 to 0.2) and in the set of women from
whom sweeps were collected by untrained users with low-cost, battery-powered devices (MAE of
4.9+0.29 vs. 5.4+0.28 days for the model vs. biometry; difference, —0.6; 95% ClI, —-1.3 t0 0.1).

CONCLUSIONS—When provided blindly obtained ultrasound sweeps of the gravid abdomen,
our Al model estimated gestational age with accuracy similar to that of trained sonographers
conducting standard fetal biometry. Model performance appears to extend to blind sweeps
collected by untrained providers in Zambia using low-cost devices. (Funded by the Bill and
Melinda Gates Foundation.)

Introduction

Accurate estimation of gestational age is fundamental to quality obstetrical care. Gestational
age is established as early as feasible in pregnancy and then used to determine the timing

of subsequent care.! Providers use gestational age to interpret abnormalities of fetal growth,
to plan referrals, and to decide if, or when, to intervene for fetal benefit. By convention,
gestational age is expressed as the time elapsed since the start of the last menstrual

period (LMP). Although easily solicited, self-reported LMP has long been recognized as
problematic.2 Some women may be uncertain of the LMP date. Some (perhaps most?)

will have a menstrual cycle that varies from the “normal” 28-day length with ovulation

on day 14. It is therefore considered best practice to confirm gestational age dating with

an ultrasound examination in early pregnancy.* This is achieved by fetal biometry, the
practice of measuring standard fetal structures and applying established formulas to estimate
gestational age.

Although it is ubiquitous in industrialized regions, obstetrical ultrasound is used infrequently
in low- and middle-income countries.> Reasons for this disparity include the expense

of traditional ultrasound machines, their requirement of reliable electrical power, the

need for obstetrics-trained sonographers to obtain images, and the need for expert
interpretation. However, two recent developments offer solutions to these obstacles. The
first is the expanding availability of point-of-care ultrasound devices. There are now
several manufacturers of battery-powered transducers that connect to a smartphone or
tablet computer and cost considerably less than a traditional ultrasound machine.8” The
second is rapid advancement in the field of computer vision. Deep-learning algorithms are
increasingly capable of interpreting medical images, and these artificial intelligence (Al)
models can be deployed on mobile devices.8:°
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The Fetal Age Machine Learning Initiative (FAMLI) is an ongoing project that is developing
technologies to expand obstetrical ultrasound access to low-income settings. Prospective
data collection commenced in September 2018 at two sites in Chapel Hill, North Carolina,
and in January 2019 at two sites in Lusaka, Zambia. For the present analysis, we

enrolled women who were at least 18 years of age, had a confirmed singleton intrauterine
pregnancy, and provided written informed consent. The study protocol and informed consent
documents were approved by the University of North Carolina Institutional Review Board,
the University of Zambia Biomedical Research Ethics Committee, and the Zambia National
Health Research Authority prior to initiation.

SONOGRAPHY

The study employed certified, obstetrics-trained sonographers, each of whom was
credentialled by the relevant authority in their respective country (i.e., the Health Professions
Council of Zambia or the American Registry for Diagnostic Medical Sonography).
Participants were recruited during prenatal care and completed a single study visit with

no required follow-up; however, we did allow repeat study visits no more frequently than
fortnightly. Evaluation was conducted with a commercial ultrasound machine (multiple
makes and models; Table S1 in the Supplementary Appendix). We performed fetal biometry
by crown rump length (if less than 14 weeks) or by biparietal diameter, head circumference,
abdominal circumference, and femur length (if 14 weeks or greater). Each fetal structure
was measured twice and the average taken.

During the same examination, we also collected a series of blind sweep cineloop videos.
These were free-hand sweeps with a two-dimensional probe, approximately 10 seconds

in length, across the gravid abdomen in multiple directions and using multiple probe
configurations. Craniocaudal sweeps started at the pubis and ended at the level of the uterine
fundus, with the probe indicator facing toward the maternal right either perpendicular (90°)
or angled (15 and 45°) to the line of probe movement. Lateral sweeps were performed

with the probe indicator facing superiorly, starting just above the pubis and sweeping

from the left to the right lateral uterine borders. Each subsequent lateral sweep moved
progressively cephalad until either the uterine fundus was reached or six sweeps were
obtained. Complete sets of blind sweep videos were collected by the study sonographer

on both the commercial ultrasound machine and a low-cost, battery-powered device
(Butterfly iQ; Butterfly Networks Inc., Guilford, CT). In June 2020, we began collecting

a third series of sweeps at the Zambia sites. These “novice blind sweeps” were obtained

by a nurse midwife with no training in sonography and included three sweeps in the
craniocaudal axis and three in the lateral axis with the low-cost probe (Video 1, available
at evidence.nejm.org). Before obtaining the sweeps, the novice measured the participant’s
symphysial-fundal height and set the depth parameter on the ultrasound device as follows:
fundus not palpable, 11-cm depth; fundus palpable but less than 25 cm, 13-cm depth; and
fundus 25 cm or greater, 15-cm depth.

Except for a small number of participants who had conceived by in vitro fertilization
(IVF), the “ground-truth” gestational age (i.e., gestational age established by the best
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method available for that participant) was established by the first ultrasound received. Our
approach differed somewhat by country according to prevailing care practices. At the North
Carolina sites, women presented early in pregnancy, and gestational age was set according
to the American College of Obstetricians and Gynecologists practice guidelines, which
incorporate fetal biometry from the first scan and the reported LMP.# At the Zambia sites,
women presented later in pregnancy,1? and the LMP was less reliable.11 We thus assigned
gestational age solely on the basis of the results of the first scan, an approach that antedates
the FAMLI protocol.12:13

TRAINING, TUNING, AND TESTING DATA SETS

Participants with viable singleton pregnancies enrolled between September 2018 and June
2021 were included in this study (Fig. 1). We applied participant-level exclusions to
women whose available medical records did not allow a ground-truth gestational age to

be established. We applied visit-level exclusions to study scans that did not contain at least
two blind sweep cineloops, were uninterpretable because of missing image metadata, or
were conducted before 9 weeks of gestation (because they were too infrequent to allow
model training). After applying exclusions, we apportioned the remaining data into five
nonoverlapping groups of participants to develop the deep-learning model (training and
tuning sets) and to evaluate its performance (three test sets).

The three test sets were created first. The I\VVF test set comprised women who conceived by
IVF (and thus whose gestational age was known with certainty); all were enrolled in North
Carolina. The novice test set contained women who contributed at least one study scan from
the novice blind sweep protocol; all were enrolled in Zambia. Our primary assessments were
made on an independent main test set, which was created as a simple random sample of 30%
of eligible women who remained after creation of the other test sets. It included participants
from both Zambia and North Carolina. After establishing the participant members of each
test set, we ensured that each woman contributed only a single study scan to her respective
test set through random selection (Fig. 1). Sensitivity analyses that include all participant
study scans are presented in Tables S3 and S4.

To be included in a test set, a pregnancy had to be dated by either a prior ultrasound

or IVF; this establishes the ground truth against which both the deep-learning model and
biometry are measured. In Zambia, a single ultrasound provided by the FAMLI protocol
may have been the only scan received. In North Carolina, a single ultrasound provided by
the FAMLI protocol may have been conducted on the same day as the participant’s clinical
dating ultrasound. In such cases without a prior gestational age benchmark, comparison of
the model’s estimate with that of biometry is not possible. Thus, these women were included
only in the data sets used for training. After creation of the three test sets, all remaining
participants were randomly allocated in a 4:1 ratio into a main training set (80%) and a
tuning set (20%).

TECHNICAL METHODS OF THE DEEP-LEARNING MODEL

Our deep-learning model received blind sweep cineloop videos as input and provided a
gestational age estimate as output. Details of the model architecture and its constituent parts,
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including preprocessing steps, training procedures and parameters, and inference procedure
are provided in Supplementary Appendix Section 1 and Fig. S1.

STATISTICAL ASSESSMENT OF DIAGNOSTIC ACCURACY

Results

Predictive performance of both the model and the biometry was assessed by comparing

each approach’s estimate with the previously established ground-truth gestational age. The
absolute difference between these quantities was the absolute error of the prediction. We
report the mean absolute error (MAE; +SE), along with the root mean squared error of each
approach. We used a paired t-test to assess the mean of the pairwise difference between the
model absolute error and the biometry absolute error (|Model Error| — |Biometry Error|). Our
null hypothesis was that the mean of this pairwise difference is zero; a negative mean of

the pairwise difference whose 95% confidence interval (Cl) does not include zero would
indicate that the Al model meets our definition of statistical superiority to biometry dating.

We compared the model MAE with that of biometry in the overall test data sets and in
subsets by geography (Zambia vs. North Carolina) and trimester (defined as 97 days or less,
98 to 195 days, or 196 days or more as dated by ground truth). We also plotted the empirical
cumulative distribution function (CDF) for the absolute error produced by the model and the
biometry. From the CDF, we compared the proportion of study scans in which the absolute
error was less than 7 or 14 days for the model versus biometry, using the McNemar test.
Wald-type 95% Cls for the difference in proportions were also computed. Finally, for the
novice test set only, we present the diagnostic accuracy of the LMP reported at the first
patient visit, because this is the relevant comparator for implementation of this technology
in low-resource settings. No formal statistical analysis plan was made for this diagnostic
study. The primary outcome is by default the model versus biometry in the main test set

and IVF test set. No multiplicity adjustments for the secondary and exploratory end points
were defined. Therefore, only point estimates and 95% Cls are provided. The Cls have not
been adjusted for multiple comparisons and should not be used to infer definitive diagnostic
accuracy.

From September 2018 through June 2021, 4695 participants contributed 8775 ultrasound
studies at the four research sites (Fig. 1). After applying participant- and visit-level
exclusions, we created the three test sets as follows: 716 participants (360 from North
Carolina and 356 from Zambia) formed the main test set, 47 participants (all from North
Carolina) formed the IVF test set, and 249 participants (all from Zambia) formed the
novice test set. As outlined earlier, participants were allowed to contribute only a single
study scan (chosen at random from all the scans contributed by a single woman) to their
respective test set. The 3509 participants who remained after creation of the test sets were
randomly apportioned into the main training and tuning sets in a 4:1 ratio. Collectively,
these women contributed 5958 study scans comprising 109,806 blind sweeps comprising
21,264,762 individual image frames for model training and tuning. Baseline characteristics
of the women included in the combined training sets and the three test sets are presented in
Table 1.
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MODEL VERSUS BIOMETRY IN THE MAIN TEST SET AND IVF TEST SET

In the main test set, the deep-learning model outperformed biometry, with an overall MAE
(xSE) of 3.9+0.12 days for the model versus 4.7+0.15 days for biometry (difference,

-0.8 days; 95% CI, -1.1 to —0.5; P<0.001; Fig. 2 and Table 2). The observed difference
manifested primarily in the third trimester, in which the mean of the pairwise difference in
absolute error was —1.3 days (95% CI, —1.8 to —0.8; P<0.001). On the basis of the empirical
CDF, the percentage of study scans that were correctly classified within 7 days was higher
for the model than for biometry (86.0% vs. 77.0%; difference, 9.1 percentage points; 95%
Cl, 5.7 to 12.5 percentage points; P<0.001). The model similarly outperformed biometry
using a 14-day classification window (98.9% vs. 96.9%; difference, 2.0 percentage points;
95% ClI, 0.5 to 3.4 percentage points; P = 0.01). In a sensitivity analysis limiting the main
test set to women whose pregnancy was dated by a first trimester ultrasound (322 from
North Carolina and 31 from Zambia), the model performed favorably (Fig. S4 and Table
S5), with an MAE (+SE) of 3.5+0.15 days for the model versus 4.0+0.20 days for biometry
(difference, —0.5 days; 95% ClI, —-0.9 to —0.2).

Among the 47 study scans in the IVF test set, the MAE (£SE) was 2.8+0.28 days for the
model compared with 3.6+0.53 days for biometry (difference, —0.8 days; 95% CI, -1.7 to
0.2; P=0.10). As was observed in the main test set, the difference was most pronounced in
the third trimester, in which the estimated mean of the pairwise difference in absolute error
was —2.0 days. On the basis of the empirical CDF, the proportion of study scans that were
classified correctly within 7 days was higher for the model than for biometry (95.7% vs.
83.0%). Owing to the small sample size in our IVF test set, we did not perform statistical
tests on the difference by trimester or the difference in proportion. Both the model and
biometry categorized 100% of cases correctly within 14 days ( Table 2).

MODEL VERSUS BIOMETRY AND LMP IN THE NOVICE TEST SET

The novice test set contains 249 sets of blind sweeps obtained on the Butterfly iQ battery-
powered device by an untrained user (Fig. 3 and Table S2). A total of eight untrained users
(all nurse midwives) participated. As described earlier, we compared model estimates with
biometry obtained by a trained sonographer on a commercial ultrasound machine. We also
compared the model estimates with the gestational age that would have been calculated had
only the LMP been available (as is overwhelmingly the case in Zambia). In the novice test
set, the model and biometry performed similarly, with an overall MAE (£SE) of 4.9+0.29
days for the model versus 5.4+0.28 days for biometry (difference, —0.6 days; 95% ClI, -1.3
to 0.1). However, when compared with the LMP, the model was clearly superior, with an
MAE of 4.9+0.29 days versus 17. 4+1.17 days for the LMP (difference, —12.7 days; 95%
Cl, -15.0 to —10.3). On the basis of the empirical CDF, the percentage of study scans that
were correctly classified within 7 days was substantially higher for the model than for the
LMP (75.1% vs. 40.1%; difference, 36.1 percentage points; 95% Cl, 28.0 to 44.2 percentage
points). The model similarly outperformed the LMP using a 14-day classification window
(95.6% vs. 55.1%; difference, 40.5 percentage points; 95% CI, 33.9 to 47.1 percentage
points).

NEJIM Evid. Author manuscript; available in PMC 2023 March 02.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Pokaprakarn et al.

Page 7

Discussion

Quality obstetrical care requires accurate knowledge of gestational age. We built a deep-
learning model that can perform this critical assessment from blindly obtained ultrasound
sweeps of the gravid abdomen. Expressed as the MAE or as the percentage of estimates
that fall within 7 or 14 days of a previously defined ground-truth gestational age, the model
performance is superior to that of a trained sonographer performing fetal biometry on the
same day. Results were consistent across geographic sites and were supported in a test set
of women who conceived by IVF (whose ground-truth gestational age was unequivocally
established) and in a test set of women from whom the ultrasound blind sweeps were
obtained by a novice provider using a low-cost, battery-powered device.

This research addresses a shortcoming in the delivery of obstetrical care in low- and middle-
income countries. In the Lusaka public sector, which is typical of care systems across the
sub-Saharan Africa and parts of Asia, few women have access to ultrasound pregnancy
dating, and the median gestational age at presentation for antenatal care is 23 weeks
(interquartile range, 19 to 26 weeks).10 This means that each year in the city of Lusaka,
more than 100,000 pregnancies* must be managed with an unacceptably low level of
gestational age precision (Fig. 3).11.15 The availability of a resource-appropriate technology
that could assign gestational age in the late second and third trimesters with reasonable
accuracy could provide those caring for these expectant mothers a higher standard of care
than is currently available.

This study collected thousands of images from each participant in the form of blind sweeps.
Each cineloop frame in the sweep is itself a two-dimensional ultrasound image that is
provided to the neural network during training. Although most of these frames would be
considered clinically suboptimal views, the sheer number of them (more than 21 million)
provides a comprehensive picture of the developing fetus from multiple angles across

the spectrum of gestational age. Considered as individual images rather than participants,
studies, or sweeps, our training set is two orders of magnitude larger than most of the
prior high-profile applications of deep learning to medical imaging.16-1% As we have
verified through manual review, it is rare for a blind sweep to contain the ideal image
planes necessary for standard fetal biometry. Although the nature of the deep-learning
algorithm is such that we do not know exactly which image features the model uses to
make its predictions, it seems likely to be incorporating many facets of the available data
to accomplish its task, rather than simply mimicking that which is acquired when a trained
sonographer performs biometry. The very large sample of training images may also help
explain the model’s excellent performance even though our Zambian training data include
some studies from women who presented late for care and whose clinically established
gestational age was therefore imprecisely estimated.

Strengths of this study include its prospective nature and bespoke blind sweep sonography
procedures. We used several different makes and models of ultrasound scanners for

data collection, a feature that likely bolsters the model’s generalizability. Although this
technology seems primarily suited for low-resource settings, we included participants from
North Carolina to increase the heterogeneity in our training sets. We see combining these
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disparate populations in model training as an overall strength of the research, but note

that our design does not include a truly external validation cohort. Although we did not
deliberately impose a lower gestational age limit on enrollment, our data set includes very
few scans at less than 9 gestational weeks, and we thus are unable to make estimates

below this threshold. Data were similarly sparse beyond 37 weeks (term gestation), and

the model appears to systematically underestimate gestational age beyond this point in the
novice test set. We note, however, that this limitation would only affect that minority of
women who attend prenatal care but have no visits between 9 and 37 weeks. From our prior
population-based study of 115,552 pregnancies in Lusaka, less than 1% of women would
meet these criteria.10 Finally, we acknowledge that a blind sweep approach to obstetrical
sonography would be a departure from current diagnostic practices and might be seen as a
threat to diagnostic capacity building in low-resource settings. However, the technology has
the capacity to fill a real gap in obstetrics care within currently available resources.

Our data show that Al can estimate gestational age from a series of blindly obtained
ultrasound sweeps with accuracy similar to that of a trained sonographer conducting
standard biometry. This performance appears to extend to sweeps collected by untrained
providers in Zambia using low-cost ultrasound devices. Whether this technology can be
successfully disseminated into extant health care systems in low-resource settings will
require further study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Eligible participants enrolled
through June 1, 2021

4695 Participants
8775 Studies

Participant-level 5 ,, :

—> il 64 “Ground truth” GA could not be established
visitlevel 80 Insufficient blind sweeps available

— lusi 10 Missing metadata on pixel spacing

! schsions 183 Scan conducted at <9 wk

Y
4521 Participants
8385 Studies

v v

Training Sets
3509 Participants 1012 Participants
5958 Studies 1687 Studies

(Zambia and North Carolina) il (Zambia and North Carolina) il (Zambia and North Carolina) Set (North Carolina only) (Zambia only)

Sonographer acquisition Sonographer acquisition Sonographer acquisition Sonographer acquisition Untrained user acquisition

Commercial and low-cost i . - : .

dlﬂ,i i Commert;::’;:r:: fow:cost Commercial device Commercial device Low-cost device

2807 Participants 702 Participants 716 Participants 47 Participants 249 Participants
4770 Studies 1188 Studies 1278 Studies 79 Studies 330 Studies

¢ One study scan per participant i Selected at random l

IVF Test S Novie Tet e

716 Participants 47 Participants 249 Participants
716 Studies 47 Studies 249 Studies

Figure 1. Study Flow Chart.
After applying participant and visit-level exclusions, we created 2 training sets to develop

and tune the deep learning model and 3 test sets to assess its performance. To be eligible

for inclusion in a test set a participant must have at least one study with both blind sweeps
and sonographer-acquired biometry available and have their “ground truth” gestational age
(GA) established by a prior scan or in vitro fertilization (IVF). The IVF test set comprises all
participants who conceived by IVF. The novice test set comprises all participants in whom
at least one study visit included sweeps collection by a novice user on a low-cost device.
(There were 8 such novices; all were nurse midwives.) The main test set was selected at
random from among all remaining eligible participants Some participants apportioned to the
test sets had contributed more than one study scan; in such cases we selected a single study
scan at random. The training sets comprise all participants who remain after creation of the
test sets and were split randomly, by participant, in a 4:1 ratio, into a main training set and a
tuning set.
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Figure 2. Model Versus Biometry in the Main Test Set and | VF Test Set.

asolid line indicates y = x, ? dashed horizontal lines represent expected error

bounds of ultrasound biometry according to the American College of Obstetricians and

Gynecologists.# In Zambia, “ground truth” gestational age is defined by the first ultrasound.
In North Carolina it is defined by an algorithm incorporating both the last menstrual period
and the first ultrasound* (main test set) or by the known fertilization date (I\VF test set). GA
denotes gestational age and IVF in vitro fertilization.
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@ dashed horizontal lines represent expected error bounds of ultrasound biometry according
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participants who could not recall their LMP € 13 studies from GA by LMP excluded

from the plot because the absolute error is truncated at 49 days In Zambia, “ground truth”
gestational age is defined by the first ultrasound. GA denotes gestational age and LMP last
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