
AI Estimation of Gestational Age from Blind Ultrasound Sweeps 
in Low-Resource Settings

Teeranan Pokaprakarn, Ph.D.1, Juan C. Prieto, Ph.D.2, Joan T. Price, M.D., M.P.H.3,4, 
Margaret P. Kasaro, M.D., M.P.H.3,5, Ntazana Sindano, B.Sc.3, Hina R. Shah, M.S.2, Marc 
Peterson, M.S.4, Mutinta M. Akapelwa, B.Sc.3, Filson M. Kapilya, B.Sc.3, Yuri V. Sebastião, 
Ph.D.4, William Goodnight III, M.D., M.S.4, Elizabeth M. Stringer, M.D., M.Sc.4, Bethany L. 
Freeman, M.P.H., M.S.W.4, Lina M. Montoya, Ph.D.1, Benjamin H. Chi, M.D., M.Sc.3,4, Dwight 
J. Rouse, M.D., M.S.P.H.6, Stephen R. Cole, Ph.D.7, Bellington Vwalika, M.D., M.Sc.4,5, 
Michael R. Kosorok, Ph.D.1, Jeffrey S. A. Stringer, M.D.3,4

1Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, 
Chapel Hill, NC

2Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC

3UNC Global Projects-Zambia, LLC, Lusaka, Zambia

4Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, 
Chapel Hill, NC

5Department of Obstetrics and Gynaecology, University of Zambia School of Medicine, Lusaka, 
Zambia

6Department of Obstetrics and Gynecology, Warren Alpert Medical School, Brown University, 
Providence, RI

7Department of Epidemiology, University of North Carolina Gillings School of Global Public 
Health, Chapel Hill, NC

Abstract

BACKGROUND—Ultrasound is indispensable to gestational age estimation and thus to quality 

obstetrical care, yet high equipment cost and the need for trained sonographers limit its use in 

low-resource settings.

METHODS—From September 2018 through June 2021, we recruited 4695 pregnant volunteers 

in North Carolina and Zambia and obtained blind ultrasound sweeps (cineloop videos) of the 

gravid abdomen alongside standard fetal biometry. We trained a neural network to estimate 
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gestational age from the sweeps and, in three test data sets, assessed the performance of the 

artificial intelligence (AI) model and biometry against previously established gestational age.

RESULTS—In our main test set, the mean absolute error (MAE) (±SE) was 3.9±0.12 days for 

the model versus 4.7±0.15 days for biometry (difference, −0.8 days; 95% confidence interval [CI], 

−1.1 to −0.5; P<0.001). The results were similar in North Carolina (difference, −0.6 days; 95% 

CI, −0.9 to −0.2) and Zambia (−1.0 days; 95% CI, −1.5 to −0.5). Findings were supported in the 

test set of women who conceived by in vitro fertilization (MAE of 2.8±0.28 vs. 3.6±0.53 days for 

the model vs. biometry; difference, −0.8 days; 95% CI, −1.7 to 0.2) and in the set of women from 

whom sweeps were collected by untrained users with low-cost, battery-powered devices (MAE of 

4.9±0.29 vs. 5.4±0.28 days for the model vs. biometry; difference, −0.6; 95% CI, −1.3 to 0.1).

CONCLUSIONS—When provided blindly obtained ultrasound sweeps of the gravid abdomen, 

our AI model estimated gestational age with accuracy similar to that of trained sonographers 

conducting standard fetal biometry. Model performance appears to extend to blind sweeps 

collected by untrained providers in Zambia using low-cost devices. (Funded by the Bill and 

Melinda Gates Foundation.)

Introduction

Accurate estimation of gestational age is fundamental to quality obstetrical care. Gestational 

age is established as early as feasible in pregnancy and then used to determine the timing 

of subsequent care.1 Providers use gestational age to interpret abnormalities of fetal growth, 

to plan referrals, and to decide if, or when, to intervene for fetal benefit. By convention, 

gestational age is expressed as the time elapsed since the start of the last menstrual 

period (LMP). Although easily solicited, self-reported LMP has long been recognized as 

problematic.2 Some women may be uncertain of the LMP date. Some (perhaps most3) 

will have a menstrual cycle that varies from the “normal” 28-day length with ovulation 

on day 14. It is therefore considered best practice to confirm gestational age dating with 

an ultrasound examination in early pregnancy.4 This is achieved by fetal biometry, the 

practice of measuring standard fetal structures and applying established formulas to estimate 

gestational age.

Although it is ubiquitous in industrialized regions, obstetrical ultrasound is used infrequently 

in low- and middle-income countries.5 Reasons for this disparity include the expense 

of traditional ultrasound machines, their requirement of reliable electrical power, the 

need for obstetrics-trained sonographers to obtain images, and the need for expert 

interpretation. However, two recent developments offer solutions to these obstacles. The 

first is the expanding availability of point-of-care ultrasound devices. There are now 

several manufacturers of battery-powered transducers that connect to a smartphone or 

tablet computer and cost considerably less than a traditional ultrasound machine.6,7 The 

second is rapid advancement in the field of computer vision. Deep-learning algorithms are 

increasingly capable of interpreting medical images, and these artificial intelligence (AI) 

models can be deployed on mobile devices.8,9
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Methods

The Fetal Age Machine Learning Initiative (FAMLI) is an ongoing project that is developing 

technologies to expand obstetrical ultrasound access to low-income settings. Prospective 

data collection commenced in September 2018 at two sites in Chapel Hill, North Carolina, 

and in January 2019 at two sites in Lusaka, Zambia. For the present analysis, we 

enrolled women who were at least 18 years of age, had a confirmed singleton intrauterine 

pregnancy, and provided written informed consent. The study protocol and informed consent 

documents were approved by the University of North Carolina Institutional Review Board, 

the University of Zambia Biomedical Research Ethics Committee, and the Zambia National 

Health Research Authority prior to initiation.

SONOGRAPHY

The study employed certified, obstetrics-trained sonographers, each of whom was 

credentialled by the relevant authority in their respective country (i.e., the Health Professions 

Council of Zambia or the American Registry for Diagnostic Medical Sonography). 

Participants were recruited during prenatal care and completed a single study visit with 

no required follow-up; however, we did allow repeat study visits no more frequently than 

fortnightly. Evaluation was conducted with a commercial ultrasound machine (multiple 

makes and models; Table S1 in the Supplementary Appendix). We performed fetal biometry 

by crown rump length (if less than 14 weeks) or by biparietal diameter, head circumference, 

abdominal circumference, and femur length (if 14 weeks or greater). Each fetal structure 

was measured twice and the average taken.

During the same examination, we also collected a series of blind sweep cineloop videos. 

These were free-hand sweeps with a two-dimensional probe, approximately 10 seconds 

in length, across the gravid abdomen in multiple directions and using multiple probe 

configurations. Craniocaudal sweeps started at the pubis and ended at the level of the uterine 

fundus, with the probe indicator facing toward the maternal right either perpendicular (90°) 

or angled (15 and 45°) to the line of probe movement. Lateral sweeps were performed 

with the probe indicator facing superiorly, starting just above the pubis and sweeping 

from the left to the right lateral uterine borders. Each subsequent lateral sweep moved 

progressively cephalad until either the uterine fundus was reached or six sweeps were 

obtained. Complete sets of blind sweep videos were collected by the study sonographer 

on both the commercial ultrasound machine and a low-cost, battery-powered device 

(Butterfly iQ; Butterfly Networks Inc., Guilford, CT). In June 2020, we began collecting 

a third series of sweeps at the Zambia sites. These “novice blind sweeps” were obtained 

by a nurse midwife with no training in sonography and included three sweeps in the 

craniocaudal axis and three in the lateral axis with the low-cost probe (Video 1, available 

at evidence.nejm.org). Before obtaining the sweeps, the novice measured the participant’s 

symphysial-fundal height and set the depth parameter on the ultrasound device as follows: 

fundus not palpable, 11-cm depth; fundus palpable but less than 25 cm, 13-cm depth; and 

fundus 25 cm or greater, 15-cm depth.

Except for a small number of participants who had conceived by in vitro fertilization 

(IVF), the “ground-truth” gestational age (i.e., gestational age established by the best 
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method available for that participant) was established by the first ultrasound received. Our 

approach differed somewhat by country according to prevailing care practices. At the North 

Carolina sites, women presented early in pregnancy, and gestational age was set according 

to the American College of Obstetricians and Gynecologists practice guidelines, which 

incorporate fetal biometry from the first scan and the reported LMP.4 At the Zambia sites, 

women presented later in pregnancy,10 and the LMP was less reliable.11 We thus assigned 

gestational age solely on the basis of the results of the first scan, an approach that antedates 

the FAMLI protocol.12,13

TRAINING, TUNING, AND TESTING DATA SETS

Participants with viable singleton pregnancies enrolled between September 2018 and June 

2021 were included in this study (Fig. 1). We applied participant-level exclusions to 

women whose available medical records did not allow a ground-truth gestational age to 

be established. We applied visit-level exclusions to study scans that did not contain at least 

two blind sweep cineloops, were uninterpretable because of missing image metadata, or 

were conducted before 9 weeks of gestation (because they were too infrequent to allow 

model training). After applying exclusions, we apportioned the remaining data into five 

nonoverlapping groups of participants to develop the deep-learning model (training and 

tuning sets) and to evaluate its performance (three test sets).

The three test sets were created first. The IVF test set comprised women who conceived by 

IVF (and thus whose gestational age was known with certainty); all were enrolled in North 

Carolina. The novice test set contained women who contributed at least one study scan from 

the novice blind sweep protocol; all were enrolled in Zambia. Our primary assessments were 

made on an independent main test set, which was created as a simple random sample of 30% 

of eligible women who remained after creation of the other test sets. It included participants 

from both Zambia and North Carolina. After establishing the participant members of each 

test set, we ensured that each woman contributed only a single study scan to her respective 

test set through random selection (Fig. 1). Sensitivity analyses that include all participant 

study scans are presented in Tables S3 and S4.

To be included in a test set, a pregnancy had to be dated by either a prior ultrasound 

or IVF; this establishes the ground truth against which both the deep-learning model and 

biometry are measured. In Zambia, a single ultrasound provided by the FAMLI protocol 

may have been the only scan received. In North Carolina, a single ultrasound provided by 

the FAMLI protocol may have been conducted on the same day as the participant’s clinical 

dating ultrasound. In such cases without a prior gestational age benchmark, comparison of 

the model’s estimate with that of biometry is not possible. Thus, these women were included 

only in the data sets used for training. After creation of the three test sets, all remaining 

participants were randomly allocated in a 4:1 ratio into a main training set (80%) and a 

tuning set (20%).

TECHNICAL METHODS OF THE DEEP-LEARNING MODEL

Our deep-learning model received blind sweep cineloop videos as input and provided a 

gestational age estimate as output. Details of the model architecture and its constituent parts, 
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including preprocessing steps, training procedures and parameters, and inference procedure 

are provided in Supplementary Appendix Section 1 and Fig. S1.

STATISTICAL ASSESSMENT OF DIAGNOSTIC ACCURACY

Predictive performance of both the model and the biometry was assessed by comparing 

each approach’s estimate with the previously established ground-truth gestational age. The 

absolute difference between these quantities was the absolute error of the prediction. We 

report the mean absolute error (MAE; ±SE), along with the root mean squared error of each 

approach. We used a paired t-test to assess the mean of the pairwise difference between the 

model absolute error and the biometry absolute error (|Model Error| − |Biometry Error|). Our 

null hypothesis was that the mean of this pairwise difference is zero; a negative mean of 

the pairwise difference whose 95% confidence interval (CI) does not include zero would 

indicate that the AI model meets our definition of statistical superiority to biometry dating.

We compared the model MAE with that of biometry in the overall test data sets and in 

subsets by geography (Zambia vs. North Carolina) and trimester (defined as 97 days or less, 

98 to 195 days, or 196 days or more as dated by ground truth). We also plotted the empirical 

cumulative distribution function (CDF) for the absolute error produced by the model and the 

biometry. From the CDF, we compared the proportion of study scans in which the absolute 

error was less than 7 or 14 days for the model versus biometry, using the McNemar test. 

Wald-type 95% CIs for the difference in proportions were also computed. Finally, for the 

novice test set only, we present the diagnostic accuracy of the LMP reported at the first 

patient visit, because this is the relevant comparator for implementation of this technology 

in low-resource settings. No formal statistical analysis plan was made for this diagnostic 

study. The primary outcome is by default the model versus biometry in the main test set 

and IVF test set. No multiplicity adjustments for the secondary and exploratory end points 

were defined. Therefore, only point estimates and 95% CIs are provided. The CIs have not 

been adjusted for multiple comparisons and should not be used to infer definitive diagnostic 

accuracy.

Results

From September 2018 through June 2021, 4695 participants contributed 8775 ultrasound 

studies at the four research sites (Fig. 1). After applying participant- and visit-level 

exclusions, we created the three test sets as follows: 716 participants (360 from North 

Carolina and 356 from Zambia) formed the main test set, 47 participants (all from North 

Carolina) formed the IVF test set, and 249 participants (all from Zambia) formed the 

novice test set. As outlined earlier, participants were allowed to contribute only a single 

study scan (chosen at random from all the scans contributed by a single woman) to their 

respective test set. The 3509 participants who remained after creation of the test sets were 

randomly apportioned into the main training and tuning sets in a 4:1 ratio. Collectively, 

these women contributed 5958 study scans comprising 109,806 blind sweeps comprising 

21,264,762 individual image frames for model training and tuning. Baseline characteristics 

of the women included in the combined training sets and the three test sets are presented in 

Table 1.
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MODEL VERSUS BIOMETRY IN THE MAIN TEST SET AND IVF TEST SET

In the main test set, the deep-learning model outperformed biometry, with an overall MAE 

(±SE) of 3.9±0.12 days for the model versus 4.7±0.15 days for biometry (difference, 

−0.8 days; 95% CI, −1.1 to −0.5; P<0.001; Fig. 2 and Table 2). The observed difference 

manifested primarily in the third trimester, in which the mean of the pairwise difference in 

absolute error was −1.3 days (95% CI, −1.8 to −0.8; P<0.001). On the basis of the empirical 

CDF, the percentage of study scans that were correctly classified within 7 days was higher 

for the model than for biometry (86.0% vs. 77.0%; difference, 9.1 percentage points; 95% 

CI, 5.7 to 12.5 percentage points; P<0.001). The model similarly outperformed biometry 

using a 14-day classification window (98.9% vs. 96.9%; difference, 2.0 percentage points; 

95% CI, 0.5 to 3.4 percentage points; P = 0.01). In a sensitivity analysis limiting the main 

test set to women whose pregnancy was dated by a first trimester ultrasound (322 from 

North Carolina and 31 from Zambia), the model performed favorably (Fig. S4 and Table 

S5), with an MAE (±SE) of 3.5±0.15 days for the model versus 4.0±0.20 days for biometry 

(difference, −0.5 days; 95% CI, −0.9 to −0.2).

Among the 47 study scans in the IVF test set, the MAE (±SE) was 2.8±0.28 days for the 

model compared with 3.6±0.53 days for biometry (difference, −0.8 days; 95% CI, −1.7 to 

0.2; P=0.10). As was observed in the main test set, the difference was most pronounced in 

the third trimester, in which the estimated mean of the pairwise difference in absolute error 

was −2.0 days. On the basis of the empirical CDF, the proportion of study scans that were 

classified correctly within 7 days was higher for the model than for biometry (95.7% vs. 

83.0%). Owing to the small sample size in our IVF test set, we did not perform statistical 

tests on the difference by trimester or the difference in proportion. Both the model and 

biometry categorized 100% of cases correctly within 14 days ( Table 2).

MODEL VERSUS BIOMETRY AND LMP IN THE NOVICE TEST SET

The novice test set contains 249 sets of blind sweeps obtained on the Butterfly iQ battery-

powered device by an untrained user (Fig. 3 and Table S2). A total of eight untrained users 

(all nurse midwives) participated. As described earlier, we compared model estimates with 

biometry obtained by a trained sonographer on a commercial ultrasound machine. We also 

compared the model estimates with the gestational age that would have been calculated had 

only the LMP been available (as is overwhelmingly the case in Zambia). In the novice test 

set, the model and biometry performed similarly, with an overall MAE (±SE) of 4.9±0.29 

days for the model versus 5.4±0.28 days for biometry (difference, −0.6 days; 95% CI, −1.3 

to 0.1). However, when compared with the LMP, the model was clearly superior, with an 

MAE of 4.9±0.29 days versus 17. 4±1.17 days for the LMP (difference, −12.7 days; 95% 

CI, −15.0 to −10.3). On the basis of the empirical CDF, the percentage of study scans that 

were correctly classified within 7 days was substantially higher for the model than for the 

LMP (75.1% vs. 40.1%; difference, 36.1 percentage points; 95% CI, 28.0 to 44.2 percentage 

points). The model similarly outperformed the LMP using a 14-day classification window 

(95.6% vs. 55.1%; difference, 40.5 percentage points; 95% CI, 33.9 to 47.1 percentage 

points).
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Discussion

Quality obstetrical care requires accurate knowledge of gestational age. We built a deep-

learning model that can perform this critical assessment from blindly obtained ultrasound 

sweeps of the gravid abdomen. Expressed as the MAE or as the percentage of estimates 

that fall within 7 or 14 days of a previously defined ground-truth gestational age, the model 

performance is superior to that of a trained sonographer performing fetal biometry on the 

same day. Results were consistent across geographic sites and were supported in a test set 

of women who conceived by IVF (whose ground-truth gestational age was unequivocally 

established) and in a test set of women from whom the ultrasound blind sweeps were 

obtained by a novice provider using a low-cost, battery-powered device.

This research addresses a shortcoming in the delivery of obstetrical care in low- and middle-

income countries. In the Lusaka public sector, which is typical of care systems across the 

sub-Saharan Africa and parts of Asia, few women have access to ultrasound pregnancy 

dating, and the median gestational age at presentation for antenatal care is 23 weeks 

(interquartile range, 19 to 26 weeks).10 This means that each year in the city of Lusaka, 

more than 100,000 pregnancies14 must be managed with an unacceptably low level of 

gestational age precision (Fig. 3).11,15 The availability of a resource-appropriate technology 

that could assign gestational age in the late second and third trimesters with reasonable 

accuracy could provide those caring for these expectant mothers a higher standard of care 

than is currently available.

This study collected thousands of images from each participant in the form of blind sweeps. 

Each cineloop frame in the sweep is itself a two-dimensional ultrasound image that is 

provided to the neural network during training. Although most of these frames would be 

considered clinically suboptimal views, the sheer number of them (more than 21 million) 

provides a comprehensive picture of the developing fetus from multiple angles across 

the spectrum of gestational age. Considered as individual images rather than participants, 

studies, or sweeps, our training set is two orders of magnitude larger than most of the 

prior high-profile applications of deep learning to medical imaging.16–19 As we have 

verified through manual review, it is rare for a blind sweep to contain the ideal image 

planes necessary for standard fetal biometry. Although the nature of the deep-learning 

algorithm is such that we do not know exactly which image features the model uses to 

make its predictions, it seems likely to be incorporating many facets of the available data 

to accomplish its task, rather than simply mimicking that which is acquired when a trained 

sonographer performs biometry. The very large sample of training images may also help 

explain the model’s excellent performance even though our Zambian training data include 

some studies from women who presented late for care and whose clinically established 

gestational age was therefore imprecisely estimated.

Strengths of this study include its prospective nature and bespoke blind sweep sonography 

procedures. We used several different makes and models of ultrasound scanners for 

data collection, a feature that likely bolsters the model’s generalizability. Although this 

technology seems primarily suited for low-resource settings, we included participants from 

North Carolina to increase the heterogeneity in our training sets. We see combining these 
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disparate populations in model training as an overall strength of the research, but note 

that our design does not include a truly external validation cohort. Although we did not 

deliberately impose a lower gestational age limit on enrollment, our data set includes very 

few scans at less than 9 gestational weeks, and we thus are unable to make estimates 

below this threshold. Data were similarly sparse beyond 37 weeks (term gestation), and 

the model appears to systematically underestimate gestational age beyond this point in the 

novice test set. We note, however, that this limitation would only affect that minority of 

women who attend prenatal care but have no visits between 9 and 37 weeks. From our prior 

population-based study of 115,552 pregnancies in Lusaka, less than 1% of women would 

meet these criteria.10 Finally, we acknowledge that a blind sweep approach to obstetrical 

sonography would be a departure from current diagnostic practices and might be seen as a 

threat to diagnostic capacity building in low-resource settings. However, the technology has 

the capacity to fill a real gap in obstetrics care within currently available resources.

Our data show that AI can estimate gestational age from a series of blindly obtained 

ultrasound sweeps with accuracy similar to that of a trained sonographer conducting 

standard biometry. This performance appears to extend to sweeps collected by untrained 

providers in Zambia using low-cost ultrasound devices. Whether this technology can be 

successfully disseminated into extant health care systems in low-resource settings will 

require further study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study Flow Chart.
After applying participant and visit-level exclusions, we created 2 training sets to develop 

and tune the deep learning model and 3 test sets to assess its performance. To be eligible 

for inclusion in a test set a participant must have at least one study with both blind sweeps 

and sonographer-acquired biometry available and have their “ground truth” gestational age 

(GA) established by a prior scan or in vitro fertilization (IVF). The IVF test set comprises all 

participants who conceived by IVF. The novice test set comprises all participants in whom 

at least one study visit included sweeps collection by a novice user on a low-cost device. 

(There were 8 such novices; all were nurse midwives.) The main test set was selected at 

random from among all remaining eligible participants Some participants apportioned to the 

test sets had contributed more than one study scan; in such cases we selected a single study 

scan at random. The training sets comprise all participants who remain after creation of the 

test sets and were split randomly, by participant, in a 4:1 ratio, into a main training set and a 

tuning set.

Pokaprakarn et al. Page 10

NEJM Evid. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Model Versus Biometry in the Main Test Set and IVF Test Set.
a solid line indicates y = x, b dashed horizontal lines represent expected error 

bounds of ultrasound biometry according to the American College of Obstetricians and 

Gynecologists.4 In Zambia, “ground truth” gestational age is defined by the first ultrasound. 

In North Carolina it is defined by an algorithm incorporating both the last menstrual period 

and the first ultrasound4 (main test set) or by the known fertilization date (IVF test set). GA 

denotes gestational age and IVF in vitro fertilization.
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Figure 3. Model Versus Biometry and LMP in the Novice Test Set.
a dashed horizontal lines represent expected error bounds of ultrasound biometry according 

to the American College of Obstetricians and Gynecologists.4 b data missing from 22 

participants who could not recall their LMP c 13 studies from GA by LMP excluded 

from the plot because the absolute error is truncated at 49 days In Zambia, “ground truth” 

gestational age is defined by the first ultrasound. GA denotes gestational age and LMP last 

menstrual period.
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