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ABSTRACT
Background  Immunotherapy for malignant tumors has 
made great progress, but many patients do not benefit 
from it. The complex intratumoral heterogeneity (ITH) 
hindered the in-depth exploration of immunotherapy. 
Conventional bulk sequencing has masked intratumor 
complexity, preventing a more detailed discovery of the 
impact of ITH on treatment efficacy. Hence, we initiated 
this study to explore ITH at the multi-omics spatial level 
and to seek prognostic biomarkers of immunotherapy 
efficacy considering the presence of ITH.
Methods  Using the segmentation strategy of digital 
spatial profiling (DSP), we obtained differential information 
on tumor and stromal regions at the proteomic and 
transcriptomic levels. Based on the consideration of 
ITH, signatures constructed by candidate proteins in 
different regions were used to predict the efficacy of 
immunotherapy.
Results  Eighteen patients treated with a bispecific 
antibody (bsAb)-KN046 were enrolled in this study. The 
tumor and stromal areas of the same samples exhibited 
distinct features. Signatures consisting of 11 and 18 
differentially expressed DSP markers from the tumor 
and stromal areas, respectively, were associated with 
treatment response. Furthermore, the spatially resolved 
signature identified from the stromal areas showed greater 
predictive power for bsAb immunotherapy response 
(area under the curve=0.838). Subsequently, our stromal 
signature was validated in an independent cohort of 
patients with non-small cell lung cancer undergoing 
immunotherapy.
Conclusion  We deciphered ITH at the spatial level and 
demonstrated for the first time that genetic information in 
the stromal region can better predict the efficacy of bsAb 
treatment.
Trial registration number  NCT03838848.

BACKGROUND
A tumor can be conceived as an ecosystem 
in which tumor cells are interconnected 
with other cells such as immune cells in the 

tumor microenvironment (TME).1 Intratu-
moral heterogeneity (ITH) has a significant 
effect on the efficacy of various immuno-
therapies and confuses clinically prognostic 
biomarkers; thus, understanding ITH is 
the key to measuring clinical efficacy and 
developing new targets for cancer immu-
notherapy.2–4 Conventional bulk RNA or 
protein sequencing was largely limited to 
process thousands of cells at a time and get 
an average level of variation, which masked 
the intratumor complexity.4 5 It is difficult 
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to distinguish whether the identified efficacy-related 
biomarkers are from tumor or stromal cells.

Immunotherapy has changed the treatment land-
scape of advanced non-small cell lung cancer (aNSCLC) 
and markedly increased overall survival (OS). However, 
immunotherapy is still confronted with many challenges, 
particularly in overcoming drug resistance and lack of 
accurate predictive biomarkers.6–10 With the development 
of precise tumor therapy, treatment using multitarget 
antitumor drugs takes on a development direction.11 12 
KN046 is a bispecific antibody (bsAb) from Alphamab 
Oncology targeting programmed death ligand-1 (PD-L1) 
and cytotoxic T lymphocyte-associated antigen-4 (CTLA-
4). The safety and clinical effectiveness of KN046 in 
patients with aNSCLC were evaluated in a phase II multi-
center clinical trial. The median progression-free survival 
(mPFS) showed a beneficial advantage compared with 
the historical data of anti-PD-1/PD-L1 monotherapy.13 
Nevertheless, not all patients with aNSCLC could benefit 
from KN046. The existence of ITH and its impact on the 
efficacy of bsAB remains unknown.

To explore ITH at the multi-omics spatial level in 
patients with aNSCLC, we used the GeoMx digital spatial 
profiling (DSP) technology (NanoString Biotechnology), 
combined with next-generation sequencing (NGS) 
and Nanostring nCounter Analysis System, to quantify 

RNAs and proteins in both tumor and stomal areas from 
spatially distinct regions.14 15 We also conducted a multio-
mics analysis in patients from different efficacy groups 
treated with KN046 to look for differential information 
related to efficacy in different spaces.

METHODS
Patient and sample selection
All participants were enrolled in a phase II multicenter 
clinical trial . Available tissues from the Shanghai Pulmo-
nary Hospital Center were selected. Enrolled patients 
with aNSCLC who progressed after first-line platinum-
based chemotherapy were administered bsAb-KN046 
intravenously every 14 days until disease progression or 
intolerable toxicity (figure  1A).13 The inclusion criteria 
were 18–75 years of age, stage IV NSCLC confirmed by 
histology or pathology, negative epidermal growth factor 
receptor mutation or anaplastic lymphoma kinase rear-
rangement, and patients who failed or did not tolerate 
first-line platinum-based chemotherapy. Tumor response 
was evaluated according to the Response Evaluation 
Criteria in Solid Tumors V.1.1.16 To meet the require-
ments of DSP, samples were analyzed by DSP protein assay 
and DSP RNA assay.

Figure 1  Overview of methods used to investigate spatial heterogeneity. (A) Schematic of the study participants. (B) Schematic 
of the DSP workflow. (C) ROI selection and segmentation. (D) AOIs collected from different regions from FFPE. (E) Correlation 
analysis of all regions between proteome and transcriptome data. (F) Correlation analysis of stromal regions between proteome 
and transcriptome data. (G) Correlation analysis of tumor regions between proteome and transcriptome data. AOI, area of 
interest; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; DSP, digital spatial profiling; NGS, next-generation sequencing; 
PD-L1, programmed death ligand-1; ROI, region of interest; UV, ultraviolet.
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Sample preparation for nanostring GeoMx DSP protein assay
Formalin-fixed paraffin-embedded (FFPE) slides (4 µm) 
were baked at 60°C for 1.5 hours, and then deparaffinized 
and rehydrated as follows: 3×5 min in CitriSolv, 2×5 min 
in 100% ethanol, 2×5 min in 95% ethanol, and 2×5 min 
in double-distilled water. For antigen retrieval, slides were 
placed in a staining jar containing 1× citrate buffer with 
pH 6 at 25°C. The staining jar containing the slides was 
placed in a preheated pressure cooker and run at high 
pressure and temperature for 15 min. After carefully 
releasing the pressure, transferring the staining jar to 
the lab bench, removing the lid, and letting it stand for 
25 min, the slides were then washed with 1× tris-buffered 
saline with Tween-20 (TBS-T) for 5 min. Blocking was 
performed by placing the slide in a humidity chamber 
in a horizontal position and covering it with sufficient 
Buffer W (NanoString). The slides were then incubated 
with Buffer W for 1 hour at 25°C in a humidity chamber. 
Ultraviolet (UV)-photocleavable oligo antibody sets 
(Immune Cell Profiling Core, Immuno-oncology (IO) 
Drug Target Module, Immune Cell Typing Module, and 
Pan-Tumor Module), containing 44 targets, were used 
for protein detection. A mixture of UV-photocleavable 
oligo antibody sets and morphological markers panCK 
and CD45 (NanoString, 121300301) was diluted in Buffer 
W. The slides were removed from the humidity chamber 
and Buffer W was discarded then placed back into the 
humidity chamber and covered with diluted antibody 
solution. The humidity chamber was then transferred 
to a 4°C freezer and incubated overnight. Postfix was 
performed by removing the slide from the humidity 
chamber and carefully aspirating the antibody solution 
from the slide. The slides were washed for 3×10 min in 
TBS-T. The samples were covered with 4% paraformal-
dehyde and incubated for 30 min at 25°C in a humidity 
chamber. After incubation, the slides were washed for 
2×5 min in TBS-T. For nuclear staining, the slides were 
incubated with SYTO 13 (NanoString, 121300301) for 
15 min at 25°C in a humidity chamber and rinsed with 
1× TBS-T. Finally, the slides were loaded onto the GeoMx 
instrument.

Sample preparation for nanostring GeoMx DSP RNA assay
FFPE slides (4 µm) were baked at 60°C for 1.5 hours, depa-
raffinized and rehydrated as follows: 3×5 min in CitriSolv, 
2×5 min in 100% ethanol, 1×5 min in 95% ethanol, and 
1×5 min in phosphate-buffered saline (PBS). For antigen 
retrieval, the slides were dipped in diethylpyrocarbonate-
treated water for 10 s to increase the temperature of the 
slides to 99°C, then quickly transferred to 1× tris-EDTA at 
99°C and incubated for 20 min. The slides were immedi-
ately moved to 25°C and washed in 1×PBS for 5 min. The 
RNA target was exposed by incubating the slides in 1 µg/
mL proteinase K solution at 37°C for 15 min and washed 
in 1×PBS for 5 min. After exposure, the slides were post-
fixed as follows: 1×5 min in 10% neutral buffered formalin 
(NBF), 2×5 min in NBF stop buffer, and 1×5 min in PBS. 
UV-photocleavable oligo probes (Cancer Transcriptome 

Atlas, CTA) containing 1812 gene probes were used for 
RNA detection. In situ hybridization was performed by 
adding hybridization solution to the slides. The slides 
were placed in a hybridization oven and incubated at 37°C 
overnight (16–24 hours). To remove off-target probes, the 
slides were dipped in 2× saline sodium citrate (SSC) buffer 
and washed 2×25 min in stringent wash at 37°C, washed 
2×2 min in 2× SSC, and removed from the 2× SSC, excess 
liquid was aspirated, returned to the humidity chamber, 
covered with Buffer W, and stored at 25°C for 30 min in 
the dark. Buffer W was then removed and the slides were 
placed back in the humidity chamber. The slides were 
covered with morphological markers panCK and CD45, 
and nuclear stain SYTO 13 (NanoString, 121300310) at 
25°C for 1 hour in a humidity chamber. After staining, 
the slides were washed for 2×5 min in 2× SSC. Finally, the 
slides were loaded onto the GeoMx instrument.

Digital spatial profiling
Region of interest (ROI) selection was performed on 
the immunofluorescence images. Compartment-specific 
areas of interest (AOI) was assigned from the sequen-
tial masks as the stroma (panCK-negative staining and 
tumor-inverse segment) and tumor (panCK-positive 
staining and tumor-enriched segment) compartments. 
Each ROI was selected and independently determined 
by two participating authors, pathologists at the Depart-
ment of Pathology of Shanghai Pulmonary Hospital. 
ROIs ranging from 1‒17 in per sample were selected 
for the analysis. Spatially indexed barcode cleavage and 
collection were performed using a GeoMx Digital Spatial 
Profiling instrument (NanoString). The barcodes were 
collected for each AOI. For protein quantification, the 
aspirate was dried and then rehydrated in a DSP collec-
tion plate. The transferring samples and GeoMx Hyb 
Code Pack reagents were transferred to a new plate for 
hybridization. Hybridization was performed overnight, 
and the products were pooled through the column 
into strip tubes. The pooled samples were loaded onto 
the nCounter FLEX (NanoString) to count oligonu-
cleotides collected by GeoMx DSP. Once the counting 
was complete, the reporter code count (RCC) files 
were uploaded to the GeoMx DSP system to integrate 
the oligonucleotide counts with spatial data, followed 
by data analysis. For RNA quantification, the collected 
aspirate was dried and rehydrated in a DSP collection 
plate. Samples, 5× PCR master mix, and primer mix were 
transferred to a new plate for library preparation. During 
PCR amplification, i5 and i7 indexing sequences were 
added to the GeoMx Seq Code primers. The PCR prod-
ucts were purified, assessed for quality, quantified, and 
then sequenced on an Illumina NextSeq 550AR instru-
ment. Once sequencing was complete, the FASTQ files 
were converted to digital count conversion (DCC) files. 
The DCC files were uploaded to the GeoMx DSP system 
to integrate the oligonucleotide counts with the spatial 
data, followed by data analysis.
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Spatial proteomic data analysis
The RCC files were uploaded to the GeoMx DSP system. 
Analysis was performed on the GeoMx DSP Control 
Center using the Data Analysis module V.2.4.0.421. 
Quality control (QC) of the protein data was performed 
using an nCounter assay, which included six positive and 
six negative control probes. The QC content contains 
the field of view (FOV) detection percentage, binding 
density, nuclei count, and surface area (online supple-
mental table S1A). FOV recording was used to remove 
the AOIs when the FOV detection percentage was <75%. 
AOIs with binding density between 0.1 and 2.25 were 
retained. For each AOI, the number of nuclei was >20, 
or the surface area was >1600 square microns. The raw 
digital counts from the barcodes corresponding to partic-
ular probes were normalized. The sizes of the different 
ROIs were adjusted by area normalization and different 
cell numbers to avoid variations across the ROIs. Data 
that met the QC criteria were normalized across samples 
based on the background of immunoglobin G.

The normalized counts were used to compare differ-
ences between groups and to construct the signatures of 
pan-tumor, immune cell profiling, immune cell typing, 
and IO drug with the corresponding proteins (online 
supplemental table S2). The signature scores were calcu-
lated using the equation reported in a previous study17: 
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, where Xi is the normal-

ized expression value of each protein, and n is the number 
of proteins included in the signature. Wilcoxon test was 
used to analyze the differences between groups, and the 
significant difference was determined with a p value of 
<0.05.

To calculate the simulated bulk sequencing data for 
the corresponding proteins in each sample, the following 
equation was used to calculate the protein expression of 
all AOIs, stromal AOIs, and tumor AOIs in each sample: 
average value=(X1+X2…+Xn)/N (N is the number of 
corresponding AOIs in each sample). The average value 
is the simulated bulk sequencing expression value of the 
corresponding protein in the target region.

Spatial transcriptomic data analysis
GeoMx NGS Pipeline Software V2.0.0.16 was used to 
convert the sequenced FASTQ files to DCC files. The DCC 
files were then uploaded to the GeoMx DSP system. Anal-
ysis was performed on the GeoMx DSP Control Center 
using the Data Analysis module V.2.4.0.421. The QC of the 
transcriptome data included technical signal, technical 
background, probe, and normalization. Technical signal 
QC was used to remove the ROIs when the alignment rate 
of the reads compared with the template sequence was 
<80%. The technical background included three indica-
tors: no template control (NTC) count, negative probe 
count, and parameters of ROI. NTC count was used to 
detect template contamination during library building. 
ROIs with an NTC of >1000 were removed. Negative 
probe count was used to measure the overall technical 

signal level in the CTA experiment. The threshold of 
the negative probe count was four counts. Parameters of 
the ROI included nuclei counts (>100) and surface area 
(>8000 square microns) (online supplemental table S1B). 
The sizes of the different ROIs were adjusted by area 
normalization and different cell numbers to avoid varia-
tions across the ROIs. Data that met QC were normalized 
across samples using quantile 3 normalization.18

The gene expression matrix was used to compare 
differences between groups and to calculate the different 
signatures, including cell function, immune response, 
metabolism, and signaling pathways (online supplemental 
table S3). The 14 immune cell signature scores were calcu-
lated by SpatialDecon V.1.2.0, which used deconvolution 
to estimate the number of immune and stromal cells in 
the TME.19 The other signature score was also obtained 
by calculating with the equation mentioned previously: 
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)
. . .
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Xi + 1
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. . .

(
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‍
, where Xi is the normal-

ized expression value of the gene corresponding to 
the cells, and n is the number of genes included in the 
signature. The ‘filterByExpr’ function with parameter ‘​
min.​count=3’ in edegR V.3.34.0 package was applied to 
remove low expression genes. Subsequently, the common 
functions with default parameters in edgeR package 
were used to identify the differentially expressed genes 
(DEGs), including glmFit, glmLRT, estimateGLMCom-
monDisp, estimateGLMTrendedDisp, and estimateGLM-
TagwiseDisp.20 DEGs with |log2FoldChange| of >1 and 
false discovery rate of <0.05 were considered as significant 
DEGs. Subsequently, these significant DEGs were used 
to perform Kyoto Encyclopedia of Genes and Genomes 
pathway enrichment using the KOBAS-i web tool, which 
incorporates seven functional class scoring tools and two 
pathway topology tools into a single ensemble score.21

To calculate the simulated bulk sequencing data for 
the corresponding RNAs in each sample, the following 
equation was used to average the RNA expression of all 
AOIs, stromal AOIs, and tumor AOIs in each sample: 
average value=(X1+X2…+Xn)/N (N is the number of 
corresponding AOIs in each sample). The average value 
was the simulated bulk sequencing expression value of 
the corresponding RNA in the target region.

Construction of the predictive signature
The arithmetic means of all different proteins between 
the two groups (p<0.05) were used to make up the signa-
ture [Σ(log2(Xi+1))−Σ(log2(Yk+1))]/N where Xi is 
the normalized expression value of the protein signifi-
cantly expressed in the response group, while Yk is the 
normalized expression value of the protein significantly 
expressed in the non-responding group, and N is the 
number of proteins included in the signature.

Calculation of the predictive signature score from the 
validation cohort
Raw sequencing data for 65 patients with NSCLC treated 
with immune checkpoint inhibitors (ICIs) were obtained 
from three previously reported studies.22–24 The trim 
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galore V.0.6.7 was used to filter out low-quality reads and 
adapters. The read counts and transcripts per million 
values were calculated using Kallisto V.0.46.2, which 
pseudoaligned sequencing reads to the reference tran-
scripts downloaded from the Gencode V.38 database.25 
The signature score was calculated using the equation 
[Σ(log2(Xi+1))- Σ(log2(Yk+1))]/N. The median score 
was used as the cut-off value to divide the patients into 
the high-core and low-score groups. According to the 
response of the patients, complete response and partial 
response (PR) were divided into the response groups, 
and stable disease (SD) and progressive disease (PD) 
were the non-response groups.

Multiplex immunohistochemistry (mIHC)
mIHC was performed by staining 4 μm FFPE whole tissue 
sections with standard, primary antibodies sequentially 
and paired with a tyramide signal amplification (TSA) six-
color kit (abs50014-100T; Absinbio, Shanghai). The cells 
were then stained with 4′,6-diamidino-2-phenylindole 
(DAPI). To clearly distinguish tumor areas from stromal 
areas, we selected panCK consistent with DSP. Positive 
areas of panCK were defined as tumor areas, while nega-
tive areas were defined as stromal areas. Deparaffinized 
slides were incubated with anti-panCK antibody (4545, 
CST) for 30 min and then treated with an anti-rabbit/
mouse horseradish peroxidase-conjugated secondary 
antibody (abs50015-02, Absinbio) for 10 min. Labeling 
was then developed for a strictly observed 10 min using 
TSA 570 per manufacturer’s direction. The slides were 
washed in TBS-T buffer and transferred to preheated 
citrate solution (90°C) before being heat-treated using 
a microwave set at 20% maximum power for 15 min. 
The slides were then cooled to 25°C in the same solu-
tion. Between all steps, the slides were washed with tris 
buffer. The same process was repeated for the following 
antibodies and fluorescent dyes: CD11c antibody (45581, 
CST)/TSA 570, anti-Tim3 (ab241332, Abcam)/TSA 520, 
anti-CD4 (ab133616, Abcam)/TSA 690, and anti-CD45 
(13917, CST)/TSA 780. Each slide was then treated with 
two drops of DAPI (abs47047616, Absinbio), washed in 
distilled water, and manually cover-slipped. The slides 
were air-dried and photographed with a Pannoramic 
MIDI II (3DHISTECH). Images were analyzed using the 
Indica Halo software.

PD-L1 testing
PD-L1 quantitative detection was performed using the 
DSP protocol described previously. We also detected 
PD-L1 expression using traditional automatic IHC. The 
prepared FFPE sections were placed into a Ventana 
BenchMark XT automatic immunohistochemical staining 
instrument platform (Ventana PD-L1 SP263). The expres-
sion was evaluated according to the coloring ratio. PD-L1 
positivity was defined according to the Tumor Proportion 
Score (TPS) staining on tissue: TPS=(number of PD-L1 
membrane staining positive tumor cells/number of total 

tumor cells)×100%. TPS of <1% was negative; 1%‒49% 
was weakly positive; and ≥50% was strongly positive.

Tumor mutation burden (TMB) analysis
Tumor samples were extracted from FFPE specimens 
for DNA isolation and genomic DNA sequencing. DNA 
fragments of 200–400 bp were isolated from the tissue 
after shearing, and DNA libraries were constructed 
using KAPA Hyper Prep kits. The prepared library was 
hybridized with two different hybridization reagents and 
blockers in the SureSelectXT Target Enrichment System. 
The enrichment library was then amplified using P5/
P7 primers. Finally, the library was sequenced on the 
NovaSeq6000 platform (Illumina) after identification 
with a 2200 bioanalyzer and was quantified by Qbit3 and 
quantitative real-time PCR NGS library quantitative kits. 
A panel of 825 cancer-related genes was compared with 
an average coverage depth of >700 (Genetron Health, 
Beijing, China). TMB=number of non-synonymous muta-
tions/panel size (mut/Mb).

Statistical analysis
Heatmaps were drawn using the R V.4.1.0 package of 
ComplexHeatmap V.2.8.0.26 Dimension reduction anal-
ysis was performed using umap V.0.2.8.0. Wilcoxon test 
was used to compare the differences between two groups. 
Correlation analysis was conducted using Pearson correla-
tion analysis. Receiver operating characteristic (ROC) 
curves were used to evaluate the predictive power of the 
model. The area under the curve (AUC) was calculated to 
measure the discriminatory ability using pROC V.1.18.0. 
When comparing different classification models, the 
ROC of each model can be drawn, and the AUC can be 
compared as an indicator of the merits and disadvan-
tages of the model. The significance of OS and PFS was 
analyzed using Kaplan-Meier (K-M) curve analysis. The 
K-M curve was compared using the log-rank test. The 
median follow-up time was calculated using the reverse 
K-M method. The effect size was expressed as the stan-
dardized mean difference with a 95% CI. Statistical signif-
icance was set at a p value of <0.05.

RESULTS
Spatial transcriptomic and proteomic analysis of aNSCLC
After sample collection and quality detection, 18 
patients from pretreatment of KN046 were selected in 
our discovery cohort. The baseline characteristics of the 
patients are shown in table 1.

Until 30 July 2022, the median follow-up time calculated 
by reverse K-M method was 33.51 months. The cohort 
was balanced in clinical response, with nine patients with 
PR and SD and nine patients with PD. Samples from 
two patients were available from both pretreatment and 
post treatment and used to further evaluate the tumor 
and immune microenvironment changes during therapy. 
Overall, 20 tumor samples from 18 patients with aNSCLC 
were used for subsequent analyses.
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GeoMx DSP technology was used to quantitate the 
expression of mRNAs and proteins in spatially defined 
tumor sample regions. To measure mRNA expression, we 
used the CTA panel which was designed to profile over 
1800 transcripts. To measure protein expression, we used 
the DSP panel that included 44 proteins and 6 internal 
references (figure 1B).

Because of the cellular heterogeneity within each ROI, it 
was difficult to untangle the mRNA and protein expression 
signals of the target cells from those in their surrounding 
cells. Thus, complex heterogeneity was masked if all ROIs 

were adopted for analysis. To address this issue, we used a 
masking and segmentation strategy to separate the tumor 
or stroma cells from their surrounding cells by combining 
the staining patterns of morphological markers with 
digital optical barcoding technology, which enabled us to 
dissect the crosstalk between tumor cells and their micro-
environment (figure 1C). In this way, primary ROIs were 
further subdivided into predominant tumor and stromal 
AOIs. Therefore, 206 AOIs were obtained including 136 
tumor AOIs and 70 stromal AOIs. Among them, 150 and 

Table 1  Clinical characteristics

Characteristics All cases PR group PD group SD group

Total, n 18 8 9 1

Median age, years (range) 65 (48–72) 63.0 (48–70) 60.1 (50–72) 66

Age group (years), n (%)

 � <65 10 (55.6) 4 (50.0) 6 (66.7) 0 (0.0)

 � ≥65 8 (44.4) 4 (50.0) 3 (33.3) 1 (100.0)

Gender, n (%)

 � Male 15 (83.3) 7 (87.5) 8 (88.9) 0 (0.0)

 � Female 3 (16.7) 1 (12.5) 1 (11.1) 1 (100.0)

Smoking history, n (%)

 � Never smoker 5 (27.8) 2 (25.0) 2 (22.2) 1 (100.0)

 � Former/current smoker 13 (72.2) 6 (75.0) 7 (77.8) 0 (0.0)

ECOG performance status, n (%)

 � 0 2 (11.1) 1 (12.5) 0 (0.0) 1 (100.0)

 � 1 16 (88.9) 7 (87.5) 9 (100.0) 0 (0.0)

Pathological classification, n (%)

 � Adenocarcinoma 13 (72.2) 6 (75.0) 6 (66.7) 1 (100.0)

 � Squamous carcinoma 5 (27.8) 2 (25.0) 3 (33.3) 0 (0.0)

Biopsy location, n (%)

 � Lung 17 (94.4) 8 (100.0) 8 (88.9) 1 (100.0)

 � Lymph node 1 (5.6) 0 (0.0) 1 (11.1) 0 (0.0)

One-line treatment regimen, n (%)

 � AC/AP 8 (44.4) 3 (37.5) 4 (44.4) 1 (100.0)

 � AC/AP+Bev 3 (16.7) 1 (12.5) 2 (22.2) 0 (0.0)

 � GC/GP 6 (33.3) 3 (37.5) 3 (33.3) 0 (0.0)

 � PC 1 (5.6) 1 (12.5) 0 (0.0) 0 (0.0)

PD-L1 expression, n (%)

 � <1% 13 (72.2) 6 (75.0) 6 (66.7) 1 (100.0)

 � 1%–49% 4 (22.2) 2 (25.0) 2 (22.2) 0 (0.0)

 � ≥50% 1 (5.6) 0 (0.0) 1 (11.1) 0 (0.0)

TMB, n (%)

 � ≥10 mut/Mb 13 (72.2) 5 (62.5) 8 (88.9) 0 (0.0)

 � <10 mut/Mb 1 (5.6) 0 (0.0) 1 (11.1) 0 (0.0)

 � NA 4 (22.2) 3 (37.5) 0 (0.0) 1 (100.0)

AC/AP, pemetrexed+cisplatin/carboplatin; Bev, bevacizumab; ECOG, Eastern Cooperative Oncology Group; GC/GP, gemcitabine+cisplatin/
carboplatin/nedaplatin; NA, not available; PC, paclitaxel+cisplatin; PD, progressive disease; PD-L1, programmed death ligand-1; PR, partial 
response; SD, stable disease; TMB, tumor mutation burden.
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56 AOIs were subjected to the protein DSP and RNA DSP 
assays, respectively (figure 1D).

After selecting ROIs, the DNA oligonucleotides were 
UV-cleaved and sequenced on an Illumina sequencer 
for mRNA quantitation and nCounter Analysis System 
for protein quantitation. All ROI/AOI met the QC crite-
rion (online supplemental figures S1 and S2). Compar-
ison analysis revealed medium positive correlations 
between RNA and protein expression in all AOIs (R=0.57, 
p<0.001), stromal AOIs (R=0.63, p<0.001), and tumor 
AOIs (R=0.58, p<0.001) (figure 1E–G).

Distinct expression patterns of intratumoral spatially AOIs 
identified by DSP
To assess ITH, we analyzed the expression patterns of 
both proteins and RNAs among spatially distinct AOIs for 
each sample. First, significant differences were observed 
between tumor and stromal AOIs from the same sample 
at both the protein and RNA levels (figure 2A and online 
supplemental figure S3A). Specifically, tumor and stromal 
AOIs from the same sample were grouped into separate 
clusters in most patient samples. For example, in patient 
1 (P1), the DSP protein results showed that four tumor 
AOIs and three stromal AOIs were independently clus-
tered into two categories. At the same time, we observed 
that the stromal and tumor AOIs of the two patients 
(P6 and P9) clustered together. Such distinct patterns 
could be observed more clearly using dimensionality 
reduction analysis (figure  2B and online supplemental 
figure S3B). Subsequently, we used DSP to investigate 
specific molecular markers associated with the tumor 
and stromal regions. The protein markers that were 
most associated with the tumor phenotype were epithe-
lial cell adhesion molecule, human epidermal growth 
factor receptor 2, and Ki-67 (all p<0.001). Immune cell 
markers (CD45), including T-cell markers (CD3, CD8, 
and CD4) and dendritic cells (DCs) (CD11c), were 
significantly increased in the stromal areas (all p<0.001) 
(figure 2C,D, and online supplemental table S4). Consis-
tent with the findings based on individual proteins, the 
signature scores of the Immune Cell Profiling Core and 
Immune Cell Typing Module were significantly higher in 
stromal AOIs (both p<0.001), while the scores of the Pan-
Tumor Module were significantly higher in tumor AOIs 
(p<0.001) (figure  2E,F, and online supplemental table 
S5). To confirm the findings derived from the protein 
data, we also used DSP CTA data to perform the analysis, 
and similar results were obtained at the RNA level (online 
supplemental figure S3C,D and table S6).

To further investigate ITH at the spatial level, we char-
acterized the molecular profiles of geographically dispa-
rate regions in each sample. According to the process 
of tumor evolution, we speculate that spatially adjacent 
tumor regions will have higher similarity at the molecular 
level. To prove this, we selected 12 tumor samples with 
a clear positional relationship between different AOIs 
in the spatial distance for analysis. Among the 12 DSP 
samples, the spatial distances of the tumor AOIs in the 

8 samples were consistent with the molecular clustering 
patterns (figure 2G). For example, in patient 7 (P7), the 
spatially closed tumor AOIs (06‒07, 04‒08, and 03‒09) 
clustered together at the RNA expression level; in P1, a 
pair of tumor AOIs with a relatively close spatial distance 
(06‒07), their protein expression patterns clustered 
together. Moreover, the inferred relationships among 
disparate regions by molecular clustering may reflect the 
path of tumor development. Accordingly, based on the 
cluster results of five geographically disparate regions 
(01‒05) in patient 2, we could infer that the development 
of the tumor may originate from AOI 02 and 03, and a 
similar phenomenon was also observed among stroma 
AOIs (figure 2G).

Since tumor cells are closely connected with their 
surrounding stromal cells in each ROI, we speculated 
that the molecular profiles between the tumor and 
stromal regions in the same ROI were more similar than 
those in different regions. To address this issue, we used 
paired tumor and stromal AOIs that were segmented 
from the same region for further analysis. We found that 
the correlation between the tumor and stromal regions 
segmented from the same ROI was significantly higher 
than that between different ROI (all p≤0.0024). Mean-
while, the correlation among tumor AOIs was strongest at 
both protein and RNA levels (figure 2H). The correlation 
analysis for each patient is shown in online supplemental 
figure 4A,B.

Characterization of immune cell types and pathways in tumor 
and stromal AOIs
The immune cell repertoire and signature of various 
cancer signaling pathways have not been well-characterized 
in NSCLC at the spatial level. To evaluate lymphocyte 
infiltration, we used DSP to quantify transcripts that 
marked different immune cell types (online supple-
mental table S7). Because the tumor AOIs captured in 
this study focused on areas enriched for neoplastic cells, 
which were largely devoid of immune cells, we observed 
significantly lower lymphocyte abundance in the tumor 
AOIs than in the stromal AOIs (p<0.001) (figure  3A 
and online supplemental table S8). Macrophages, CD4 
T cells, fibroblasts, monocytes, B cells, and CD8 T cells 
were the most highly detected cell types in stromal AOIs 
(figure 3B). The immune response-related cell signature 
scores between different regions were then analyzed. 
We found that lymphocyte trafficking and lymphocyte 
regulation signature scores were associated with stromal 
AOIs (both p<0.001), which further supported the results 
of the lymphocyte abundance analysis. In addition, the 
interleukin (IL)-2 signaling, type II interferon, and 
phagocytosis signature scores were significantly higher in 
stromal AOIs, while IL-1 and IL-17 signatures exhibited a 
significant increase in tumor AOIs (all p<0.001) (online 
supplemental figure S5A).

Subsequently, we evaluated the expression programs of 
AOIs within each patient, indicating cancer-related cell 
function, signaling pathways, and metabolism. The scores 
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for 76.3% of cancer-related programs were significantly 
higher for tumor AOIs than for stromal AOIs (online 
supplemental figure S5B). For example, signatures of cell 
function and signaling pathways related to proliferation 
and metastasis were significantly increased in tumor AOIs 

(all p≤0.036) (figure 3C and online supplemental figure 
S5C), which is consistent with the ability of tumor cells 
to proliferate indefinitely and metastasize. In the tumor 
regions, the normal functions of cells are often dysregu-
lated (figure 3D and online supplemental figure S5D). In 

Figure 2  Distinct expression patterns of intratumoral spatially distinct AOIs identified by DSP (A) Heatmap of target proteins 
in different spatial regions of each patient. The region of AOIs for each patient is shown in the top track. The clinical response 
for each patient is shown under the track of the region. The protein expression from each AOI is shown in the central heatmap. 
The corresponding region and patient for each AOI are shown under the central heatmap. (B) UMAP of dimensionality 
reduction analysis at the protein level. (C) Volcanic map of differentially expressed proteins in different regions. (D) Box plot 
of top five differential proteins within different spatial regions. (E) Heatmap of DSP protein panels about pan-tumor, immune 
cell profiling, immune cell typing, and IO drug in different regions. (F) Scatter plot of DSP protein panels in different regions. 
(G) Comparison between spatial distance of different ROIs in one sample and molecular clustering results from transcriptome 
and proteome images. The top four and bottom four images with spatially adjacent AOIs are from the DSP RNA and protein 
assay, respectively. The cluster maps of AOIs on the side of the images were based on the expression level of RNA or proteins, 
respectively. (H) Correlation comparisons of stroma or tumor regions in the same or different ROIs. AOI, area of interest; DSP, 
digital spatial profiling; PD, progressive disease; PR, partial response; ROI, region of interest; SD, stable disease.
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addition, the signaling scores related to energy metabo-
lism and macromolecule synthesis were also significantly 
higher in the tumor AOIs (all p≤0.011), consistent with 
the observation that the rapid proliferation of tumor cells 
requires more energy and biological macromolecules 
(figure 3D).27 As a pivotal molecule regulating cell growth 
and metabolism, the mammalian target of rapamycin and 
its upstream and downstream signaling pathways was also 
highly expressed in the tumor areas (all p≤0.014) (online 
supplemental figure S5E).28 Those results demon-
strated that DSP could assign biological observations to 
specific phenotypic cell types within the complex tumor 
ecosystem, which would be masked or obfuscated using 
bulk sequencing.

Identification of DSP markers revealed the impact of ITH on 
finding candidate biomarkers related to treatment efficacy
To assess the effect of ITH on finding treatment efficacy 
related biomarkers, DSP data were used to investigate 
the efficacy of bsAb-KN046 therapy. Owing to the limited 
sample size for biopsy samples, we averaged all AOIs per 
tumor sample to derive a composite value of simulated 
bulk sequencing data and compared it with the results 
after spatial segmentation. A comparative analysis revealed 
a high positive correlation (R=0.81, p<0.001) between 

the DSP simulated bulk sequencing data and bulk RNA-
seq data (online supplemental figure S6A). A total of 18 
(B7-H3, B-cell lymphoma 2 (Bcl-2), beta-2-microglobulin, 
CD11c, CD14, CD4, CD45, CD45RO, fibroblast activa-
tion protein alpha (FAP-alpha), glucocorticoid-induced 
TNFR-related (GITR), melanocyte antigen (MART1), 
OX40L, PD-L1, progesterone receptor, phosphatase and 
tensin homolog (PTEN), T-cell immunoglobulin and 
mucin domain-containing protein 3 (Tim-3), V-domain 
Ig-containing suppressor of T-cell activation (VISTA), 
and 4-1BB) and 11 (OX40L, Bcl-2, B7-H3, CD45RO, 
GITR, CD34, PTEN, progesterone receptor, CD14, stim-
ulator of interferon genes (STING), and PD-L1) efficacy-
associated DSP protein markers were identified in the 
stromal and tumor areas, respectively (figure 4A,B, and 
online supplemental table S9), whereas only 4 proteins 
including CD45, CD4, GITR, and CD11c were identified 
using simulated bulk sequencing data (figure 4C). DSP 
protein data and simulated bulk sequencing data consis-
tently showed that the expression of these four proteins 
increased in the PR group. The fold changes of PR/PD 
in most protein markers in the stromal regions, tumor 
regions, and simulated bulk sequencing data were consis-
tent with the results above, several proteins showed 

Figure 3  Characterization of immune cell types and cancer pathways in tumor and stroma AOIs. (A) Lymphocyte infiltration 
abundance estimated by RNA expression between stromal and tumor regions. (B) Box plot of abundance for macrophages, 
CD4 T cells, fibroblasts, monocytes, B cells, and CD8 T cells estimated by RNA expression between stromal and tumor 
regions. (C) Box plot of signatures about cell function and signaling pathway related to proliferation and metastasis. (D) Box 
plot of signature scores related to energy metabolism and macromolecule synthesis. AOI, area of interest; EMT, epithelial–
mesenchymal transition; mDCs, myeloid dendritic cells; NK, natural killer; pDCs, plasmacytoid dendritic cells; TCA, tricarboxylic 
acid.
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discrepancies (online supplemental figure S6B). For 
example, PD-L1 was highly expressed in the stromal of 
patients with PR but decreased in tumor and simulated 
bulk sequencing data. This is probably because PD-L1 
is not only expressed on the tumor surface, but is also 
expressed in antigen-presenting cells under the stimula-
tion of interferon gamma. However, previous bulk detec-
tion often missed the expression of cells in the stromal 
region, while DSP could be accurately detected.

To further verify the expression of proteins in different 
regions, three samples from PR group and three from 
PD group were selected for mIHC verification with 
four common proteins in the stromal regions including 
CD11c, Tim-3, CD45, and CD4. We selected panCK consis-
tent with DSP to identify tumor cells. The positive areas 
of panCK were defined as tumor areas, while the negative 
areas were stroma areas. We calculated the proportion of 
cells that were positive for each marker. The proportion 

Figure 4  Identification of DSP markers revealed the impact of ITH on treatment efficacy. (A) Volcanic map of differential 
proteins in stromal regions between different response groups. (B) Volcanic map of differential proteins in tumor regions 
between different response groups. (C) Volcanic map of differential proteins through simulated bulk sequencing in whole 
areas. (D) Expression of CD11c, Tim-3, CD45, and CD4 in stromal regions from patients with PR and PD detected by mIHC. 
(E) Correlation analysis of DSP protein markers in different regions. (F) Abundance of immune-related cell types among different 
groups was demonstrated by differential genes corresponding to proteins. (G) Scatter plot of four target protein signatures in 
different response groups. DSP, digital spatial profiling; ITH, intratumoral heterogeneity; mIHC, multiplex immunohistochemistry; 
PD, progressive disease; PR, partial response; Tim-3, T-cell immunoglobulin and mucin domain-containing protein 3.
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of the above four proteins in the stromal region of PR 
group were significantly higher than that in the PD group 
(all p<0.05) (figure 4D and online supplemental figure 
S6C). In addition, we found that the correlation between 
tumor and immune DSP markers was distinguishable, 
suggesting different actions of tumor and immune cell 
populations on treatment efficacy (figure 4E).

Subsequently, we evaluated the immune infiltration 
in the stromal region of patients in different response 
groups and found that the abundance of four types of 
immune cells, including CD4 T cells (p=0.014), DCs 
(p=0.0021), macrophages (p=0.031), and monocytes 
(p=0.029), was significantly higher in the PR group, but 
only CD4 T cells and DCs could be identified by simulated 
bulk sequencing data (figure 4F and online supplemental 
table S10). Meanwhile, immune cell profiling (p=0.0015), 
immune cell typing (p=0.0094), IO drug (p=0.031), pan-
tumor signature scores (p=0.0041) from stroma, and 
immune cell typing signature scores (p=0.024) from 
tumor regions were significantly higher in patients with 
PR, none of which could be observed in simulated bulk 
data (figure 4G).

How the tumor ecosystem changes during bsAb treat-
ment is still poorly understood, prompting us to further 
analyze tumor and stromal changes across treatments. 
In our study, the tissues from two patients were sampled 
at the time of pretreatment and post-treatment with 
bsAb-KN046 therapy. The results revealed a significant 
increase in activated leukocyte cell adhesion molecule 
(ALCAM) and keratin five levels with the treatment of 
KN046 (online supplemental figure S7A and table S11). 
High ALCAM expression was associated with poor prog-
nosis in NSCLC.29 In addition, B cells were significantly 
decreased after disease progression (p=0.037) (online 
supplemental figure S7B). Subsequently, we used related 
genes to construct a panel to explore the differences in 
immune exhaustion-related pathways before and after 
treatment and found that the immune exhaustion signa-
ture was significantly decreased after resistance to bsAb-
KN046 (p<0.001) (online supplemental figure S7C).

Spatially resolved signature of stromal regions has greater 
clinical response relevance than that of tumor regions
Given the ITH in response to immunotherapy, the clin-
ical relevance of spatially resolved biomarkers from both 
stromal and tumor regions was evaluated. We calcu-
lated the scores of spatially resolved signatures based on 
efficacy-related DSP protein markers (protein markers 
from tumor areas: OX40L, Bcl-2, B7-H3, CD45RO, GITR, 
CD34, PTEN, progesterone receptor, CD14, STING, 
and PD-L1; protein markers from stromal areas: B7-H3, 
Bcl-2, Beta-2-microglobulin, CD11c, CD14, CD4, CD45, 
CD45RO, FAP-alpha, GITR, MART1, OX40L, PD-L1, 
progesterone receptor, PTEN, Tim-3, VISTA, and 4-1BB) 
(online supplemental table S12A,B). Significant differ-
ence in signature scores were observed between patients 
with PD and PR patients in both tumor and stromal areas 
(both p<0.001) (figure  5A,B, and online supplemental 

table S13A,B). To further investigate the role of stromal 
and tumor signatures in predicting the efficacy of KN046, 
the effects of age, sex, smoking history, Eastern Cooper-
ative Oncology Group performance status, pathological 
classification, PD-L1 expression, and response signatures 
on the clinical outcomes of ROIs were analyzed using 
multi-factor Cox regression. Stromal and tumor signa-
tures were favorable factors for clinical outcomes (online 
supplemental figure S8). Moreover, the AUC values in the 
stromal and tumor regions were 0.838 and 0.786, respec-
tively. Compared with the tumor signature and tradi-
tional biomarkers, such as PD-L1 and TMB, the signature 
from the stromal showed a stronger clinical relevance 
(figure  5C). Furthermore, patients with high stromal 
signature scores had longer median OS (p=0.039) than 
those with low scores, but mPFS did not reach statistical 
significance (p=0.078) (figure 5D,E).

To determine whether the signature of stromal regions 
remained effective in predicting the efficacy of general 
immunotherapy, we validated the spatially resolved signa-
ture constructed with relevant genes identified from the 
stromal area in an independent set of 65 patients with 
NSCLC treated with ICIs from public datasets (online 
supplemental table S14). Similar to the results of our 
cohort, in the validation datasets, we observed a significant 
increase in gene signature scores in the response group 
(p<0.001) (figure  5F). The AUC value of the spatially 
resolved signature for predicting clinical response was 
0.776 (figure  5G). Moreover, the PFS (p=0.013) and 
OS (p=0.040) were significantly longer in the group 
with high signature scores than in those with low scores 
(figure  5H,I). These results suggested that molecules 
from the stromal region may have a greater potential in 
evaluating the clinical efficacy of immunotherapy.

DISCUSSION
In this study, we characterized ITH and its effect on bsAb 
immunotherapy efficacy in patients with aNSCLC. To this 
end, we used DSP, NGS, and nCounter to profile the tran-
scriptomic and proteomic information of more than 100 
ROIs at different spatial locations and different efficacy 
groups in patients with NSCLC. We found that the tumor 
and stromal areas from the same tumor sample exhib-
ited the distinct features, and multiple gene programs 
uniquely identified from tumor or stromal areas were asso-
ciated with treatment response, most of which could not 
be identified using simulated bulk sequencing. Further-
more, we compared the spatially resolved signature to 
predict clinical response to immunotherapy between 
stromal and tumor areas and found that the signature in 
the stromal areas showed a greater predictive power for 
treatment response.

We observed spatial heterogeneity in the biopsy 
samples. The differences in genetic information caused 
by ITH correlated with the prediction of efficacy. Previous 
studies on the relationship between efficacy and ITH have 
reported that ITH is one of the major factors leading to 
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resistance to antitumor therapy.30 31 High ITH is associated 
with poor prognosis in multiple cancer types including 
lung cancer.32–34 However, most past studies confirmed 
ITH and clonal evolution by collecting surgical samples 
and conducting multiregional sampling for detec-
tion.4 34 35 In recent studies on the heterogeneity of lung 
cancer, Wu et al suggested that the proteome was spatially 
heterogeneous within tumors in dozens of regions within 
the same tissue sample, and they described the spatially 
heterogeneous genome of individual tumor cells in lung 
adenocarcinoma.36 Since the heterogeneity of tumors has 
been widely verified, and numerous studies have proven 
that it is related to the therapeutic effect, it is worth 
further exploration whether ITH promotes a biomarker 
that can predict the therapeutic effect more accurately, or 
whether ITH affects the accuracy of biomarkers. Kazdal 
et al confirmed through TruSight Oncology 500 targeted 
sequencing panel that tumor amount and spatial diver-
sity spectrum can affect the estimation of the traditional 
biomarker TMB, thus revealing that tumor subclonal 
development and subsequent ITH can influence TMB 

values. Therefore, TMB as a predictive biomarker has 
certain limitations.37 In a subsequent study on the explo-
ration of immunotherapeutic biomarkers in NSCLC, 
Moutafi et al applied DSP technology and found that CD44 
could serve as a novel indicative biomarker to achieve 
optimal patient stratification.38 However, in this study, 
the researchers took each sample as an ROI, which failed 
to consider the problem of ITH. To find more accurate 
biomarkers under the influence of ITH, we performed 
spatial segmentation of tumor tissues. In addition, owing 
to the different timing of tissue acquisition and different 
immunotherapy drugs, a significant relationship between 
CD44 and efficacy was not found in our study.

An interesting phenomenon in our study is that in 
the global analysis, PD-L1 expression was slightly higher 
in the PR group, but after spatial segmentation, PD-L1 
expression in stromal regions was significantly higher in 
the PR group. However, the expression of PD-L1 in the 
tumor area was slightly higher in the PD group. Through 
spatial segmentation, some traditional biomarkers will 
be shown more detailed. This further demonstrated the 

Figure 5  Construction of a spatially resolved signature to predict clinical response to immunotherapy. Boxplot of signature 
scores from stromal (A) and tumor regions (B) between different response groups. (C) ROC curves of efficacy prediction of 
constructed signatures in the stromal, tumor regions, as well as traditional biomarkers PD-L1 and TMB. (D) Survival curves of 
the PFS prognostic value of the stroma signature. (E) Survival curves of the OS prognostic value of the stroma signature. (F) Box 
plot of efficacy prediction of signature constructed by genes corresponding to differential proteins between different response 
groups in a validation cohort. (G) ROC of gene signature in the validation cohort. (H) Survival curves showed the PFS prognostic 
value of gene signature in validation cohort. (I) Survival curves showed the OS prognostic value of gene signature in validation 
cohort. mPFS, median progression-free survival; NR, not reached; OS, overall survival; PD, progressive disease; PD-L1, 
programmed death ligand-1; PFS, progression-free survival; PR, partial response; ROC, receiver operating characteristic; TMB, 
tumor mutation burden.
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influence of ITH on accurate predictive biomarkers of 
efficacy. PD-L1, as a traditional biomarker, reflects the 
impact of ITH on biomarker interpretation. Hwang et 
al used the 22C3 IHC pharmDx assay and found that in 
many PD-L1 negative small biopsy samples, ITH may lead 
to the misclassification of PD-L1 status.39 Another reason 
is that the patients enrolled in our study were treated with 
PD-L1 and CTLA-4 bsAb, which may be different from 
the previous immunomab in the discovery of biomarkers. 
The results of the CheckMate 227 study showed that the 
benefits of nivolumab (NIVO) plus ipilimumab (IPI) in 
PD-L1≥1% and < 1% groups were basically the same, and 
a similar phenomenon was observed in the subgroup of 
patients who survived 5 years and completed 2 years of 
immunotherapy. In addition, especially in the popula-
tion with PD-L1<1%, the efficacy of NIVO+IPI combined 
regimen was superior to that of NIVO / IPI+chemotherapy 
in all aspects.40 Therefore, these results also indicated 
that PD-L1 expression could not be a single indicator 
for predicting the efficacy of dual immunotherapy. For 
patients treated with bsAbs, it is more important to accu-
rately identify biomarkers in the exclusion of ITH, rather 
than just using the traditional detection technique.

KN046 is a novel recombinant humanized bsAb that 
can simultaneously block the PD-1/PD-L1 and CTLA-4 
pathways and restore the immune response of T cells.41 
By blocking the CTLA-4 target, the regulatory T cells 
(Treg) function of tumor invasion is blunted, thereby 
enhancing the immune response.42 However, in the 
detection of lymphocyte infiltration, we did not find a 
correlation between the expression level of Treg cells and 
the efficacy of KN046 because we marked Treg cells only 
by identifying forkhead box P3 (FOXP3). Other Treg 
markers, such as CD4, CD45, and GITR, were signifi-
cantly increased in the stromal region of the PR group. 
In addition, since OX40 was mainly expressed in Tregs, 
its ligand OX40L was highly expressed in both the tumor 
and stromal regions in the PR group. This further verified 
the Treg recognition function of KN046 and suggested 
that Treg-related markers in immunotherapy targeting 
CTLA-4 might be related to the therapeutic response. As 
we hope to find more efficacy prediction biomarkers asso-
ciated with bsAbs, we used DSP technology to find more 
candidates. In the field of immunotherapy companion 
diagnostics, Gupta et al and Zugazagoitia et al confirmed 
that DSP seems to have quantitative potential compared 
with IHC, and the technology can perform concomitant 
diagnostic tests for immunotherapy.43 44 Another study 
successfully identified 20 biomarkers in patients with 
melanoma, in which the expression of PD-L1 in CD68+ 
cells rather than tumor cells was an important factor in 
determining PFS, OS, and treatment response.45 DSP has 
the potential to become an accurate technique for deter-
mining the therapy prognosis of immunotherapy. We 
found that the predictive signature of stromal regions, 
including 18 proteins, had a good efficacy prediction 
with an AUC of 0.838. This suggested that bsAb immu-
notherapy may alter the initial TME and induce greater 

changes in protein expression in stromal regions. The 
combination of spatially different proteins may amelio-
rate some drawbacks of the traditional biomarkers. It also 
provides a new method and idea for exploring the predic-
tive efficacy predictive biomarkers of other bsAb drugs.

Despite our earlier findings, this study also had its limita-
tions. First, we analyzed tumor samples collected from a 
single-center retrospective immunotherapy cohort. Retro-
spective studies have limitations, such as the possibility of 
selection bias. Therefore, although ITH was found in the 
biopsy samples and high signature scores constructed in 
the stroma region were associated with the efficacy of the 
bsAbs targeting PD-L1 and CTLA-4 in two independent 
cohorts, these results need to be interpreted with caution. 
However, this can only be regarded as a hypothesis. In 
addition, because of the lack of data on this type of bsAb 
in the public database, only patients undergoing immu-
notherapy were used in our verification cohort, which 
may indicate that our findings are universal in predicting 
the efficacy of other immunotherapies. However, the veri-
fication cohort cannot accurately verify our findings in 
bsAb. Another limitation is that not all patients under-
went DSP CTA assay because of the strict requirements of 
paraffin section time, which may have resulted in some 
transcriptomic results not matching the proteomic results 
individually. Finally, we found that some protein expres-
sions may show a trend that is inconsistent with previous 
studies, which may be because the enrolled patients were 
in an advanced stage and had received other therapies 
such as chemotherapy in the early stage. Moreover, the 
situation of bsAb therapy is different from that of immu-
notherapy alone, which may lead to abnormal results. 
However, owing to the small clinical sample size and 
lack of verifiable data, larger and well-powered studies 
are needed. In the future, our bsAb-KN046 signature 
needs to be further validated in subsequent prospec-
tive studies and clinical trials involving multiple centers. 
We will continue to focus on this subset of patients and 
expand the sample size. We plan to add other techniques 
such as single-cell sequencing and spatial transcriptome 
sequencing to further verify our findings.

CONCLUSION
ITH is present in patients with aNSCLC. For the different 
therapeutic groups treated with bsAb immunotherapy, 
the stromal region showed more differential genetic 
information, and the signature constructed by the stromal 
region had better predictive efficiency. Furthermore, 
simple bulk sequencing may miss some key information, 
failing to accurately screen the beneficiaries. It may be 
more accurate and effective to search for efficacy-related 
biomarkers after the spatial segmentation due to the pres-
ence of ITH.
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