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ABSTRACT
Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype to treat due to 
the lack of effective targeted therapies. Transmembrane (TMEM) proteins represent attractive drug 
targets for cancer therapy, but biological functions of most members of the TMEM family remain 
unknown. Here, we report for the first time that TMEM63A (transmembrane protein 63A), a poorly 
characterized TMEM protein with unknown functions in human cancer, functions as a novel onco-
gene to promote TNBC cell proliferation, migration, and invasion in vitro and xenograft tumor growth 
and lung metastasis in vivo. Mechanistic investigations revealed that TMEM63A localizes in endo-
plasmic reticulum (ER) and lysosome membranes, and interacts with VCP (valosin-containing protein) 
and its cofactor DERL1 (derlin 1). Furthermore, TMEM63A undergoes autophagy receptor TOLLIP- 
mediated autophagic degradation and is stabilized by VCP through blocking its lysosomal degrada-
tion. Strikingly, TMEM63A in turn stabilizes oncoprotein DERL1 through preventing TOLLIP-mediated 
autophagic degradation. Notably, pharmacological inhibition of VCP by CB-5083 or knockdown of 
DERL1 partially abolishes the oncogenic effects of TMEM63A on TNBC progression both in vitro and 
in vivo. Collectively, these findings uncover a previously unknown functional and mechanistic role for 
TMEM63A in TNBC progression and provide a new clue for targeting TMEM63A-driven TNBC tumors 
by using a VCP inhibitor.
Abbreviations: ATG16L1, autophagy related 16 like 1; ATG5, autophagy related 5; ATP5F1B/ATP5B, 
ATP synthase F1 subunit beta; Baf-A1, bafilomycin A1; CALCOCO2/NDP52, calcium binding and 
coiled-coil domain 2; CANX, calnexin; DERL1, derlin 1; EGFR, epidermal growth factor receptor; ER, 
endoplasmic reticulum; ERAD, endoplasmic reticulum-associated degradation; HSPA8, heat shock 
protein family A (Hsp70) member 8; IP, immunoprecipitation; LAMP2A, lysosomal associated mem-
brane protein 2; NBR1, NBR1 autophagy cargo receptor; OPTN, optineurin; RT-qPCR, reverse 
transcription-quantitative PCR; SQSTM1/p62, sequestosome 1; TAX1BP1, Tax1 binding protein 1; 
TMEM63A, transmembrane protein 63A; TNBC, triple-negative breast cancer; TOLLIP, toll interacting 
protein; VCP, valosin containing protein
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Introduction

Triple-negative breast cancer (TNBC) is characterized by the lack 
of expression of ESR (estrogen receptor), PGR (progesterone 
receptor), and ERBB2/HER2 (erb-b2 receptor tyrosine kinase 2), 
and accounts for approximately 15–20% of all breast cancers [1]. 
Compared with other subtypes of breast cancer, TNBC has an 
extremely aggressive clinical course with earlier age of onset, 
higher probability of recurrence and distant metastasis, poorer 
overall survival, and the lack of validated targeted therapies [2]. 
The discovery of targetable molecular targets that drive TNBC 
progression is absolutely imperative.

Transmembrane (TMEM) proteins are defined by the presence 
of one or more transmembrane domains, and constitute a large 

family of proteins spanning the entirety of the lipid bilayer of 
biological membrane [3]. Due to the amphiphilic nature of 
TMEM proteins, they form either α-helical or β-barrel structures 
while embedded in the membrane [4]. Accumulating evidence 
shows that TMEM proteins play vital roles in cellular functions by 
functioning as ion channels, transporters, signal receptors, and 
enzymes [3,5]. Consequently, dysregulation of TMEM proteins 
has been linked with cancer progression and therapeutic resistance 
[6,7]. Moreover, TMEM proteins, such as EGFR (epidermal 
growth factor receptor) and ERBB2/HER2, represent attractive 
drug targets for cancer therapy. Therefore, identifying actionable 
TMEM proteins that contribute to cancer progression remains 
important areas of investigation.
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Although approximately 20–30% of human genes are predicted 
to encode TMEM proteins [4,8], the structure, function, and 
mechanism of action of most members of the TMEM family 
remain unknown due to the technique difficulty in expression 
and purification of these proteins and the diversity in their char-
acteristics and subcellular localization [6,8,9]. These TMEM pro-
teins with unknown structure and function are classified into the 
TMEM protein family. A case in point is TMEM63A (transmem-
brane protein 63A), which contains 10 transmembrane domains 
[10,11] and is a poorly characterized member of the TMEM 
protein family. Available evidence shows that TMEM63A serves 
as an osmolarity sensitive ion channel for the osmoreception [12], 
and affects the proliferation and migration of goat peripheral 
blood mononuclear cells [13]. In addition, mutations in 
TMEM63A have recently been observed in patients with hypo-
myelination during infancy [10,14], global developmental delay 
[15], and hypomyelinating leukodystrophy [16]. However, the 
biological function and related mechanism of TMEM63A in 
human cancers have not yet been explored.

The endoplasmic reticulum (ER) is a multifunctional organelle 
essential for the biosynthesis, folding, stabilization, maturation, 
and trafficking of secretory and TMEM proteins [17]. Disruption 
of ER homeostasis by internal and external stimuli results in the 
accumulation of misfolded/unfolded and misassembled proteins, 
thus leading to the induction of ER stress [18]. To overcome this 
problem, cells have evolved two guardian pathways to maintain 
cellular protein homeostasis either by ER-associated degradation 
(ERAD) or by autophagy [19,20].

In ERAD, misfolded or unassembled proteins are retrotranslo-
cated to the cytosol to be degraded by the proteasome [21]. VCP/ 
p97 (valosin containing protein) and its cofactor DERL1 (derlin 1) 
are two core components of the ERAD pathway [22–24]. VCP is 
bound to ER membrane and contributes to extraction of misfolded 
and ubiquitinated proteins to the cytosol for degradation by the 
proteasome or through autophagy [25,26]. DERL1 forms a protein 
channel to mediate retrotranslocation of misfolded or misas-
sembled proteins across the ER membrane to the cytosol for 
degradation by the proteasome [23,27,28]. Accumulating evidence 
shows that both VCP and DERL1 are overexpressed in multiple 
types of human cancer and contribute to tumor growth and 
metastasis [29–34], thus marking them as potential therapeutic 
targets [35]. Indeed, antibodies against DERL1 can suppress tumor 
growth [34], and several VCP inhibitors exert antitumor activity in 
multiple cancer model systems [36,37]. Despite their functional 
importance in cancer, the precise molecular mechanisms of VCP 
and DERL1 in human cancer remain to be characterized.

Autophagy is an evolutionarily conserved pathway for 
the degradation of cytoplasmic materials through the lyso-
somal machinery [38,39], and is generally classified into 
nonselective and selective autophagy [38]. In selective auto-
phagy, cytoplasmic components are selected and tagged 
before being sequestered into an autophagosome by means 
of selective autophagy receptors, such as SQSTM1 (seques-
tosome 1), NBR1 (NBR1 autophagy cargo receptor), OPTN 
(optineurin), CALCOCO2/NDP52 (calcium binding and 
coiled-coil domain 2), ATG16L1 (autophagy related 16 
like 1), TOLLIP (toll-interacting protein), or TAX1BP1 
(Tax1 binding protein 1) [40]. These receptors recognize 
ubiquitinated substrates via their ubiquitin-binding 

domains and tether them to the phagophore membranes 
by their LC3-interacting regions (LIRs) [41–44].

In this study, we provide the first evidence that TMEM63A 
plays a pivotal role in TNBC progression. Mechanistic inves-
tigations revealed that TMEM63A is a downstream effector of 
VCP and an upstream regulator of DERL1 through TOLLIP- 
mediated autophagic degradation pathway. Moreover, phar-
macological inhibition of VCP or depletion of DERL1 
abolishes the oncogenic effects of TMEM63A on TNBC pro-
gression both in vitro and in vivo. Taken together, these 
findings reveal a previously unknown biological function 
and regulatory mechanism of TMEM63A in TNBC progres-
sion and provide potential therapeutic option for TMEM63A- 
driven TNBC progression with VCP inhibitors.

Results

TMEM63A is overexpressed in TNBC and promotes the 
proliferation, migration and invasion of TNBC cells

To identify potential TMEM proteins contributing to TNBC 
progression, we recently carried out iTRAQ-based quantita-
tive proteomic analysis on 90 cases of TNBC tissues and 72 
cases of matched adjacent normal tissues, and found that 
TMEM63A was detected in 12.2% (11/90) TNBC tissues and 
0% (0/72) of adjacent normal breast tissues (Figure 1A). We 
were particularly interested in this protein because analysis of 
Gene Expression Omnibus (GEO) public datasets revealed 
that TMEM63A was one of 47 genes that were commonly 
upregulated in clinical breast cancer brain metastases samples 
relative to primary breast tumors (GEO accession number: 
GSE100534 [45]) (Fig. S1A) and in MDA-231-derived brain 
metastasis cells (MDA-231 BrM) compared to parental MDA- 
231 cells (GEO accession number: GSE12237 [46]) (Fig. S1B) 
[47]. In addition, TMEM63A was also upregulated in MDA- 
231-derived lung metastasis cells (LM2-4142, −4173, −4175, 
and −4180) compared to parental MDA-231 cells (GEO acces-
sion number: GSE2603 [48]) (Fig. S1C). These results indicate 
TMEM63A may be relevant to breast cancer progression, but 
the biological functions and related molecular mechanism of 
TMEM63A in human cancer have not yet been explored.

To address the biological functions of TMEM63A in TNBC 
progression, we first examined the expression levels of 
TMEM63A in 9 TNBC cell lines by immunoblotting. Results 
showed that SUM159, MDA-157, LM2-4175, and Hs578T cell 
lines expressed relatively higher levels of TMEM63A than 
BT20, MDA-231, MDA-468, HCC1806 and BT549 cells did 
(Figure 1B). In addition, we noticed that the expression levels 
of TMEM63A were higher in LM2-4175 cell line, a highly 
lung metastatic variant of MDA-231 cell line [48], than in its 
parental MDA-231 cell line (Figure 1B). Based on the expres-
sion levels of TMEM63A in and biological characteristics of 
these TNBC cell lines, we next stably expressed pLVX and 
HA-TMEM63A in MDA-231 and BT549 cell lines by lenti-
viral infection. The expression status of TMEM63A in these 
resultant cell lines was validated by immunoblotting 
(Figure 1C). Cell proliferation assays using CCK-8 kit and 
colony formation assays showed that ectopic expression of 
TMEM63A enhanced the proliferation (Figure 1D) and 
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Figure 1. TMEM63A is upregulated in TNBC and promotes TNBC cell proliferation, migration, and invasion in vitro. (A) Detection of TMEM63A expression status in 90 cases of 
TNBC tissues and 72 cases of matched adjacent normal tissues by iTRAQ-based quantitative proteomic analysis. (B) Immunoblotting analysis of TMEM63A and DERL1 expression 
levels in 9 TNBC cell lines. (C) Establishment of stable MDA-231 and BT549 cells expressing empty vector pLVX and HA-TMEM63A by lentiviral infection. The expression status of 
TMEM63A in these resultant cell lines was validated by immunoblotting. (D-F) MDA-231 and BT549 cells stably expressing pLVX and HA-TMEM63A were subjected to CCK-8 
assays (D) and colony formation assays (E-F). Representative images of survival colonies (E) and corresponding quantitative results (F) are shown. (G-I) MDA-231 and BT549 cells 
stably expressing pLVX and HA-TMEM63A were subjected to Transwell migration and invasion assays. Representative images of migrated and invaded cells are shown in G, and 
corresponding quantitative results are shown in H and I, respectively (scale bar:100 μm). (J) Immunoblotting analysis of TMEM63A expression in LM2-4175 and Hs578T cells stably 
expressing shNC and shTMEM63A (#3 and #4) with the indicated antibodies. Densitometric quantitation of western blots was performed using ImageJ. (K-M) LM2-4175 and 
Hs578T stably expressing shNC and shTMEM63A (#3 and #4) were subjected to CCK-8 assays (K) and colony formation assays (L-M). Representative images of survival colonies (L) 
and corresponding quantitative results (M) are shown. (N-P) LM2-4175 and Hs578T stably expressing shNC and shTMEM63A (#3 and #4) were subjected to Transwell migration 
and invasion assays. Representative images of migrated and invaded cells are shown in NN, and corresponding quantitative results are shown in 0Oand P P, respectively (scale 
bar: 100 μm). *, **, and *** indicate statistically significant at p < 0.05, p < 0.01, and p < 0.001 level, respectively.
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colony formation (Figure 1E,F) of MDA-231 and BT549 cells. 
Transwell invasion and migration assays revealed that MDA- 
231 and BT549 cells expressing TMEM63A had enhanced 
migratory and invasive potential compared to control cells 
expressing empty vector (Figure 1G-I).

To further verify the aforementioned results, we next 
knocked down endogenous TMEM63A in LM2-4175 and 
Hs578T cells by lentiviral infection with expression vectors 
encoding two independent shRNAs targeting TMEM63A 
(shTMEM63A #3 and #4) and negative control shRNA 
(shNC). The effectiveness of shRNA-mediated knockdown 
of TMEM63A was confirmed by immunoblotting 
(Figure 1J). Cell function assays as described above demon-
strated that knockdown of TMEM63A attenuated the prolif-
eration (Figure 1K), colony growth (Figure 1L,M), and 
migratory and invasive potential (Figure 1N-P) of LM2-4175 
and Hs578T cells. Taken together, these results suggest that 
TMEM63A contributes to the malignant characteristics of 
TNBC cells.

TMEM63A is a novel binding partner of VCP

To examine the upstream regulatory factors of TMEM63A in 
TNBC cells, we established stable HEK293T cell lines expressing 
pCDH and Flag-TMEM63A (Figure 2A). Then, total cellular 
lysates from these established cell lines were subjected to IP ana-
lysis using an anti-Flag antibody (Fig. S2A), and the IP complex 
was subjected to electrospray ionization-tandem mass spectrome-
try (ESI-MS/MS) analysis to identify binding partners of 
TMEM63A. By this approach, we found that 191 proteins were 
specifically associated with Flag-TMEM63A according to the iden-
tified unique peptides more than 2. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis revealed that these 
TMEM63A-interacting proteins were associated with ribosome, 
proteasome, protein processing in endoplasmic reticulum, and 
others (Fig. S2B). The top 10 TMEM63A-interacting proteins 
based on the number of unique peptides identified by mass spec-
trometry are shown in Figure 2B. IP and immunoblotting analyses 
with the indicated antibodies further demonstrated that 
TMEM63A indeed interacted with the top three TMEM63A- 
interacting proteins, including VCP (valosin containing protein), 
CANX (calnexin), and ATP5F1B/ATP5B (ATP synthase F1 sub-
unit beta) (Figure 2C).

As VCP ranks among the top one in TMEM63A-interacting 
proteins and plays a key role in the control of protein homeostasis 
and cancer aggressiveness [30], we thereafter focused on addres-
sing the biological significance of the noted interaction between 
TMEM63A and VCP. To further validate whether TMEM63A 
interacts with VCP, HEK293T cells were transfected with Flag- 
TMEM63A, HA-VCP alone or in combination, and subjected to 
reciprocal IP assays with an anti-Flag or anti-HA antibody. 
Immunoblotting analysis with the indicated antibodies revealed 
that Flag-TMEM63A and HA-VCP pulled down each other only 
when both were co-expressed (Figure 2D). Moreover, Flag- 
TMEM63A interacted with endogenous VCP (Figure 2E), while 
HA-VCP interacted with endogenous TMEM63A (Figure 2F) in 
HEK293T cells. Immunofluorescent staining showed that 
TMEM63A partially co-localized with VCP in MDA-231 and 

BT549 cells (Figure 2G). Together, these results suggest that 
TMEM63A is a novel binding partner of VCP.

VCP stabilizes TMEM63A in TNBC cells

As VCP plays a central role in maintaining protein homeostasis 
[30], we next determined whether VCP and TMEM63A regulate 
each other. Notably, either ectopic expression of TMEM63A in 
MDA-231 and BT549 cells (Fig. S2C) or shRNA-mediated knock-
down of endogenous TMEM63A in LM2-4175 and Hs578T cells 
(Fig. S2D) did not markedly affect the expression levels of VCP. 
Conversely, knockdown of VCP in LM2-4175 and Hs578T cells 
significantly downregulated the protein levels of TMEM63A 
(Figure 2H). As a positive control, the expression levels of 
SQSTM1, a known substrate of VCP [36], were decreased follow-
ing treatment of LM2-4175 and Hs578T cells with VCP inhibitor 
CB-5083 [25]. Consistently, treatment of LM2-4175 and Hs578T 
cells with CB-5083 resulted in a decrease in TMEM63A protein 
levels in a dose-dependent manner (Figure 2I). RT-qPCR assays 
showed that depletion or pharmacological inhibition of VCP did 
not significantly affect TMEM63A mRNA levels (Fig. S2E and 
S2F). These results suggest the regulation of TMEM63A by VCP 
to be post-transcriptional. In support of this notion, cycloheximide 
(CHX)-chase assays showed that knockdown of VCP shortened 
the half-life of TMEM63A protein (Figure 2J,K). Collectively, these 
results suggest that VCP is a stabilizer of TMEM63A.

VCP blocks TOLLIP-mediated autophagic degradation of 
TMEM63A

The ubiquitin-proteasome system and autophagy are two 
major cellular degradation systems in eukaryotic cells [49]. 
To date, the molecular mechanism of TMEM63A degradation 
in eukaryotic cells remains unknow. To examine whether 
TMEM63A is degraded through ubiquitin-proteasome sys-
tem, we treated MDA-231 and BT549 cells with the protea-
some inhibitor MG-132 for the indicated times. 
Immunoblotting assays showed no significant change in 
TMEM63A protein levels following MG-132 treatment (Fig. 
S3A). As a positive control, MG-132 treatment resulted in 
a significant increase in the protein levels of CDKN1A/p21, 
a known substrate of the ubiquitin-proteasome system [50]. 
In contrast, incubation of MDA-231 and BT549 cells with the 
autophagy inhibitors bafilomycin A1 (Baf-A1) (Figure 3A) 
and ammonium chloride (NH4Cl) (Figure 3B) led to 
a remarkable accumulation of TMEM63A in a time- 
dependent manner. Conversely, the protein levels of 
TMEM63A were decreased in MDA-231 and BT549 cells 
following treatment with the autophagy inducer rapamycin 
(Rapa) in a time-dependent manner (Figure 3C). These results 
suggest that TMEM63A is degraded mainly through the auto-
phagy-lysosome but not the ubiquitin-proteasome pathway.

In mammals, three types of autophagy have been docu-
mented, including macroautophagy, microautophagy, and 
chaperone-mediated autophagy (CMA) [51]. To determine 
whether TMEM63A is degraded through CMA pathway, we 
knocked down HSPA8 (heat shock protein family A (Hsp70) 
member 8) and LAMP2A (lysosomal associated membrane 
protein 2), two core components of the CMA machinery 
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Figure 2. TMEM63A is a novel binding partner of VCP and is stabilized by VCP. (A) Immunoblotting analysis of TMEM63A expression in HEK293T cells stably 
expressing pCDH and Flag-TMEM63A with the indicated antibodies. (B) The top 10 TMEM63A-interacting proteins based on the number of identified unique peptides 
by mass spectrometry. (C) Total cellular lysates from HEK293T cells stably expressing pCDH and Flag-TMEM63A were subjected to IP assays with an anti-Flag 
antibody, followed by immunoblotting with the indicated antibodies. (D) HEK293T cells were transfected with pCDH, Flag-TMEM63A, and HA-VCP alone or in 
combination. After 48 h of transfection, IP and immunoblotting assays were performed with the indicated antibodies. (E-F) HEK293T cells were transfected with 
pCDH, Flag-TMEM63A (E) or HA-VCP (F). After 48 h of transfection, IP and immunoblotting assays were performed with the indicated antibodies. (G) MDA-231 and 
BT549 cells stably expressing pLVX and Flag-TMEM63A were subjected to immunofluorescent staining with an anti-Flag (red) or anti-VCP (green) antibody. DNA was 
counterstained with DAPI (blue). Typical colocalization between Flag-TMEM63A and VCP (yellow) is indicated by white arrows (scale bar: 7.5 μm). (H) LM2-4175 and 
Hs578T cells stably expressing shNC and shVCP (#3 and #4) were subjected to immunoblotting analysis with the indicated antibodies. (I) LM2-4175 and Hs578T cells 
were treated with or without increasing doses of VCP inhibitor CB-5083 for 8 h, and then subjected to immunoblotting with the indicated antibodies. (J-K) LM2-4175 
and Hs578T cells stably expressing shNC and shVCP #4 were treated with or without 100 μg/mL CHX for the indicated times, and then subjected to immunoblotting 
analysis with the indicated antibodies (J). Relative TMEM63A protein levels (TMEM63A: VCL) are shown in K. **, p < 0.01. In panels H-J, densitometric quantitation of 
Western blots was performed using ImageJ.
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Figure 3. VCP blocks TOLLIP-mediated autophagic degradation of TMEM63A. (A-B) MDA-231 and BT549 cells were treated with or without 200 nM Baf-A1 (A) or 
20 mM NH4Cl (B) for the indicated times, and then subjected to immunoblotting analysis with the indicated antibodies. (C) LM2-4175 and Hs578T cells were treated 
with or without 1 μM rapamycin (Rapa) for the indicated times, and then subjected to immunoblotting analysis with the indicated antibodies. (D) MDA-231 and 
BT549 cells were treated with or without 1 mM 3-MA for the indicated times, and then subjected to immunoblotting analysis with the indicated antibodies. (E) MDA- 
231 and BT549 cells were transfected with siNC and two independent siRNAs targeting ATG5. After 48 h of transfection, total cellular lysates were subjected to 
immunoblotting analysis with the indicated antibodies. (F) HEK293T cells were transfected with empty vector pLVX and Flag-TMEM63A, and were subjected to IP and 
immunoblotting analysis with the indicated antibodies after 48 h of transfection. (G) Schematic presentation of functional domains of TOLLIP [40]. LIR, LC3- 
interacting region; CUE, coupling of ubiquitin conjugation to ER degradation domain; C2, C2 domain. (H) HEK293T cells were transfected with the indicated 
expression vectors, and then subjected to IP and immunoblotting analysis with the indicated antibodies after 48 h of transfection. (I) MDA-231 and BT549 cells stably 
expressing pLVX and HA-TMEM63A were subjected to IP and immunoblotting analysis with the indicated antibodies. (J) LM2-4175 and Hs578T cells stably expressing 
pLVX and HA-TOLLIP were subjected to immunoblotting analysis with the indicated antibodies. (K) MDA-231 and BT549 cells were transfected with siNC and two 
independent siRNAs targeting TOLLIP. After 48 h of transfection, total cellular lysates were subjected to immunoblotting analysis with the indicated antibodies. (L) 
LM2-4175 and Hs578T were treated with the or without VCP inhibitor CB-5083 alone or in combination with Baf-A1 for 8 h and then subjected to immunoblotting 
analysis with the indicated antibodies. (M) HEK293T cells stably expressing empty vector pLVX and Flag-TMEM63A were treated with or without 3 μM VCP inhibitor 
CB-5083 for 4 h, and then subjected to IP and immunoblotting analysis with the indicated antibodies. (N) MDA-231 and BT549 cells stably expressing Flag-TMEM63A 
and HA-TOLLIP were treated with DMSO or 3 μM VCP inhibitor CB-5083 for 4 h. Immunofluorescence staining was performed with an anti-Flag (red) or anti-HA 
(green) antibodies. DNA was counterstained with DAPI (blue). Typical colocalization between Flag-TMEM63A and HA-TOLLIP (yellow) is indicated by white arrows 
(scale bar: 7.5 μm). In panels A-E, J-M, densitometric quantitation of Western blots was performed using ImageJ.
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[52], using two specific siRNAs, and found no remarkable 
changes in the protein levels of TMEM63A after depletion of 
either HSPA8 or LAMP2A (Fig. S3B and S3C). In line with 
these observations, induction of CMA through prolonged 
nutrient starvation did not significantly alter TMEM63A pro-
tein levels (Fig. S3D). To determine whether macroautophagy 
contributes to TMEM63A degradation, MDA-231 and BT549 
cells were treated with 1 mM 3-methyladenine (3-MA), 
a selective inhibitor of macroautophagy through blocking 
autophagosome formation [53]. As shown in Figure 3D, 
TMEM63A protein levels were increased in the presence of 
3-MA. It has been previously reported that ATG5 (autophagy 
related 5) is an essential gene for mammalian macroauto-
phagy [54]. We next knocked down endogenous ATG5 gene 
in MDA-231 and BT549 cells using two independent siRNAs 
targeting ATG5 (siATG5 #1 and #3), and then examined the 
expression levels of TMEM63A by immunoblotting. Results 
showed that knockdown of ATG5 resulted in a significant 
increase in protein levels of TMEM63A compared to its con-
trol counterpart (Figure 3E). These results collectively indicate 
that TMEM63A is degraded mainly through the macroauto-
phagy pathway.

As macroautophagy is mediated by selective autophagy 
receptors, such as SQSTM1, NBR1, OPTN, CALCOCO2/ 
NDP52, ATG16L1,TAX1BP1, and TOLLIP [55,56], we next 
screened autophagy receptors that bind to TMEM63A by IP 
assays. As shown in Figure 3F, TMEM63A bound to the 
autophagy receptors SQSTM1 and TOLLIP, but not NBR1, 
OPTN, CALCOCO2/NDP52, ATG16L1 and TAX1BP1. 
Previous studies have shown that SQSTM1 binds to ubiquiti-
nated substrates through its C-terminal UBA (ubiquitin- 
associated) domain [57], whereas TOLLIP protein contains 
a CUE (coupling of ubiquitin to ER degradation) domain at 
its C terminus that interacts with ubiquitin or ubiquitinated 
proteins [58]. To investigate whether SQSTM1 mediates 
TMEM63A degradation, we deleted the C-terminal UBA 
domain of SQSTM1 (SQSTM1 ΔUBA), and found that both 
wild-type and ΔUBA mutant SQSTM1 enabled to interact with 
TMEM63A (Fig. S3E and S3F). Additionally, knockdown of 
SQSTM1 did not change the protein expression levels and half- 
life of TMEM63A (Fig. S3G and S3H), indicating that 
SQSTM1 is not required for TMEM63A degradation. In con-
trast, deletion of the CUE domain of TOLLIP (TOLLIP ΔCUE) 
significantly attenuated the interaction between TOLLIP and 
TMEM63A (Figure 3G,H). The interaction between 
TMEM63A and TOLLIP was further verified in MDA-231 
and BT549 cells stably expressing HA-TMEM63A (Figure 3I). 
Moreover, ectopic expression of TOLLIP in LM2-4175 and 
Hs578T cells significantly downregulated the protein levels of 
TMEM63A (Figure 3J). Consistently, knockdown of TOLLIP 
significantly upregulated the protein levels of TMEM63A 
(Figure 3K). These results suggest that TOLLIP is involved in 
autophagic degradation of TMEM63A. We then investigated 
whether VCP is involved in autophagic degradation of 
TMEM63A and found that the reduced expression of 
TMEM63A caused by CB-5083 was rescued by Baf-A1 
(Figure 3L). These results indicate that VCP inhibits the auto-
phagic degradation of TMEM63A. Furthermore, ectopic 
expression of HA-VCP reduced the ubiquitination levels of 

TMEM63A (Fig. S3I), and the interaction between 
TMEM63A and TOLLIP was significantly enhanced following 
treatment with VCP inhibitor CB-5083 [25] (Figure 3M). 
Immunofluorescence staining also demonstrated that CB-5083 
treatment enhanced the intracellular co-localization of 
TMEM63A and TOLLIP in MDA-231 and BT549 cells 
(Figure 3N). Collectively, these results suggest that VCP blocks 
TOLLIP-mediated autophagic degradation of TMEM63A.

TMEM63A regulates oncoprotein DERL1 at the protein 
level

As TMEM63A is a predicted transmembrane protein [10,11], 
we next examined its subcellular localization by immuno-
fluorescent staining with different antibodies against lysosome 
membrane marker LAMP2A [59], endoplasmic reticulum 
membrane marker CANX [60], and plasma membrane mar-
ker EGFR (epidermal growth factor receptor) [61]. As shown 
in Figure 4A, TMEM63A partially co-localized with LAMP2A 
(left) and CANX (middle) but not EGFR (right). As lysosome 
and endoplasmic reticulum play critical roles in the mainte-
nance of cellular proteostasis [62], we employed iTRAQ-based 
quantitative proteomics technology to identify downstream 
proteins of TMEM63A using total cellular lysates from LM2- 
4175 cells stably expressing shNC and two shRNAs targeting 
TMEM63A (shTMEM63A #3 and #4). According to the cutoff 
value of 1.5-fold change, 222 proteins were upregulated, 
whereas 26 proteins were downregulated, in cells expressing 
shTMEM63A (#3 and #4) when compared to cells expressing 
shNC (Figure 4B). KEGG pathway analysis revealed that these 
differentially expressed proteins in cells expressing 
shTMEM63A and shNC were associated with protein proces-
sing in endoplasmic reticulum, ribosome, and others 
(Figure 4C). The top 10 downregulated proteins and 10 upre-
gulated proteins after knockdown of TMEM63A in LM2-4175 
cells are shown in Figure 4D,E, respectively. 

As DERL1 ranks first among the downregulated proteins 
after knockdown of TMEM63A and functions as an oncogene 
to promote tumor progression in different cancers [63–65], it 
was selected for further analysis. Consistent with quantitative 
proteomic results, immunoblotting analysis revealed that 
ectopic expression of TMEM63A in MDA-231 and BT549 
cells upregulated (Figure 4F), whereas knockdown of 
TMEM63A in LM2-4175 and Hs578T cells downregulated 
(Figure 4G), DERL1 protein levels. RT-qPCR assays demon-
strated that overexpression or knockdown of TMEM63A did 
not affect the mRNA levels of DERL1 (Fig. S4A and S4B). In 
addition, there was a correlation between protein levels 
between TMEM63A and DERL1 in TNBC cell lines 
(Figure 1B). Together, these results suggest that TMEM63A 
regulates DERL1 at the protein level.

TMEM63A blocks TOLLIP-mediated autophagic 
degradation of DERL1

To address the underlying mechanism by which TMEM63A 
regulates DERL1, we treated MDA-231 and BT549 cells with 
the proteasome inhibitor MG-132, the autophagy inhibitor 
Baf-A1, or the autophagy inducer rapamycin (Rapa). 

AUTOPHAGY 811



Immunoblotting analysis showed that DERL1 protein levels 
were increased following treatment with Baf-A1 (Figure 5A), 
but were decreased in the presence of rapamycin (Rapa) 
(Figure 5B). In contrast, treatment of cells with MG-132 did 
not significantly affect the protein levels of DERL1 (Fig. S4C). 
More importantly, pharmacological inhibition of lysosomal 

degradation by Baf-A1 rescued the downregulation of 
DERL1 caused by TMEM63A knockdown (Figure 5C). 
These results suggest that TMEM63A regulates DERL1 
through the autophagy-lysosome pathway.

To assess whether CMA pathway mediates DERL1 degra-
dation, we knocked down LAMP2A and HSPA8, two essential 

Figure 4. TMEM63A regulates oncoprotein DERL1 at the protein level. (A) MDA-231 and BT549 cells stably expressing pLVX and Flag-TMEM63A were subjected to 
immunofluorescent staining with antibodies against Flag (red), LAMP2A (green, left), CANX (green, middle), and EGFR (green, right). DNA was counterstained with 
DAPI (blue). Typical colocalization between Flag-TMEM63A and LAMP2A or CANX (yellow) is indicated by white arrows (scale bar:7.5 μm). (B) The number of 
differentially expressed proteins between cells expressing shTMEM63A (#3 and #4) and shNC based on the cutoff value of 1.5-fold change. (C) KEGG pathway analysis 
of differentially expressed proteins between cells expressing shTMEM63A (#3 and #4) and shNC. (D-E) The top 10 downregulated proteins (D) and 10 upregulated 
proteins (E) after knockdown of TMEM63A in LM2-4175 cells. (F) MDA-231 and BT549 cells stably expressing pLVX and HA-TMEM63A were subjected to 
immunoblotting analysis with the indicated antibodies. (G) LM2-4175 and Hs578T stably expressing shNC and shTMEM63A (#3 and #4) were subjected to 
immunoblotting analysis with the indicated antibodies. In panels F and G, densitometric quantitation of western blots was performed using ImageJ.
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components of the CMA machinery [52], in MDA-231 and 
BT549 cells by two independent siRNAs. As shown in Fig. 
S4D and S4E, depletion of either LAMP2A or HSPA8 had no 
effects on DERL1 protein levels. IP assays also demonstrated 
that DERL1 did not interact with HSPA8 and LAMP2A (Fig. 
S4F). These results suggest that CMA is not responsible for 
lysosomal degradation of DERL1. In contrast, treatment of 
MDA-231 and BT549 cells with macroautophagy inhibitor 
3-MA [53] resulted in an accumulation of DERL1 
(Figure 5D). Consistently, knockdown of ATG5, an essential 
gene for mammalian macroautophagy [54], resulted in 
a significant increase in protein levels of DERL1 compared 
to the control counterpart (Figure 3E). These results suggest 
that DERL1 may be degraded by macroautophagy.

Then, we attempted to identify the autophagy receptor for 
DERL1 by IP assays, and found that DERL1 bound to the 
autophagy receptors SQSTM1 and TOLLIP, but not NBR1, 
OPTN, CALCOCO2/NDP52, ATG16L1 and TAX1BP1 
(Figure 5E). Interestingly, deletion of the C-terminal UBA 
domain of SQSTM1 (SQSTM1 ∆UBA) did not affect the 
interaction between SQSTM1 with DERL1 (Fig. S4G). 
Moreover, knockdown of SQSTM1 using two independent 
siRNAs targeting SQSTM1 (siSQSTM1 #2 and #3) did not 
affect DERL1 protein levels (Fig. S4H). These results indicate 
that SQSTM1 is not the autophagy receptor for DERL1 
degradation. In contrast, wild-type but not CUE domain- 
deficient TOLLIP interacted with DERL1 (Figure 5F). 
Moreover, Flag-TMEM63A interacted with endogenous 
DERL1 in HEK293T cells (Figure 5G), and ectopic expression 
of TOLLIP significantly reduced the protein levels of DERL1 
in LM2-4175 and Hs578T cells (Figure 5H). Moreover, 
TOLLIP knockdown resulted in an increase in the protein 
levels of DERL1 (Figure 3K). These results suggest that 
TOLLIP may mediate autophagic degradation of DERL1. In 
support of this notion, ectopic expression of HA-TMEM63A 
reduced the ubiquitination levels of Flag-DERL1 (Figure 5I) 
and compromised the interaction of DERL1 with TOLLIP 
(Figure 5J). It has been reported that DERL1 can degrade 
the unspliced form of XBP1 (X-box binding protein 1; 
XBP1u) by binding to its C terminus [66]. We found that 
overexpression of TMEM63A in MDA-231 and BT549 cells 
led to DERL1 upregulation and XBP1u downregulation 
(Figure 5K). In contrast, knockdown of TMEM63A in LM2- 
4175 and Hs578T cells decreased DERL1 levels and increased 
XBP1u levels (Figure 5L). Together, these data suggests that 
TMEM63A blocks TOLLIP-mediated autophagic degradation 
of DERL1.

Pharmacological inhibition of VCP or depletion of DERL1 
impairs TMEM63A-mediated TNBC progression both 
in vitro and in vivo

To investigate whether TMEM63A exerts oncogenic effects on 
TNBC cells through regulating DERL1, we knocked down 
DERL1 in MDA-231 and BT549 cells stably expressing HA- 
TMEM63A and performed functional rescue assays as 
described in Figure 1 (Fig. S5A). Results showed that knock-
down of DERL1 partially abolished TMEM63A-induced cell 
proliferation (Figure 6A) and colony formation (Figure 6B,C) 

of MDA-231 and BT549 cells. Additionally, depletion of 
DERL1 also partially abrogated the pro-migration and pro- 
invasion effects of TMEM63A (Figure 6D-F).

As VCP is an upstream regulator of TMEM63A and VCP 
inhibitors exerts broad antitumor activity in a range of both 
hematologic and solid tumor models [67,68], we next examined 
the effects of VCP inhibitor CB-5083 on TMEM63A-mediated 
TNBC progression. In vitro function assays revealed that the 
inhibitory effects of CB-5083 on cell viability, migration and 
invasion were more pronounced in MDA-231 cells stably 
expressing TMEM63A compared to cells expressing empty vec-
tor pLVX (Figure 6G-I and Fig. S5B-S5D, left panel). The 
opposite results were obtained from LM2-4175 cells stably 
expressing shNC and shTMEM63A # 4 (Figure 6G-I and Fig. 
S5B-S5D, right panel).

We next investigated the effects of TMEM63A on tumor 
growth and lung metastasis of TNBC cells and whether phar-
macological inhibition of VCP or depletion of DERL affects 
TMEM63A-mediated tumorigenic ability and lung metastasis. 
To achieve this aim, MDA-231 cells stably expressing empty 
vector pLVX, HA-TMEM63A, and HA-TMEM63A in combi-
nation with shDERL1 #1 were injected into the mammary fat 
pad (tumorigenesis) and the tail vein (lung metastasis) of 
nude mice. After one week of injection, mice were admini-
strated with vehicle or VCP inhibitor CB-5083. In concor-
dance with the in vitro findings, ectopic expression of 
TMEM63A in MDA-231 cells markedly enhanced tumor 
volume and weight (Figure 7A,B, and Fig. S6A) and lung 
metastasis (Figure 7C,D, and Fig. S6B and S6C). Notably, 
pharmacological inhibition of VCP by CB-5083 or knock-
down of DERL1 compromised the noted oncogenic effects of 
TMEM63A (Figure 7A-D, and S6A-S6C). Moreover, tumors 
overexpressing TMEM63A were more sensitive to CB-5083 
treatment compared to controls (Figure 7A-D, and S6A-S6C). 
These results suggest that TMEM63A promotes TNBC pro-
gression in vivo through, at least in part, regulating DERL1, 
and that VCP inhibitors have therapeutic potential for TNBC 
tumors with high expression of TMEM63A.

Discussion

In this study, we report several interesting findings concern-
ing a previously unappreciated functional and mechanistic 
role of the VCP-TMEM63A-DERL1 signaling axis in TNBC 
progression (Figure 7E).

First, TMEM63A functions as a novel oncogene to pro-
mote TNBC progression. Emerging evidence shows that 
abnormal expression or mutation of some TMEM proteins 
(such as TMEM16A and TMEM88) play key roles in regulat-
ing cancer cell proliferation, invasion, metastasis, and sensi-
tivity to anticancer agents, and that some TMEMs (such as 
TMEM48) can be used as potential prognostic biomarkers 
[6,7,69–72]. In this context, it has been shown that 
TMEM17 is upregulated in breast tumor tissues and promotes 
malignant progression of breast cancer cells by activating 
AKT-GSK3B/GSK3β pathway [73], and that TMEM45A pro-
motes hypoxia-induced chemoresistance of breast cancer cells 
[74]. In addition, TMEM25 may be a good prognostic marker 
for patients with breast cancer [75] . In view of the key role of 
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Figure 5. TMEM63A stabilizes DERL1 through blocking TOLLIP-mediated autophagic degradation of DERL1. (A) MDA-231 and BT549 cells were treated with or 
without 200 nM Baf-A1 for the indicated times and then subjected to immunoblotting analysis with the indicated antibodies. (B) LM2-4175 and Hs578T cells 
were treated with or without 1 μM rapamycin (Rapa) for the indicated times and then subjected to immunoblotting analysis with the indicated antibodies. (C) 
LM2-4175 and Hs578T cells stably expressing shNC and shTMEM63A #4 were treated with or without 200 nM Baf-A1 for 24 h and then subjected to 
immunoblotting analysis with the indicated antibodies. (D) MDA-231 and BT549 cells were treated with or without 1 mM 3-MA for the indicated times and 
then subjected to immunoblotting analysis. (E-F) HEK293T cells were transfected with the indicated expression vectors, and then subjected to IP and 
immunoblotting analysis with the indicated antibodies after 48 h of transfection. (G) HEK293T cells stably expressing pLVX and Flag-TMEM63A were subjected 
to IP and immunoblotting analysis with the indicated antibodies. (H) Immunoblotting analysis of LM2-4175 and Hs578T stably expressing pLVX and HA-TOLLIP 
with the indicated antibodies. (I-J) HEK293T cells were transfected with the indicated plasmids, and then subjected to IP and immunoblotting analysis with the 
indicated antibodies after 48 h of transfection. (K) MDA-231 and BT549 cells stably expressing pLVX and HA-TMEM63A were subjected to immunoblotting 
analysis. (L) LM2-4175 and Hs578T stably expressing shNC and shTMEM63A (#3 and #4) were lysed for immunoblotting analysis. In panels A-D, H, and J-L, 
densitometric quantitation of western blots was performed using ImageJ.
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Figure 6. Pharmacological inhibition of VCP or depletion of DERL1 impairs TMEM63A-mediated TNBC cell proliferation, migration, and invasion in vitro. (A-F) MDA- 
231 and BT549 cells stably expressing HA-TMEM63A were infected with lentiviral vectors encoding shDERL (#1 and #2), and then subjected to CCK-8 (A), colony 
formation (B-C), migration (D-E) and invasion (D and F) assays (scale bar:100 μm). Representative images of survival colonies and corresponding quantitative results 
are shown in B and C, respectively. Representative images of migrated and invaded cells are shown in D, and corresponding quantitative results are shown in E and 
F, respectively. (G) MDA-231 cells stably expressing pLVX and HA-TMEM63A (left) and LM2-4175 cells stably expressing shNC and shTMEM63A #4 cells (right) were 
treated with or without increasing doses of VCP inhibitor CB-5083 and then subjected to colony formation assays. Representative images of survival colonies and the 
relative inhibitory rate of CB-5083 on colony formation ability of MDA-231 and LM2-4175 cells are shown in Supplementary Fig. S5B and Figure 6G, respectively. 
(H-I) MDA-231 cells stably expressing pLVX and HA-TMEM63A (left) and LM2-4175 cells stably expressing shNC and shTMEM63A #4 cells (right) were treated with or 
without increasing doses of VCP inhibitor CB-5083 and then subjected to Transwell migration and invasion assays. Representative images of migrated and invaded 
cells are shown in Supplementary Fig. S5C and S5D. The relative inhibitory rate of CB-5083 on the migration and invasion of MDA-231 and LM2-4175 cells are shown 
in H and I, respectively. *, **, and *** indicate statistically significant at p < 0.05, p < 0.01, and p < 0.001 level, respectively.
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Figure 7. Pharmacological inhibition of VCP or depletion of DERL1 impairs TMEM63A-mediated xenograft tumor growth and lung metastasis of TNBC cells 
in vivo. (A-B) MDA-231 cells stably expressing pLVX, HA-TMEM63A, HA-TMEM63A in combination with shDERL1 #1 were inoculated into the mammary fat pad 
of 6-8-week-old female BALB/c nude mice (n = 8). After one week of incubation, mice were administrated with vehicle or CB-5083 (50 mg/kg) by oral gavage. 
After 4 weeks of treatment, mice were euthanized, xenograft tumors were removed and weighed. Images of removed xenograft tumors from mice are shown 
in Supplementary Fig. S6A. Tumor volumes and weights are shown in A and B, respectively. (C-D) MDA-231 cells stably expressing pLVX, HA-TMEM63A, HA- 
TMEM63A in combination with shDERL1 #1 were injected into 6-8-week-old female BALB/c nude female mice (n = 6) through tail vein. After one week of 
injection, mice were administrated with vehicle or CB-5083 (50 mg/kg) by oral gavage. After 4 weeks of administration, mice were euthanized, the lung tissues 
were removed, and the number of metastatic lung nodules were counted. Representative images of metastatic lung nodules and quantitative results of 
metastatic lung nodules is shown in C and D, respectively. Images of metastatic lung nodules and HE staining of lung tissues are shown in Supplementary Fig. 
S6B and S6C, respectively. (E) The proposed working model. TMEM63A undergoes TOLLIP-mediated autophagic degradation (a), and this process is blocked by 
VCP leading to TMEM63A stabilization (b). VCP inhibitor CB-5083 enhances the interaction of TMEM63A with TOLLIP, thus promoting TMEM63A degradation 
(c). In addition, DERL1 is also subjected to TOLLIP-mediated autophagic degradation (d), and TMEM63A stabilizes DERL1 through preventing it from TOLLIP- 
mediated autophagic degradation (e).
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TMEM proteins in human cancer and their potential as antic-
ancer drug targets, in-depth investigations of their functions 
and molecular mechanisms in cancer development and pro-
gression could provide new clues for the discovery of new 
therapeutic targets for cancer therapy.

TMEM63A is a member of the TMEM63 family of 
mechanically activated ion channels [12,76], and is required 
to constitute a hyperosmolarity activated ion channel [12]. 
Interestingly, mutations in TMEM63A have been shown to 
be associated with several developmental disorders [14–16], 
but biological function of TMEM63A in human cancer has 
not been explored to date. In this study, we provide the first 
evidence that TMEM63A was highly expressed in TNBC 
tumors and promoted TNBC cell proliferation, migration, 
and invasion in vitro (Figure 1) and xenograft tumor growth 
and lung metastasis in vivo (Figure 7). These results suggest 
that TMEM63A represents a potential therapeutic target for 
TNBC. In supported of our findings, mechanically activated 
ion-channel proteins, such as PIEZO1, have been implicated 
in the development and progression of multiple types of 
human cancer through various mechanisms [77,78].

Second, VCP stabilizes TMEM63A through blocking its 
autophagic degradation mediated by autophagy receptor 
TOLLIP. VCP exerts diverse biological functions mostly 
through modulating proteasomal degradation of client pro-
teins, such as RNF8 (RING finger protein 8) [79] and mutant 
p53 [80]. In addition, VCP plays key roles in regulation of both 
selective and nonselective autophagy, and is required for auto-
phagic degradation of its substrates, such as empty AGO1 [81– 
83]. Consequently, loss of VCP results in compromised protein 
degradation via the proteasome and the autophagy machinery 
[84]. In this study, we found that TMEM63A was subjected to 
autophagic degradation, and VCP stabilized TMEM63A 
through blocking TOLLIP-mediated macroautophagic degrada-
tion of TMEM63A (Figures 2–3 and Figs. S2 and S3). Previous 
studies have demonstrated that TOLLIP acts as a selective 
autophagy receptor for autophagic degradation of protein 
aggregates (termed aggrephagy) [58]. Furthermore, the onco-
genic effects of TMEM63A on TNBC progression were sup-
pressed by VCP inhibitor CB-5083 both in vivo and in vitro 
(Figures 6G-I, 7A-7D, Figs. S5B-S5D, and S6).

Third, TMEM63A stabilizes DERL1 through preventing it 
from TOLLIP-mediated autophagic degradation. Accumulating 
evidence shows that DERL1 is highly expressed in multiple types 
of human cancer, including breast [31,33,34], cervix [85], lung 
[34,86–88], colon [64,89], bladder [90,91], esophagus [91], liver 
[92], and pancreas [34], and functions as an oncogene contribut-
ing to malignant phenotypes of these tumors 
[31,32,85,86,89,91,92]. In addition, DERL1 is a biomarker for 
predicting prostate cancer aggressiveness and lethal outcome 
[93], hepatocellular carcinoma metastasis [92], and poor prog-
nosis of patients with breast cancer [31,32], non-small cell lung 
cancer [86,88], muscle invasive bladder cancer [91], and bladder 
cancer [90]. Consequently, targeting DERL1 by antibodies signif-
icantly suppresses colon tumor growth in mice [34]. Despite its 
functional importance in human cancer, the regulatory mechan-
ism of DERL1 in cancer still remains elusive. In this study, we 
found that DERL1 underwent autophagic degradation, and 
TMEM63A enhanced the stability of DERL1 through blocking 

TOLLIP-mediated autophagic degradation (Figures 4 and 5). 
Functional rescue assays further demonstrated that knockdown 
of DERL1 in TMEM63A-overexpressing cells attenuated 
TMEM63A-mediated cell proliferation, migration, and invasion 
in vitro and tumor growth and lung metastasis in vivo (Figures 6 
and 7). These results suggest that TMEM63A promotes TNBC 
progression through, at least in part, stabilizing DERL1.

Finally, emerging evidence shows that the expression levels 
of TOLLIP are downregulated in gastric adenocarcinoma in 
comparison to normal mucosa [94], indicating that TOLLIP 
may act as a tumor suppressor in gastric cancer. In contrast, 
TOLLIP promotes colitis-associated cancer via chronic 
inflammatory responses and lymphocyte accumulation [95]. 
Similarly, TOLLIP promotes colorectal cancer progression 
through reducing immune surveillance by increasing STAT5 
and PD-L1 and reducing STAT1 [96]. These findings indicate 
that TOLLIP has a complicated role in human cancer in 
a context dependent manner. To address the potential role 
of TOLLIP in breast cancer cell proliferation, migration, and 
invasion, we knocked down of TOLLIP in MDA-231 cells 
using two independent siRNAs targeting TOLLIP. Results 
showed that depletion of TOLLIP did not significantly affect 
the proliferation, migration, and invasion of MDA-231 cells 
(unpublished data). Given that TOLLIP has many substrates 
with various functions, this phenotype may be due to the 
compensation effects among different substrates. In addition, 
we cannot rule out the possibility that the role TOLLIP in 
tumor progression may be context dependent.

In summary, findings presented in this study suggest that 
TMEM63A acts as a novel oncogene to promote TNBC pro-
gression, and that TOLLIP-mediated autophagic degradation 
pathway links the VCP-TMEM63A-DERL1 signaling axis to 
TNBC progression. Moreover, pharmacological inhibition of 
VCP impairs TMEM63A-mediated TNBC progression. Thus, 
TMEM63A may serve as a potential therapeutic target for 
TNBC tumors.

Materials and methods

Cell culture and reagents

Human TNBC cell lines, BT20 (CBP60354), BT549 (TCHu 
93), HCC1806 (CBP60373), Hs578T (TCHu127), MDA-MB 
-231 (hereinafter referred to as MDA-231 for brevity) 
(TCHu227), MDA-MB-157 (MDA-157) (CBP60381), MDA- 
MB-468 (MDA-468) (TCHu136) and human embryonic kid-
ney 293T (HEK293T) (GNHu17) cell lines were obtained 
from Cell Bank of Type Culture Collection of the Chinese 
Academy of Sciences (Shanghai, China) and Shanghai Key 
Laboratory of Breast Cancer (Fudan University, Shanghai, 
China). MDA-MB-231-derived LM2-4175 cells were kindly 
provided by Guohong Hu (University of Chinese Academy 
of Sciences, Shanghai, China). SUM159 cell lines were kindly 
provided by Suling Liu (Fudan University, Shanghai, China). 
All cell lines were authenticated through short tandem repeat 
(STR) profiling and were used for less than six months within 
15–20 passages. All cell lines were cultured in DMEM 
(BasalMedia, L110) supplemented with 10% fetal bovine 
serum (FBS; ExCell Biol, FSP500) and 1% penicillin- 
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streptomycin (BasalMedia, S110B). All cells were cultured in 
a 5% CO2 incubator at 37°C. MG-132, CB-5083, bafilomycin 
A1 (Baf-A1), 3-methyladenine (3-MA), rapamycin (Rapa), 
and puromycin were purchased from Selleck Chemicals. 
Cycloheximide (CHX) was obtained from Cell Signaling 
Technology. Other compounds were purchased from Sigma- 
Aldrich unless otherwise noted. Detailed information for all 
chemical inhibitors is listed in Table S1.

Cell viability and colony formation assays

Cells were counted after digestion and seeded into each well 
of 96-well plates (1000 cells per well). Cell viability assays 
were carried out using CCK-8 kit (Yeasen, 40203ES92*) by 
adding 10 μL CCK-8 solution to each well, and absorbance at 
450 nm (OD450) was measured at the indicated times. Colony 
formation assays were carried out in a six-well plate (1000 
cells per well). The medium was changed every three days. 
After 14 days of culture, cells were fixed with methanol, 
stained with crystal violet, and counted.

Cell migration and invasion assays

Cells were counted after digestion, and a total of 2–5 × 104 

cells in serum-free medium were plated in the upper chamber 
coated with (invasion) or without (migration) matrigel 
(Corning, 354,480 and 353,097, respectively). The lower 
chamber was covered with medium containing 10% FBS. 
After 24 h of incubation, cells were fixed with methanol, 
stained with crystal violet, and counted.

Tumorigenicity and lung metastasis assays

All procedures were in accordance with institutional guide-
lines for the Care and Use of Laboratory Animals and were 
approved by the Animal Experiments Committee of Fudan 
University. To perform tumorigenesis assays, 3.5 × 106 cells 
were inoculated into the mammary fat pad of 6-8-week-old 
BALB/c nude female mice (n = 8). CB-5083 was dissolved in 
0.5% sodium carboxymethyl cellulose (Selleck, S6703). After 
one week of injection, mice were administrated with vehicle 
or CB-5083 (50 mg/kg) by oral gavage. Oral gavage was 
performed once a day for five consecutive days and then 
suspended for 2 days (qd5/2 off) for 4 weeks. Tumor volume 
was measured twice a week and calculated by the formula of 
(length × width2)/2. After mice were euthanized, xenograft 
tumors were removed and weighed. For experimental lung 
metastasis assays, 1 × 106 cells were injected into 6-8-week-old 
BALB/c nude female mice (n = 6) through tail vein. Vehicle or 
CB-5083 (50 mg/kg) was administrated into mice by oral 
gavage after one week of injection. Oral gavage was performed 
once a day for five consecutive days and then suspended for 
2 days (qd5/2 off) for 4 weeks. After mice were euthanized, 
the lung tissues were removed and the number of metastatic 
lung nodules were counted under a microscope.

DNA constructs, siRNAs, shRNA, and transfection

The plasmids encoding TMEM63A (CH802067), VCP 
(CH897720), and DERL1 (CH823019) were purchased from 
Vigene Bioscience, and subcloned into lentiviral vectors 
pCDH-CMV-MCS-EF1-Puro (System Biosciences, CD510B- 
1) or pLVX-IRES-NEO (Biofeng, 632,181). Short hairpin 
RNA (shRNA) sequences targeting TMEM63A, VCP, and 
DERL1 were obtained from BLOCK-iT™ RNAi Designer 
(http://rnaidesigner.thermofisher.com/rnaiexpress/design.do) 
and ligated into the lentiviral vector pLKO.1-TRC 
(Addgene,10,878, deposited by David Root). Small interfering 
RNAs (siRNAs) targeting SQSTM1 and DERL1 were pur-
chased from GenePharma (Shanghai, China). All cDNA plas-
mids and sequences are listed in Tables S2-S5.

DNA constructs and shRNAs were transfected into HEK293T 
cells using Neofect DNA transfection reagent (Tengyi Biol, 
TF201201). The supernatants were collected after 48 h of trans-
fection, filtered, and used to infect cells in the presence of 8 μg/ 
mL polybrene (Sigma, H9268). After 48 h of infection, cells were 
selected using 2 μg/mL puromycin (Selleck, S7417) or 0.5 mg/mL 
G418 (Sangon Biotech, A600958-0005) for 1–2 weeks. The 
siRNAs were transfected into cells using Lipofectamine 2000 
transfection reagent (Invitrogen, 11,668,019).

RNA extraction and RT-qPCR

Total RNA from cultured cells and tissue samples was 
extracted using TRIzol reagent (Invitrogen, 15,596,018). 
Reverse transcription was conducted to generate cDNA from 
the isolated RNA using HiScript III RT SuperMix (Vazyme, 
R323-01). qPCR assays were performed using Chamq 
Universal SYBR qPCR Master Mix (Vazyme, Q711-03). 
Relative gene expression levels between different samples 
were calculated using the 2−ΔΔCT method. The primers used 
in this study are listed in Table S6.

Antibodies, immunoblotting, and immunoprecipitation

The antibodies used in this study are listed in Table 1. For 
immunoblotting, cultured cells were washed with PBS and 
lysed with RIPA buffer (Yeasen, 20101ES60). After BCA 
protein quantification, equal quantities of protein samples 
were used for SDS-PAGE. The proteins were transferred to 
PVDF membrane (Millipore, IPVH00010) and incubated 
with primary and secondary antibodies after blocking the 
membrane with 5% BSA (Sigma, V900933-1 KG). Proteins 
were detected using an enhanced chemiluminescence detec-
tion kit (Yeasen, 36208ES80). For immunoprecipitation (IP) 
assays, cultured cells were washed with PBS and lysed with 
NP-40 buffer (Beyotime, P0013F). After BCA protein quan-
tification, equal quantities of protein samples were mixed 
with the corresponding antibodies and incubated overnight 
in a rotating shaker at 4°C. On the second day, protein A/G 
beads (Bimake, B23202) were added and then washed after 
3 h of incubation. The samples were then subjected to 
immunoblotting.
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Immunofluorescent staining

Cells were digested and then counted. Each disc was plated 
with 80,000 cells. On next day, after cells adhered to the walls 
on the disc, the culture medium was discarded, the cells 
washed with PBS and fixed with 4% paraformaldehyde 
(Sangon Biotech, E672002-0500). After treatment with 0.1% 
Triton X-100 (Sigma, 93,443) and blocked with 5% BSA, cells 
were incubated overnight at 4°C with the primary antibody 
and then with the secondary fluorescent antibody. Cells were 
then placed on slides and stained with DAPI solution (Abcam, 
ab104139). Images were taken using a Leica fluorescence 
confocal microscope.

Proteomics analysis

HEK293T cells stably expressing pCDH and Flag-TMEM63A 
were lysed in NP-40 buffer. Equal quantities of protein sam-
ples were subjected to IP assays using an anti-Flag antibody, 
and separated by SDS-PAGE. The gel was stained with 
Coomassie Brilliant Blue and subjected to liquid chromato-
graphy-tandem mass spectrometry (LC-MS/MS) analysis. For 
identifying downstream proteins of TMEM63A, LM2-4175 
cells stably expressing two independent shRNAs targeting 
TMEM63A (shTMEM63A #3 and #4) and negative control 
shRNA (shNC) were lysed using RIPA buffer, and equal 
quantities of protein samples were used for isobaric tags for 
relative and absolute quantification (iTRAQ) analysis.

Statistical analyses

All experiments were repeated three times for each group. 
Results are presented as means ± standard deviation (SD). 
Statistical analysis of two groups was conducted using 

Student’s t-test or Chi-square test. P values less than 0.05 
were considered statistically significant.
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