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a b s t r a c t
Epidural stimulation of the motor cortex (eMcs) was devised in the 1990’s, and has now largely supplanted thalamic stimulation for neuro-
pathic pain relief. its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement 
of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; 
benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). 
rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evi-
dence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain 
(NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious 
for pain, so far. the posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. transcranial direct current 
stimulation (tdcs) is applied upon similar targets as rtMs and eMcs; it does not elicit action potentials but modulates the neuronal resting 
membrane state. tdcs presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the 
limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, 
and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive 
procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic 
pain. their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of 
long-term benefits remains a challenge, for which different strategies are discussed in this review.
(Cite this article as: Garcia-larrea l, Quesada c. cortical stimulation for chronic pain: from anecdote to evidence. Eur J phys rehabil Med 
2022;58:290-305. doi: 10.23736/s1973-9087.22.07411-1)
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Stimulating the motor cortex for pain relief: 
historical background

reports on possible descending nociceptive controls 
activated by stimulation of the motor cortex date back 

to the middle of the last century. in 1957, lindblom et 
al.1 described in cats the inhibition of dorsal horn spinal 
neurons during electrical stimulation of the pyramidal 
tract or motor cortex, and very shortly after it was sug-
gested that this effect involved descending presynaptic in-

hibition.2 Early attempts to apply these discoveries to the 
control of pain in humans via stimulation of the internal 
capsule obtained a relative success3-5 but were discontin-
ued due to surgical-related morbidity. in 1991, tsubokawa 
et al.6 described a relatively simple and safe technique of 
motor cortex stimulation using epidural plate electrodes 
(eMcs), and succeeded in alleviating central post-stroke 
pain in eight of 12 patients with thalamic or supra-thalam-
ic lesions, with one year follow-up. The epidural technique 
was swiftly adopted by different neurosurgeons around 
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cordance between the electrode position and the painful 
territory appears important for clinical effect,6, 11, 12 there-
fore the stimulating electrodes are placed over the cortical 
convexity for upper limb/facial pain, and over its medial 
aspect for lower limb pain. Epidural is preferred to subdu-
ral position because of shorter operative time, and because 
subdural stimulation increases the risk of epileptic seizures 
and intracranial haematoma13-16 without evidence of better 
results.17 however, the subdural position is still preferred 
by some teams16 and may be useful when the electrode 
needs to be positioned in the interhemispheric fissure.

the localization of the central sulcus is performed us-
ing Mri-based neuronavigation and neurophysiological 
testing with somatosensory evoked potentials, and its posi-
tion compared with that suggested by Mri neuronaviga-
tion. recording of motor responses can be also performed 
to ensure the optimal position of the electrodes. correct 
determination of the rolandic sulcus is crucial to avoid 
stimulation over the somatosensory cortex, which may 
enhance painful symptoms.10, 18 Stimulation frequency is 
commonly set at 30–80 hz, amplitude at 80% of the motor 
threshold to avoid contractions and seizures, and one week 
of testing under hospitalization is required to optimize the 
stimulation parameters.

the world, and applied to different neuropathic pain (np) 
conditions.7-9 in parallel, non-invasive modes of cortical 
stimulation were rapidly developed, first with the aim 
of optimizing the selection of candidates to the epidural 
procedure, then gradually as analgesic techniques in their 
own right. in what follows, we will discuss the progression 
from anecdotal reports to evidence-based data, in relation 
to both neurosurgical approaches and non-invasive tech-
niques.

Neurosurgically-implanted motor 
cortex stimulation (eMCS)

although the stimulating devices and localization tech-
niques have considerably evolved, the surgical procedure 
remains largely comparable to that described by tsubo-
kawa 30 years ago.6, 10 after anesthesia and craniotomy, 
the stimulating electrodes are placed overlying the motor 
strip contralateral to the pain side, either parallel or or-
thogonal to and crossing the central sulcus (figure 1a). 
the electrode wires are then tunneled under the skin down 
to the lateral neck and connected to the system antenna 
(a receiver activated by external radiofrequencies) in sub-
clavicular or latero-abdominal position. somatotopic con-

figure 1.—summary of key-
features of epidural, transcranial 
magnetic and direct-current pro-
cedures for cortical stimulation, 
as currently used in the treatment 
of chronic pain.

a b c

Epidural stimulation
Mode: Invasive, neurosurgical
Target: motor cortex
Stim: 1-4V, 30-80Hz, ~150 us,
cyclic mode
Complications: 1-5%, mainly
transient (infection, seizures)
Efficacy: Definite in 40-60%
cases.
Long-lasting efficacy (years)

Transcranial magnetic
stimulation (rTMS)
Mode: Non invasive
Target: motor cortex
Stim: 80-90% SMT, 10-20Hz,
1000-2000 pulses
Contraindication: epilepsy
Efficacy: Probable for motor
cortex stim in NP.
Short-lasting efficacy, need
repetition of sessions

Transcranial direct current
stimulation (tDCS)
Mode: Non invasive
Target: Motor cortex
Stim: DC, 1-2 mA, 20 min
Safety issues: very rare
Contraindication: scalp skin 
disease
Efficacy: Possible, but
inconsistent evidence (2021)
Home-stim available to
enhance efficacy?
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Mcs-related descending inhibition in rodents and cats 
is reflected by depressed activity in the superficial dorsal 
horn together with enhanced c-fos reactivity in acc and 
paG.2, 34, 36, 47, 48 it may involve different neurotransmit-
ters and receptors, including endogenous opioids,49, 50 
catecholamines,51 serotonin and its spinal 5-ht1a recep-
tor,32, 36, 52 dopamine through its d2 receptor,53 and canna-
binoids via the cb2 receptor.50 contradictory results also 
exist, including reports of either decrease or increase of 
Gabaergic activity in the paG,39, 44 involvement versus 
lack of involvement of glutamate signaling in the same re-
gion,39, 54 and activation versus lack of activation of locus 
coeruleus during Mcs.32, 52

Clinical efficacy of epidural MCS

Loss of eMCS efficacy following battery exhaustion or 
broken wires were helpful anecdotes to establish confi-
dence in the technique,18, 55, 56 but definite clinical efficacy 
can only be established from controlled studies (rcts). 
pooled data from the literature indicates a 45-50% average 
success rate of eMcs in patients with drug-resistant, cen-
tral or peripheral np.57-59 however, most clinical reports 
are subject to multiple bias such as lack of blinding, small 
sample size, heterogeneity of assessment tools, impreci-
sion in reporting, and limited follow-up, which makes the 
evidence methodologically weak.60 Very few randomized 
or blinded studies with >10 patients have been reported. 
While one of them was halted because of limited effi-
cacy and adverse events (infections, panic attack),61 six 
other trials reported positive results: rasche et al.62 and 
andré-obadia et al.63 used blinded procedures to detect 
responders (>50% pain decrease or >30% decrease plus 
medication reduction), and reported good results in 47-
50% of a total of 37 operated patients, with up to 10 years’ 
follow-up. other groups reported 40-60% success rate in 
randomized cross-over trials, with reversible pain increase 
when the stimulator was turned “off” and “on” in double-
blinded conditions.64-67 Even allowing for some decline of 
efficacy with time,17, 63 data obtained under blinded and 
randomized conditions support the real efficacy of eMCS 
in a rough half of the patients with drug-resistant np.

eMCS often displays delayed and fluctuating effects 
which can be underestimated in randomised trials. in one 
series, almost 20% of patients were considered as non-
responders during the first month, but were relieved at 1 
year.66 Also, a number of patients with “insignificant” VAS 
changes noted an increase in pain after battery depletion 
and requested replacement of their device,61 or declared 
themselves favorable to re-intervention for the same out-

Mechanisms of action of eMCS

Studies in humans

Early hypotheses linking eMcs effects to activation of 
cortico-cortical fibers or interneurons within the motor 
cortex10, 15, 19 were contradicted by the lack of metabolic 
changes within the motor cortex underneath the stimu-
lating electrodes.18, 20-23 instead, a prominent metabolic 
enhancement during eMcs is found within the thalamus 
ipsilateral to the stimulated cortex,18, 21, 23-25 and occasion-
ally contralateral to it,26 suggesting descending cortico-
thalamic activation.27, 28

thalamic activation is followed by activity changes 
in numerous cortico-subcortical areas, including the pre-
motor, prefrontal and orbitofrontal cortices, perigenual 
cingulate, basal ganglia and periaqueductal grey matter 
(paG).23 high-order areas are thought to modulate the 
affective/motivational appraisal of pain, while activation 
of the paG can trigger descending inhibition toward the 
spinal cord, and explain the attenuation of spinal nocicep-
tive reflexes.21 Most of these structures remain activated 
for hours after eMcs is discontinued,20 which may explain 
the persistence of clinical effects beyond the stimulation 
periods. long-lasting changes in neurotransmitters were 
also demonstrated using pEt-scan, with potential secre-
tion of endogenous opioids and a positive correlation 
between opioid receptors availability and clinical effi-
cacy.29, 30 since endo-opioidergic changes and local cbf 
increase involved the same regions, both mechanisms may 
be related and concur to eMCS efficacy.

Studies in animals

Mcs consistently alleviates neuropathic hypersensitivity 
in rodents and cats,31-39 and also tonic pain in one study.40 
Most animal studies have confirmed the general mecha-
nistic hypotheses driven from human data, with functional 
changes being reported in thalamus, cingulate, striatum, 
paG and dorsal horn.41 in convergence with human stud-
ies, descending inhibition and early thalamic involvement 
are the most reproducible results obtained in animals. ab-
normal thalamic bursting during neuropathic pain is as-
sociated with a hypometabolic state,42, 43 and Mcs can 
both decrease thalamic bursting and increase thalamic 
metabolism.34, 36, 44 these effects may be driven in part 
by a Gabaergic pathway from the subthalamic Zona in-
certa.33, 37, 38 spread of thalamic activation and of c-fos 
expression changes progressively appear in rodents after 
chronic stimulation,45, 46 suggesting a time-dependent neu-
ral plasticity that may contribute to long-term efficacy.
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tivating the motor cortex via magnetic pulses. short-last-
ing currents in a coil applied on the scalp (1000 a, 1 ms) 
create a magnetic field of ~1 T, which painlessly generates 
a secondary current in the brain via electromagnetic induc-
tion, according to faraday’s law. this secondary current 
has a magnitude similar to that used in direct cortical stud-
ies, and allows activation of the underlying motor cortex. 
These non-invasive techniques were initially intended to 
predict the effectiveness of epidural procedures, but their 
potential value as a pain therapy in their own right was 
soon envisaged. “figure-of-eight” coils ensure precise mil-
limetric cortical stimulation and are most widely used,81, 82 
and the technical settings to implement rtMs in clinical 
practice are discussed in lefaucheur and nguyen.82

rTMS mechanisms

although rtMs stimulates cortical interneurons83, 84 it re-
mains unclear whether it entails sizeable changes in intra-
cortical motor circuits under the conditions used to treat 
pain. indeed, rtMs for pain relief threshold is applied 
at lower levels than the motor threshold, in conditions 
where local motor metabolic activation subsides or dis-
appears.85-87 although a correlation was initially reported 
between intracortical motor inhibition (ici) and rtMs-
induced pain relief,88 later studies failed to reproduce such 
effects,89 perhaps because ici changes in chronic pain de-
pend on non-pain pathways.90 also, rtMs effects could 
be blocked pharmacologically in the absence of cortical 
excitability changes91 and Gabaergic drugs that modify 
intracortical inhibition92 are not effective in neuropathic 
pain. cortical motor inhibition appeared unrelated to pain 
relief in post-amputation or spinal cord injury pain,93, 94 
and in general the relevance of motor cortex excitability for 
rTMS analgesic effects remains largely unconfirmed.95, 96

in contrast, the activation of structures distant from the 
motor cortex has received consistent support. subthresh-
old rtMs activates multiple areas that overlap the net-
work activated during epidural Mcs,23 including the an-
terior cingulate (acc), operculo-insular and dorsolateral 
prefrontal cortices (dlpfc), striatum and brainstem.85-87 
rtMs-induced input into the insula, operculum and acc 
has been suggested by causal modelling studies97 and en-
hancement of functional connectivity between these areas 
after rtMs has been shown in both human patients98 and 
a nonhuman primate model of central pain.99 rtMs in rats 
and mice also induced c-fos neural activation in regions 
distant from the stimulation including thalamus, acc, 
striatum and hippocampus.100-102 the clinical relevance 
of such multifocal changes is supported by the predictive 

come.63, 68 these discordances, which have been also re-
ported for spinal cord stimulation,69 suggest that high val-
ues and preferences for neuromodulation therapy may be 
dissociated from quantitative VAS scales.

Prediction of eMCS clinical effects

demographic, clinical, anatomical or pharmacological 
pre-operative data have not proven useful so far to predict 
the long-term efficacy of eMCS.68, 70 suggested but un-
confirmed predictors include preservation of corticospinal 
function,71 normal thermal thresholds,72 relief of burning 
pain,73 stimulation intensity,74 susceptibility to ketamine,75 
and availability of brain opioid receptors.30 Good efficacy 
at first month post-implantation predicted long-term effi-
cacy in two independent studies.68, 76 small sample size, 
heterogeneity of evaluation methods and short follow-up 
probably explain the lack of reproducibility of such puta-
tive predictors, some of which might be confirmed in the 
future.

the only procedure consistently predicting the eMcs 
clinical effect is the response to transcranial repetitive 
magnetic stimulation (rtMs). a successful rtMs pre-
dicted subsequent efficacy of eMCS with ~90% accu-
racy.17, 63, 70, 77-80 although its negative predictive value is 
lesser, it increases with the length of follow-up and may 
approach 70% at 2 or more years.63, 70 since in most previ-
ous reports the patients were operated without consider-
ation of predicting procedures, the clinical effect size of 
eMCS should increase significantly with a better selection 
of patients via preoperative rtMs assessment.

Take-home messages: eMCS

implanted epidural stimulation is the original neurosurgi-
cal technique for motor cortex stimulation, which has now 
largely supplanted thalamic procedures. its mechanisms 
of action involve activation of multiple cortico-subcortical 
areas, secretion of endogenous opioids, and descending 
inhibition toward the spinal cord. Clinical efficacy, includ-
ing “on-off” effects, is supported by at least seven rcts in 
more than 100 operated patients. Efficacy can persist up to 
10 years, and can be reasonably predicted by preoperative 
use of rtMs.

Transcranial magnetic repetitive 
stimulation (rTMS)

high-voltage electrical pulses applied to the scalp can ac-
tivate the motor cortex and thus mimic eMcs, but they are 
also very painful. This difficulty can be surmounted by ac-
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term.116-122 other assessments were however much less 
optimistic, in particular in regard to the low quality of evi-
dence included in some reviews due to low patient samples, 
absent blinding, defective handling, lack of follow-up, no 
report on withdrawals, etc.60, 123, 124 In 2018, an influential 
cochrane analysis examined the use of rtMs for chronic 
pain in 42 studies.123 While underscoring the multiple bi-
ases due to the above-mentioned flaws, it also recognized 
“low-quality evidence” of rTMS effects on chronic pain 
and quality of life up to 6 weeks post-intervention. Since 
this account, at least six large and well-conducted stud-
ies (single/double-blinded, >20 patients in active group) 
have been reported on motor rtMs in chronic np, with 
positive results in all but one of them.96, 125-129 one further 
study reported significant effects in parkinsonian pain130 
and another negative results in fibromyalgia.131 a recent 
report of the us department of Veterans affairs119 using 
a “best-evidence approach” concluded that rtMs may re-
duce symptoms in NP, while in fibromyalgia it may not 
be better than sham interventions. although the level of 
evidence was (again) limited by methodological draw-
backs, this influential report concluded that rTMS, which 
has fewer side effects compared to most approved pharma-
ceuticals for np, “could be a treatment option for patients 
who have exhausted other available options for treatment 
of chronic pain.”119

Specific aspects of rTMS stimulation procedures.

Many practical details of rtMs remain controversial and 
are seldom analyzed specifically, although they can impact 
on the efficacy of rTMS procedures. Some of the effects 
of these variables are summarized in what follows, in the 
hope that they may serve to establish a minimum technical 
core set to be applied in a rehabilitation setting.

Stimulus frequency

Beneficial effects have been reported using “high frequen-
cies” of 5, 10 or 20 hz (commonly labelled “hf-rtMs”) 
while low frequencies of 0.5 or 1 Hz were found useless 
in both patients and animal models.78, 132, 133 superiority of 
hf-rtMs was initially considered to depend on its ability 
to induce long-term potentiation (ltp) in the cortex; how-
ever, enhancement of ltp capacities with “theta burst” 
rtMs did not enhance analgesia.96, 134, 135 a potentially 
important feature of rtMs is its relation with the neuro-
nal oscillations of the underlying cortex. the transmission 
efficiency of neural networks increases when the stimuli 
match their intrinsic oscillatory frequency.136, 137 since 
rtMs synchronises oscillatory activity in the underlying 

value of preserved thalamo-cortical and corticofugal mo-
tor tracts on rtMs clinical effects.103, 104

contribution of endogenous opioids to these effects is 
supported by enhancement of serum beta-endorphin after 
successful rtMs,105 naloxone blockade of rtMs analge-
sia,106 and rtMs-induced increase in opioid receptor oc-
cupancy.107 Enhanced dopamine striatal secretion was also 
described in rodents108 and some human pEt-scan stud-
ies109 but not in others.107 since stimulus-related dopamine 
release returns rapidly to baseline, its secretion may be too 
short-lasting to account for clinical effects, but could have 
an indirect effect by its synergy with opioid-related activ-
ity. the potential contribution of nMda glutamate recep-
tors has also received indirect support from two studies in 
humans,91, 110 while in rats rtMs effects were not blocked 
by nMda antagonists.101

rTMS appears to influence abnormally hyperactive 
states, rather than physiological pain. Markers of acute 
nociception such as heat-pain detection and pain-evoked 
potentials, did not change after rtMs in healthy sub-
jects,107, 111-113 although cold pain was reported to be at-
tenuated.106, 114 contrary to epidural stimulation, rtMs 
has not been shown to attenuate spinal nociceptive reflex-
es.114, 115 this suggests a superior capacity of implanted 
eMCS to trigger descending mechanisms influencing spi-
nal nociception, and would be in accordance with the en-
hanced degree of pain relief achieved with eMcs, relative 
to non-invasive procedures.63, 79, 80

rTMS as a predictive factor of epidural MCS

the suggestion that rtMs could be predictive of eMcs 
efficacy came very shortly after the first neurosurgical re-
ports, but controlled studies on this matter were not avail-
able until 10 years later.78, 79 cumulative evidence from 
seven studies in 150 patients consistently indicates that a 
positive result of preoperative rtMs may be associated in 
~90% of cases with satisfactory pain relief after epidural 
implantation.17, 63, 70, 77-80 the negative predictive value, 
i.e. the probability that eMcs fails if rtMs is negative, 
was low at 6-12 months (~30-40%78, 79), but increased 
with longer follow-ups to reach ~70% or more in studies 
with 2-10 years follow-up.63, 70, 80 a 70% chance of eMcs 
failure if preoperative rtMs is negative is often a reason 
to withhold operation.

rTMS as a pain-relieving procedure on its own right

a number of systematic reviews concluded to a statisti-
cal superiority of motor cortex rtMs relative to placebo 
to improve chronic neuropathic pain in the short or mid-
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tive results154, 155 while no difference from placebo was 
reported in four other studies of similar sample size.156-160 
M1 also showed superiority over dlpfc stimulation in 
opioid-resistant back pain161 and peripheral neuropathic 
pain,129 and only one small-sample study suggested the 
reverse in non-specific back/neck pain.162 recent sys-
tematic reviews have considered dlpfc rtMs as either 
ineffective versus sham,119, 123, 163 less effective than M1 
stimulation121 or mildly effective in the short-term.164 
other forms of dlpfc stimulation (bilateral, low-fre-
quency)165, 166 remain anecdotal and do not allow any con-
clusion. caution is advised when dealing with high-order 
cortices such as dlpfc, whose stimulation may give rise 
to a wide array of unpredictable cognitive and emotional 
effects, including changes in sexual arousal or in craving 
for drugs.167-169

the posterior operculo-insular cortex may represent a 
unique area for pain modulation, as it receives a major-
ity of ascending spinothalamic afferents in primates,170 but 
reports on its stimulation are scarce. one sham-controlled 
study involving 17 patients with visceral pain was report-
ed positive,110 but has not been replicated. in neuropathic 
pain, positive results of s2 or posterior insula stimulation 
have been reported in small to medium-sized studies (15-
31 patients),171-173 while no significant relief beyond sham 
was obtained in a larger rct recruiting 98 patients with 
central pain.174 despite its inherent relevance as a target, 
the multimodal nature of the insula makes this region more 
susceptible than M1 to adverse effects from stimulation. 
two cases of epileptic seizures were reported during theta 
burst stimulation of the posterior operculo-insular cor-
tex175 perhaps due to current spread toward the anterior 
insula.176

Timing and repetition of sessions

the pain-relieving effects of a single rtMs session de-
velop 1-3 days after the stimulation and fade away in less 
than 10 days. repeated sessions over 5-10 days allow 
expanding their effect to up to one month,82, 177 but this 
remains insufficient for chronic syndromes that persist 
for years. an initial series of 5-10 daily sessions fol-
lowed by progressively spaced “maintenance” sessions 
achieved sustained efficacy for 6 months.129, 142, 178 other 
groups reported long-lasting efficacy of rTMS sessions 
repeated at long intervals of 2-4 weeks, without the need 
of an initial series of daily stimulation,80, 125, 179-182 mak-
ing of such “slow-pace” rtMs a potential avenue allow-
ing long term efficacy with limited burden for patients 
and doctors. solutions to implement rtMs at home 

cortex,138 and since human sensorimotor networks oscil-
late at around 10 and 20 hz, this might underlie the supe-
rior efficacy of rTMS at these frequencies.

Stimulus intensity and number of pulses

stimulus intensity is universally set at 80-90% of motor 
threshold; conversely, the optimal number of pulses per 
session has variously considered to be 1000,60 1200,88 
or even 3000 pulses.82 one single comparative study re-
ported that significant analgesia in NP was obtained with 
2000 pulses, but not with 500.139 an excessive number of 
stimuli, however, may reverse the effects of rtMs in hu-
mans,140 and trigger allodynia in rodents,141 hence more 
than 3000 stimuli per session are not advised. indepen-
dent of the number of stimuli, shortening the stimula-
tion time from 20 to 10 min was reported to decrease 
analgesia.142

Somatotopy

somatotopic match between the cortical stimulus and the 
painful region may be critical for epidural Mcs,12, 143 but 
appears much less relevant for rtMs. the pain-relieving 
effects of rtMs seem independent of any strict relation 
between pain location and rtMs placement over the mo-
tor homunculus.144, 145 in patients with facial or leg pains 
the stimulation of the hand area proved as efficacious, 
or better, than that of the somatotopically corresponding 
area.95, 139, 146, 147

Alternative cortical targets

so far, only stimulation of the primary motor area (M1) 
has received consensus as to its efficacy in neuropathic 
pain (much less consistently in widespread pain/fibro-
myalgia). stimulation of the postcentral gyrus (s1), pre-
motor area (preM), or supplementary motor area (sMa) 
did not provide effective pain relief in comparative stud-
ies,77, 148, 149 and rtMs over the posterior parietal cortex 
failed to perform beyond sham in experimental hyperal-
gesia.150

stimulation of the left dorsolateral prefrontal cortex 
(dlpfc) has yielded controversial but overall disap-
pointing results. initial reports suggesting a decrease in 
postoperative morphine use151 were later contradicted in 
large-scale studies.152 similarly, initially positive results 
of dlpfc stimulation in small series of np patients153 
failed to be confirmed in larger samples,129, 149 and had no 
effect on human models of neuropathic hyperalgesia.112 in 
fibromyalgia/widespread pain two studies reported posi-
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changes in cortical and subcortical regions have been doc-
umented in humans during or following tdcs,193-195 and 
tdcs-induced analgesia was associated with distributed 
metabolic changes in a large array of brain areas,194 while 
it was dissociated from motor excitability.196-198 changes 
in functional connectivity have been described between 
regions beneath the stimulation and distant areas includ-
ing thalamus, striatum and parietal association cortices, 
but results are somewhat inconsistent and sometimes con-
tradictory.199-201 although the notion of distributed activ-
ity has received robust evidence, the precise causal rela-
tion between such changes and the clinical effects should 
be considered cautiously in view of the inconsistencies 
in different reports. at a difference from both eMcs and 
rtMs, distributed neural activation in tdcs may come 
not only from neural connections between brain areas, but 
also from the direct current spread in distant brain struc-
tures, in particular when using widely separated anode 
and cathode.202 in this respect, note that the terms “an-
odal” and “cathodal” do not capture the whole picture of 
tdcs, since both anodal and cathodal currents are in fact 
delivered,203 and the effects should be understood as a 
compound of both.

in humans, neurotransmitter studies have reported 
Gaba and glutamate concentration changes as well as 
a possible secretion of endogenous opioids during tdcs, 
mainly in the insula and acc.204, 205 in rodent models of 
neuropathic pain tdcs effects have been associated to 
virtually all neurotransmitter systems,206 but the literature 
in this domain is confusing, rarely reproduced and some-
times contradictory. There remain significant unknowns 
about the influence on biochemical and behavioural ef-
fects of many tdcs parameters, including polarity, num-
ber, size and position of electrodes, duration of stimula-
tion, etc. as in other forms of neurostimulation, part of 
the effects from tdcs might involve descending inhibi-
tory mechanisms, since tdcs decreased spinal nocicep-
tive reflexes in models of experimental hyperalgesia207 
and normalized bold responses in pain modulatory net-
works.208 Evidence for descending modulation was also 
reported after motor anodal tdcs on a rodent model of 
neuropathic pain.209

tdcs has often failed to decrease experimental pain in 
healthy individuals,191, 198, 210-212 whereas it reduced ab-
normal sensations (allodynia, hyperalgesia) induced by 
capsaicin,213 suggesting that the procedure acts on abnor-
mally sensitized pathways, rather than on physiological 
pain.198 similar conclusions have been proposed regard-
ing rtMs.113 on these premises, experimental studies in 

are under study using modified coils adapted for home 
use. although some preliminary data have been pub-
lished182, 183 clinical systems are not yet operational to 
our knowledge.

Take-home messages: rTMS

rTMS can be used to predict the efficacy of implanted 
neurostimulation, but also as an analgesic procedure in its 
own right, with effects over both the sensory and affective 
pain domains. Reasonable evidence supports a significant 
analgesic effect of motor cortex hf-rtMs in neuropathic 
pain, and less consistently in widespread/fibromyalgic 
pain. dorsolateral frontal stimulation has not proven ef-
ficacious so far, and the posterior operculo-insular cortex 
is an attractive target but evidence remains insufficient. 
rtMs acts preferentially upon abnormal hyperexcitable 
states rather than experimental pain. Short-term efficacy 
of rTMS in NP can be achieved with NNT ~2-3, but ensur-
ing long-lasting efficacy remains a challenge.

Transcranial direct current stimulation (tDCS)

direct current (galvanic) stimulation, i.e. a flow of elec-
tric charge that does not change direction, was empirical-
ly applied for medical purposes since the Roman antiq-
uity,184 then used for research and therapy in psychiatry 
during the 19th to early 20th centuries, until it was aban-
doned with the advent of electroconvulsive therapy.185 
Experimental studies in the second part of the 20th centu-
ry showed that DC stimulation over the cortex influenced 
spontaneous neural firing in rodents and humans,186-188 
with surface anodal polarization increasing spontane-
ous unit discharges, and cathodal polarization decreasing 
them.187, 189, 190 the use of transcranial dc stimulation ap-
peared therefore as a promising tool to modulate cerebral 
excitability in a safe, painless, reversible and selective 
way, hence mimicking the analgesic effects of motor cor-
tex stimulation.

conventional tdcs procedures use a pair of surface 
electrodes (4 to 30 cm2) connected to a stimulator deliver-
ing electrical direct current at 1-2 ma (figure 1). higher 
focalization of stimulation (“High-definition” tDCS, or 
hd-tdcs) can be achieved with one electrode surrounded 
by four others of opposite polarity.191, 192

Mechanisms of action

Although tDCS modifies the excitability of the underlying 
cortex, it also induces widespread metabolic alterations 
much beyond local motor excitability. indeed, activity 
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each technique.238 the use of tdcs as add-on therapy to 
invasive procedures was recently reported in a small ran-
domised study, where combining tdcs with dorsal root 
ganglion (drG) stimulation provided better results than 
drG alone.239

a critical advantage of tdcs is the possibility of per-
forming home-based therapy, hence allowing long-lasting 
maintenance of effects in responding patients. although 
the development of systems for self-stimulation is tech-
nically simple, inadequate choice of targets, stimulation 
mode, electrode contact, or stimulus intensity can create 
significant harm240, 241 including cognitive impairment,242 
which has lead major authors to issue notices of caution.243 
remotely supervised systems can circumvent most of 
these problems by allowing online monitoring and con-
trol of the stimulation by clinical personnel. such systems 
ensure that tdcs cannot be performed unless authorized 
by clinical staff, who follows in real time the procedure, 
can detect faulty or incomplete sessions, and communi-
cate with patients in case of problems. supporting clini-
cal evidence remains weak, but real-life feasibility has 
been reported in a few sham-controlled pilot studies on 
small samples of np patients, where about half of the pa-
tients were significantly improved with follow-up up to 6 
months.244, 245

Take-home messages: tDCS

tdcs modulates the neuronal resting membrane state of 
the underlying cortex, induces activity changes in distrib-
uted brain networks, and can influence both cognitive-
emotional and sensory aspects of pain. lower cost relative 
to rtMs, few safety issues, and availability of home-based 
protocols are practical advantages; however, the limited 
quality of most published reports greatly lowers the level 
of evidence regarding its effects in chronic pain. limited 
evidence suggests that: 1) M1 is superior to dlpfc stimu-
lation for chronic pain; 2) repeated sessions over a long 
time may be necessary for clinically significant pain re-
lief; 3) patients responsive to tdcs may differ from those 
improved by rtMs. Well-conducted rcts are needed 
to gather conclusive evidence of its possible clinical rel-
evance and nnts.

Conclusions

invasive and non-invasive cortical stimulation can be of sig-
nificant benefit to patients with drug-resistant chronic pain. 
noninvasive procedures are extremely safe when conduct-
ed by well-trained practitioners; they are being increasingly 

healthy subjects should rather involve human models of 
neuropathic hyperalgesia (capsaicin, high-frequency stim-
ulation, etc.) rather than simple acute physiological pain.214

tDCS clinical efficacy

from 2015 to date, no less than 120 articles, including 
25 systematic reviews and meta-analyses have been pro-
posed on the use of tdcs for pain, using diverse grading 
systems and providing inconsistent results. because of 
the limited quality of many published reports, the level of 
evidence for pain remains low despite such a large num-
ber of studies.

While initial reviews cautiously concluded to a “pos-
sible pain-relieving efficacy,”215, 216 more recent ones 
have uncritically stated that tdcs “successfully relieves 
np.”122, 217-219 other meta-analyses, however, concluded 
that tdcs had no effect in np beyond sham stimula-
tion,124, 220 or found limited and conflicting evidence pre-
cluding reliable interpretations.60, 221-224 similar inconsis-
tencies are found regarding widespread pain syndromes. 
While some systematic reviews concluded to “probable” 
or even “definite” efficacy in fibromyalgia,215, 225-228 oth-
ers found “tentative,” “inconclusive,” or simply absent 
evidence of pain reduction when compared to sham 
stimulation.60, 123, 229 such discrepancies are undoubtedly 
driven by the heterogeneity of reports in terms of sample 
size, randomization, procedures of stimulation, quality 
of blinding, control of bias, statistical thresholds, and so 
forth. Thus, the magnitude of clinical effects in fibromy-
algia dramatically decreased with increased sample size, 
to become very often clinically insignificant or not better 
than sham.230-233 as with every neuromodulation proce-
dure, some subsets of patients may be more receptive to 
tdcs than others,234 which underscores the importance of 
reporting precisely the percentage and clinical character-
istics of responding subjects, along with numbers needed 
to treat (nnts), rather than simply providing statistical 
group analyses.

tdcs addressed to the frontal cortex has not proved 
better than standard M1 stimulation, and in most cases, 
was inferior to it, both in np145, 235 and fibromyalgia.226 
there is a lack of head-to-head prospective studies com-
paring tdcs with conventional rtMs in neuropathic 
pain. one study contrasting their effects in patients with 
lumbosacral radiculopathy reported rtMs superiority;236 
however, patients unresponsive to conventional rtMs can 
also be alleviated by subsequent tDCS,237 and two recent 
studies in different np conditions reported similar global 
efficacy but a different subset of responding patients to 
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effect and hemodynamic changes in the brain. a pEt study. neuroimage 
2007;34:310–21. 
21. García-larrea l, peyron r, Mertens p, Grégoire Mc, lavenne f, le 
bars d, et al. Electrical stimulation of motor cortex for pain control: a 
combined pEt-scan and electrophysiological study. pain 1999;83:259–73. 
22. roux fE, ibarrola d, lazorthes y, berry i. chronic motor cortex 
stimulation for phantom limb pain: a functional magnetic resonance im-
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sion 687–8. 
23. Volkers r, Giesen E, van der heiden M, Kerperien M, lange s, Kurt 
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used as either ancillary or last-resort treatments mainly in 
neuropathic pain, and may be successfully combined with 
rehabilitation. although the potentialities are huge, evi-
dence for successful clinical use in the long term remains 
low, in particular for tdcs, and extending the duration of 
beneficial effects beyond the first weeks post-treatment re-
mains a challenge. different strategies are being currently 
under investigation, and figure 2 proposes an algorithm 
with pathways and options for long-term use of cortical 
stimulation in patients with chronic neuropathic pain.
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figure 2.—a proposed therapeutic algorithm with options and paths for 
non-invasive cortical stimulation in chronic neuropathic pain patients.
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