
RESEARCH PAPER

SKA1 is overexpressed in laryngocarcinoma and modulates cell growth via P53 
signaling pathway
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ABSTRACT
Laryngocarcinoma is one of the most frequent malignancies occurring in the head and neck. The 
roles of spindle- and kinetochore-associated complex 1 (SKA1) in the malignant progression of 
several cancers have already been discussed. However, the precise significance and action’s 
mechanism of SKA1 in laryngocarcinoma remain largely unknown. In this study, SKA1 was 
shown to be strongly expressed in laryngocarcinoma tissues and cells, and higher expression of 
SKA1 was associated with more severe tumor infiltration, larger tumor diameter, higher risk of 
lymphatic metastasis and later pathological stage. Additionally, loss-of-function assays in vitro 
suggested that SKA1 depletion caused a reduction in cell proliferation, migration, and colony 
formation as well as an increase in apoptosis. In animal experiments, tumors generated from AMC- 
HN-8 cells with SKA1 depletion exhibited declined tumor volume and weight. Similarly, the 
detection of Ki67 protein in xenograft tumor tissues reflected that knocking down SKA1 curbed 
tumor growth in vivo. Further exploration on downstream mechanism revealed that after treat
ment with Pifithrin-α, the suppression in proliferation level caused by SKA1 knockdown was 
reversed, while the increase of cell apoptosis was withdrawn; at the molecular level, Pifithrin-α 
treatment caused p-P53 and Bax diminished, while Bcl-2 ameliorated. In short, SKA1 promotes the 
development of laryngocarcinoma via activating the P53 signaling pathway.
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Introduction

Laryngocarcinoma is one of the most frequent 
malignancies occurring in the head and neck [1]. 
According to the latest update from GLOBOCAN 
(IARC, WHO), there were an estimated 184,615 new 
larynx cancer cases and 99,840 larynx cancer deaths 
worldwide in 2020 [2]. Due to the lack of effective 
biomarkers for early diagnosis, most patients suffer
ing from laryngocarcinoma are already at an 
advanced stage when they are diagnosed [3]. 
Although chemotherapy, radiotherapy, and surgical 
treatment have made significant progress, the 
5-years survival rate of laryngocarcinoma patients 
is still less than 50% owing to its potentially high 
morbidity and incommensurably low cure rate [4,5]. 
Coupled with the adverse side effects of these thera
pies, it is necessary to explore the underlying 
mechanism of laryngocarcinoma and identify new 

therapeutic target so as to improve the clinical prog
nosis of laryngocarcinoma patients.

Spindle and kinetochore associated complex 
(SKA complex) is responsible for timely anaphase 
onset, which included three proteins: SKA1, SKA2, 
and SKA3. These proteins are engaged in the con
tinuous movement of microspheres and the depo
lymerization of microtubules. Separately, SKA1 
complex mainly performs two key biochemical 
functions: one is to directly bind to microtubules 
through its C-terminal domain, and the other is to 
participate in microtubule-stimulated oligomeriza
tion [6,7]. Besides, it has been evidenced that inhi
bition of the SKA1 complex leads to the loss of 
chromosomal function, accompanied by cell death 
[8–11]. On the other hand, the roles of SKA1 in 
the malignant progression of several cancers have 
already been discussed recently [12–15]. However, 
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the precise roles of SKA1 in laryngocarcinoma 
development have not yet been investigated.

In the present study, SKA1 expression levels were 
detected in laryngocarcinoma tissues and cells. 
Moreover, we employed lentivirus-mediated short 
hairpin RNA to knock down SKA1 in laryngocarci
noma cell lines and analyzed the effects of SKA1 
depletion on laryngocarcinoma development in vitro 
and in vivo. In addition to these, we initially investi
gated the downstream pathway of SKA1 regulating 
laryngocarcinoma. Accordingly, we found that SKA1 
was upregulated in laryngocarcinoma tissues and cell 
lines, which was critical to the enhanced proliferative 
and metastatic phenotypes of laryngocarcinoma as 
well as tumor growth. We further clarified that 
SKA1 participates in the progression of laryngocarci
noma by activating the P53 signaling pathway, which 
might become a potential candidate target for the 
treatment of this deadly disease.

Materials and methods

Collection of tissues samples

A paraffin-embedded tissue microarray containing 44 
cases of laryngocarcinoma and 39 cases of non-tumor 
samples were provided from Xi’an Alina Biological 
Technology Co., Ltd. This study was approved by the 
ethical committees of the Second Affiliated Hospital 
of Nanchang University Institutional Review Board 
(IRB: 2020114), and prior written informed consents 
were obtained from all participants.

Cell lines and cell culture

Here, four human laryngocarcinoma cell lines Hep- 
2, AMC-HN-8, TU212 and TU686 were purchased 
from American Type Culture Collection (ATCC) 
(https://www.atcc.org/). Hep-2 and TU212 were cul
tured in DMEM +10% FBS. AMC-HN-8 and 
TU686 were grown in H-DMEM +10% FBS and 
1640 + 10% FBS, respectively. All the cells were 
maintained in a 37°C incubator with 5% CO2.

Immunohistochemistry (IHC)

Deparaffinized laryngocarcinoma and non-tumor 
sections were repaired with 1× EDTA (Beyotime 
Biotechnology Co., Ltd, Shanghai, China), and 

blocked with 3% H2O2 for 5 min. Then, the sec
tions were incubated with SKA1 antibody (1:100, 
BIOSS, # bs-7846 R), Ki-67 (1:100, Abcam, 
#ab16667) and secondary antibody (goat anti- 
rabbit IgG H&L (HRP): 1:400, Abcam) overnight 
at 4°C. After that, DAB and hematoxylin (Baso 
Diagnostics Inc., Zhuhai, China) were used to 
stain. Finally, the slides were sealed with neutral 
resin (China National Pharmaceutical Group Co., 
Ltd., Beijing, China) and then the images were 
captured and analyzed under an optical micro
scope. Intracellular patterns evaluated were based 
on protein localization (https://www.proteinatlas. 
org/). That is, it is determined whether it is posi
tive according to the expression position of the 
antibody. In addition, all slides were randomly 
assessed by three independent pathologists. 
Staining scores were divided into: 1 (1%-24%), 2 
(25%-49%), 3 (50%-74%) and 4 (75%-100%). The 
staining intensity was scored from 0 (no signal 
color) to 3 (light yellow, brown, and dark 
brown). IHC results were defined based on stain
ing scores and intensity scores, which specifically 
include negative (0), positive (1–4), ++ positive 
(5–8) and +++ positive (9–12). The high and 
moderate expression parameters were determined 
by the median of IHC scores of all tissues.

Establishment of stably infected cells

The preparation of lentivirus expressing human SKA1 
short hairpin RNA (shSKA1) was performed as fol
lows: RNA interference target sequence 
(GAGGACTTACTCGTTATGTTA) is designed 
using SKA1 as template by Shanghai Biosciences 
Co., Ltd. (Shanghai, China). The control was RNAi 
scramble sequence (TTCTCCGAACGTGTCACGT). 
After that, the single-stranded DNA oligo containing 
interference sequence was synthesized, annealed, and 
then paired to produce double-stranded DNA. Then, 
the double-stranded DNA was connected to the BR- 
V-108 vector and transferred into the prepared TOP 
10 E. coli competent cells. The positive recombinants 
were identified by PCR and sent to sequencing for 
verification. Finally, the qualified plasmids were used 
for lentivirus packaging.

AMC-HN-8 and TU212 cells (2 × 105) were 
infected with lentiviral particles containing shSKA1 
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or shCtrl (1 × 108 TU/mL) under ENI.S+Polybrene 
condition. Next, the cells were cultured in their 
medium for 72 h, and the infection efficiency was 
evaluated under the microscope according to the 
green fluorescent protein (GFP) inside the cells. 
A fluorescence efficiency greater than 80% was con
sidered successful.

RNA extraction, cDNA synthesis, and qRT-PCR

After lentivirus infection, total RNA of AMC-HN 
-8 and TU212 cells was isolated using TRIzol 
reagent (Sigma, St Louis, MO, USA) for cDNA 
synthesis and qRT-PCR. 2.0 μg RNA was reverse 
transcribed using Promega M-MLV Kit (Promega, 
Heidelberg, Germany), and quantitative real-time 
PCR (qRT-PCR) was performed with SYBR Green 
mastermixs Kit (Vazyme, Nanjing, Jiangsu, China) 
and applied Biosystems 7500 Sequence Detection 
system. GAPDH served as an internal normaliza
tion control. The relative expression of mRNA was 
evaluated based on the 2−△△Ct method. The pri
mers sequences (5′-3′) were listed as follows: the 
forward primer of SKA1 is TCCCATTTGCCT 
CAAGTAACAG, the reverse primer is GGAGGC 
TTCTTTACGGGTTC; the forward primer of 
GAPDH is TGACTTCAACAGCGACACCCA, 
the reverse primer is CACCCTGTTGCTGTAGCC 
AAA.

Western blot assay

After lentivirus infection or Pifithrin-α treatment, 
AMC-HN-8 and TU212 cells were collected to extract 
total protein. The 10% SDS-PAGE was used to segre
gate proteins and performed the subsequent western 
blot analysis. Firstly, the PVDF membranes were 
blocked at room temperature for 1 h by adding 
TBST solution with 5% skim milk. Then, the mem
branes were incubated with primary antibodies SKA1 
(1:1000, Bioss, #bs-7846 R), P53 (1:3000, Proteintech, 
#60283-2-Ig), p-P53 (1:2000, Proteintech, 28961- 
1-AP), Bax (1:2000, Wuhan Sanying, 50599-2-Ig), 
Bcl-2 (1:2000, Abcam, ab182858) and GAPDH 
(1:3000, Proteintech, #60004-1-lg) and secondary 
Antibodies Goat Anti-Rabbit (1:3000, Beyotime, # 
A0208) and Goat Anti-Mouse (1:3000, Beyotime, # 
A0216) at room temperature for 2 h. After that, the 

membranes were washed with TBST solution for 
three times (10 min/time). Finally, the color rendering 
was conducted by the immobilon Western 
Chemiluminescent HRP Substrate kit.

Cell proliferation detection

For celigo cell counting assay, AMC-HN-8 and 
TU212 cells with shSKA1 and shCtrl were digested 
and resuspended into the cell suspension. 100 μL/ 
well cell suspension (2000 cells/well) was cultured 
in a 96-well plate. The cell images were taken by 
Celigo image cytometer (Nexcelom Bioscience, 
Lawrence, MA, USA) and a continuous 5-day cell 
proliferation curve was drawn.

Another method for detecting cell proliferation 
was the CCK8 assay. After treatment with P53 
signaling pathway inhibitor: Pifithrin-α, the cells 
were treated as described above. On the second 
day, 10 μL CCK-8 reagent was added into the 
wells. Finally, the OD value was detected at 24 h 
and 48 h by the microplate reader at 450 nm.

Colony forming assay

The indicated cells were plated in a 6-well plate 
(500 cells per well) and cultured for 8 days. The 
colonies were washed with PBS, fixed with 1 mL 
4% paraformaldehyde and stained using 500 μL 
Giemsa (Dingguo, Shanghai, China). Visible 
clones were recorded by fluorescence microscope 
(Olympus, Tokyo, Japan).

Wound healing assay

AMC-HN-8 and TU212 cells with shSKA1 and 
shCtrl were cultured in a 96-well plate at the 
density of 5 × 104 cells/well. On the next day, 
the low-concentration serum medium was sup
plemented, and a scratch tester was used to align 
the center of the 96-well plate and gently upward 
push to form scratches. The cells were then 
washed with serum-free medium and 0.5% FBS 
was added. Finally, the cells were cultured in an 
incubator with 5% CO2 at 37°C. According to the 
degree of healing, the plate was scanned at the 
appropriate time and the migration area was 
analyzed with Cellomics (Thermo, USA).
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Transwell assay

The cell migration was detected with Transwell 
assays. The indicated cells (5 × 104) in 100 μl med
ium without FBS were seeded on a fibronectin- 
coated polycarbonate membrane inserted in 
a Transwell apparatus (Costar, MA). In the lower 
chamber, 500 μl medium with 10% FBS was added 
as a chemoattractant. After the cells were cultured 
for an appropriate time, the cells adhering to the 
lower surface were fixed and then stained with 1% 
crystal violet solution for 1 min and counted under 
a microscope in three random fields.

Detection of cell apoptosis by fluorescence 
activated cells sorting (FACS)

After lentivirus infection or P53 Pifithrin-α treatment, 
AMC-HN-8 and TU212 cells were cultured in 
a 6-well plate at the volume of 2 mL/well. When the 
cell confluence reached 85%, the cell suspension was 
centrifuged at 1,300 rpm and the supernatant was 
discarded. Then, the cells were washed with 
D-Hanks (4°C, pH = 7.2   7.4) and stained in the 
dark by adding 10 μL Annexin V-APC (eBioscience, 
San Diego, CA, USA). The FACSCalibur (BD 
Biosciences, San Jose, CA, USA) was exploited to 
evaluate the cell apoptosis levels.

Human phospho-Kinase array-membrane

Protein expression of 39 phospho-kinases in 
AMC-HN-8 cells following infection was detected 
by the Human Phospho-Kinase Array-Membrane. 
After the cells were lysed, the Handling Array 
membranes were blocked in 2 mL 1×Wash Buffer 
II and incubated with cell lysates and 1×Biotin- 
conjugated Anti-Cytokines overnight at 4°C. 
Finally, the signals of membranes were tracked 
by chemiluminescence imaging system.

The construction of nude mouse tumor 
formation model

The animal experiments were approved by the 
Ethics committee of the Second Affiliated 
Hospital of Nanchang University Institutional 
Review Board (IRB: 2020114). Four-week-old 
female BALB/c nude mice were purchased from 

Jiangsu Jicui Yaokang Biotechnology Co., Ltd., and 
kept them in captivity under the following condi
tions: 5 mice per cage; temperature, 22-25°C; 
humidity, 50–60%; 12 h light/dark cycle. 
Adequate water and food supplies ensured that 
mice could get them freely. Xenograft models 
were constructed by subcutaneously injecting 
shSKA1 or shCtrl AMC-HN-8 cells (1 × 107 cells/ 
each) into the right axilla of nude mouse (10 mice/ 
group). The length and width of the tumor were 
measured to calculate the tumor volume according 
to the formula (tumor volume=π/6 × L × W × W) 
during 20 days of feeding. After the mice were 
euthanized, the tumors were removed, weighed, 
and frozen in liquid nitrogen and stored at −80°C.

Statistical analysis

All assays were independently performed in tripli
cate. All data were analyzed by using GraphPad 
Prism 6 (San Diego, CA, USA). The data are pre
sented in the form of the mean ± standard devia
tion (SD). The Sign test was used to analyze the 
expression difference of SKA1 in cancer and adja
cent tissues. The relationship between SKA1 levels 
and patients’ clinicopathological parameters was 
investigated by the Mann-Whitney U-test and 
Spearman rank correlation analysis. Statistical dif
ferences were evaluated using the unpaired t-test 
and the value of P less than 0.05 was considered to 
be significantly different.

Results

SKA1 is upregulated and associated with 
clinicopathological parameters of 
laryngocarcinoma patients

We first analyzed SKA1 expression using a tissue 
microarray of 44 laryngocarcinoma tissues and 39 
adjacent non-tumorous tissues. Overall, 25 of 44 
(56.8%) cases showed high SKA1 patterns in tumor
ous tissues, whereas 37 of 39 (94.9%) cases exhibited 
low SKA1 levels in non-laryngocarcinoma tissues 
(Figure 1a and Table 1). Based on these, we evaluated 
the relationship between SKA1 levels and clinico
pathological parameters of patients suffering from 
laryngocarcinoma. The findings of Mann–-Whitney 
U-test indicated that laryngocarcinoma patients with 
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abundant SKA1 expression harbored more severe 
tumor infiltration, larger tumor diameter, higher 
risk of lymphatic metastasis and later pathological 
stage than those patients with low levels of SKA1 
(Table 2), which was also verified by Spearman rank 
correlation analysis (Table 3). Moreover, we also 
found that SKA1 mRNA level was frequently 
expressed in a panel of laryngocarcinoma cell lines, 
especially in AMC-HN-8 and TU212 cell lines 
(Figure 1b). Taken together, these results implied 

that SKA1 might exert its role as a cancer- 
promoting factor in laryngocarcinoma development.

SKA1 promotes laryngocarcinoma cell 
proliferation and migration in vitro
To unveil the functional roles of SKA1 in laryngo
carcinoma development, we constructed laryngocar
cinoma cell lines (AMC-HN-8 and TU212) with 
stable SKA1 downregulation using a lentiviral 
shRNA approach. The infection efficiency of 

Figure 1. SKA1 was elevated in laryngocarcinoma. (A) The expression of SKA1 in tumor tissues collected from patients diagnosed 
with laryngocarcinoma was detected by IHC staining and compared with normal tissues. (B) The background expression of SKA1 in 
laryngocarcinoma cell lines was detected by qRT-PCR. (C) The infection efficiencies of shSKA1 in AMC-HN-8 and TU212 cells were 
evaluated through observing the fluorescence inside cells. (D) The knockdown efficiencies of SKA1 in AMC-HN-8 and TU212 cells 
were detected by qRT-PCR and western blotting. *P <0.05, ***P <0.001.

Table 1. Expression patterns of SKA1 in laryngocarcinoma tissues and para-carcinoma tissues revealed in immunohistochemistry 
analysis.

SKA1 expression Tumor tissue Para-carcinoma tissue P value
Cases Percentage Cases Percentage < 0.001

Low 19 43.2% 37 94.9%
High 25 56.8% 2 5.1%
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shSKA1 was assessed by observing the fluorescence 
signal of the GFP label on the lentivirus used to infect 
AMC-HN-8 and TU212 cells (Figure 1c). 
Furthermore, detection of SKA1 mRNA and protein 
levels by qRT-PCR and western blotting assays illu
strated that SKA1 was successfully knocked down in 

AMC-HN-8 and TU212 cells (Figure 1d). Thus, 
these both cell lines were employed in subsequent 
cell function experiments.

Next, celigo cell counting assay was conducted to 
assess the effects of SKA1 knockdown on cell pro
liferation. The results demonstrate that silencing 
SKA1 significantly weakened the proliferative abil
ities of both cells (Figure 2a). Additionally, the 
results of colony forming assay performed in AMC- 
HN-8 and TU212 cells further confirmed that sup
pression of SKA1 expression attenuated cell viability 
and proliferation of laryngocarcinoma cells 
(Figure 2b). Furthermore, we found that cells with 
depleted SKA1 displayed obviously attenuated capa
cities of migration (Figure 2c and 2d). More inter
estingly, flow cytometry experiments demonstrated 
that SKA1 knockdown markedly promoted cell 
apoptosis (Figure 2e). Collectively, these in vitro 
results demonstrated that SKA1 knockdown could 
hamper the development of laryngocarcinoma, as 
indicated by suppressed proliferation and migration, 
as well as facilitating apoptosis.

Table 2. Relationship between SKA1 expression and tumor characteristics in patients with 
laryngocarcinoma.

Features No. of patients SKA1 expression P value
low high

All patients 44 19 25

Age (years) 0.520
< 62 21 8 13
≥ 62 23 11 12
Gender 0.383
Male 43 19 24
Female 1 0 1
Differentiation 0.677
Low 3 1 2
Medium 11 6 5
High 29 12 17
T 0.008
T1 13 10 3
T2 19 6 13
T3 7 2 5
T4 5 1 4
N 0.001
N0 32 19 13
N1 4 0 4
N2 8 0 8
Maximum tumor diameter 0.028
≤ 2cm 24 14 10
> 2cm 20 5 15
TNM < 0.001
I 12 10 2
II 11 6 5
III 9 2 7
IV 12 1 11

Table 3. Relationship between SKA1 levels with laryngocarci
noma patients’ clinicopathological parameters.

SKA1

Maximum tumor diameter Spearman correlation 0.335

Signification (double-tailed) 0.026

N 44

T Spearman correlation 0.404

Signification (double-tailed) 0.006

N 44

N Spearman correlation 0.528

Signification (double-tailed) 0.000

N 44

TNM Spearman correlation 0.598

Signification (double-tailed) < 0.001

N 44
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SKA1 promotes laryngocarcinoma tumor 
outgrowth in vivo
In this section, we aimed to further evidence the 
previous findings through in vivo assays, we exam
ined the effects of SKA1 depletion on tumor forma
tion capacity by using xenograft mouse model. 
shSKA1 and shCtrl AMC-HN-8 cells were cultured 
and subcutaneously injected into the right axilla of 
nude mouse. Twenty days later, the mice were killed, 
and the tumors were collected for taking photograph 
and histological analyses. The mouse xenograft 
experiment demonstrated that SKA1 knockdown 
showed potent suppression in the formation and 
growth ability of tumors (Figures 3a–3c). We further 
assessed the proliferation index (Ki-67) in different 
groups of tumors by IHC analysis, the results showed 

significantly lower level of Ki-67 in tumors generated 
from shSKA1 AMC-HN-8 cells (Figure 3d). 
Together, these data confirmed that inhibition of 
SKA1 could significantly delay the growth of xeno
grafted tumors.

P53/bcl-2/bax signaling pathway participates 
in SKA1-mediated laryngocarcinoma 
development

Finally, we made a preliminary investigation on 
the downstream pathway behind SKA1 moderat
ing laryngocarcinoma. We accordingly knocked 
down SKA1 in AMC-HN-8 cells and analyzed 
the changes in the levels of 39 phospho (p)- 
kinases through a Human Phospho-Kinase Array- 

Figure 2. SKA1 knockdown inhibited laryngocarcinoma cell proliferation and cell migration as well as enhanced apoptosis. (A) The 
Celigo cell counting assay was performed to evaluate cell proliferation of AMC-HN-8 and TU212 cells with or without SKA1 
knockdown. (B) The abilities of AMC-HN-8 and TU212 cells to form colonies were assessed upon knocking down SKA1. (C, D) The 
effects of SKA1 knockdown on cell migration of AMC-HN-8 and TU212 cells were evaluated by transwell assay (C) and wound-healing 
assay (D). (E) Flow cytometry was utilized to detect cell apoptosis of AMC-HN-8 and TU212 cells upon SKA1 knockdown. *P <0.05, 
**P <0.01, ***P <0.001.
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Membrane. Our data demonstrated that SKA1 
downregulation increased Akt1/2/3 (S473), Chk-2 
(T68), Hsp27 (S78/S82) and p53 (S46), as well as 
decreased the patterns of multiple p-kinases 
including GSK-3α/β (S21/S9), GSK-3β (S9), 
JNK1/2/3 (T183/Y185, T221/Y223), RSK1/2 
(S221/S227), STAT2 (Y689), STAT5a/b (Y694/ 
Y699), STAT3 (S727), although the changes of 
some were slight (Figure 4a and 4b). Notably, it 
was previously reported that SKA1 could affect the 
prognosis of lung adenocarcinoma through P53 
signaling pathway [16]. More importantly, P53 
pathway has been revealed to be involved in lar
yngocarcinoma development [17,18]. Herein, we 
speculated that SKA1 probably regulate laryngo
carcinoma via activating P53 pathway. To verify 
this hypothesis, AMC-HN-8 cells with SKA1 
downregulation were treated using Pifithrin-α 
(the inhibitor of P53 signaling pathway). We 
observed that, after treatment with Pifithrin-α, 
the suppression in proliferation level caused by 
SKA1 knockdown was reversed, while the increase 
of cell apoptosis was withdrawn (Figure 4c and 
4d). To further verify these effects at the molecular 

level, we analyzed the alterations of P53 and its 
downstream target proteins, such as Bax and Bcl-2 
after Pifithrin-α treatment, followed by a restraint 
in p-P53, Bax, and an augment in Bcl-2 compared 
with the untreated group (Figure 4e). Thus, we 
concluded that SKA1 might promote the develop
ment of laryngocarcinoma via activating the P53 
signaling pathway.

Discussion

Accumulated documents have revealed that SKA1 
is a cancer-promoting factor, which is involved in 
the development of a range of cancer types. For 
instance, a study from Li et al. have reported that 
upregulation of SKA1 could result in spontaneous 
tumorigenesis in the transgenic mouse model [19]. 
Qin et al. analyzed the expression of SKA1 in 38 
hepatocellular carcinoma cases and found that 
SKA1 expression was upregulated in hepatocellu
lar carcinoma tissues [14]. Besides, overexpression 
of SKA1 has been also found in gastric, oral and 
prostate cancer, and could promote cancer cell 
proliferation and colony formation in these 

Figure 3. SKA1 knockdown inhibited tumor growth in mice xenograft model. (A) the volume of tumors formed in mice xenograft 
models was calculated based on the measurement of tumor size. Tumor volume=π/6×L×W×W, where L is tumor length and W is 
tumor width. (B) the weight of tumors was measured after removing the tumors from the mice. (C) the photos of tumors removed 
from animal models were obtained after sacrificing the mice. (D) Ki-67 levels were measured through IHC staining in tumor tissues 
from shCtrl and shSKA1 mice. **P <0.01.
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malignancies, while inhibition of SKA1 led to cell 
cycle arrest and apoptosis [15,20,21]. In consis
tency with these findings, we found that SKA1 
acts as a crucial regulator of malignant phenotypes 
in laryngocarcinoma progression and confirmed 
that SKA1 expression increased along with 
advances of laryngocarcinoma stage, tumor infil
tration, and lymphatic metastasis. Based on these 
findings, we further investigated the biological 
functions of SKA1 in laryngocarcinoma progres
sion and figured out that it could significantly 
promote laryngocarcinoma cell proliferation and 
migration abilities, as well as suppress cell apopto
sis. With a xenograft tumor model, we observed 
that SKA1 could facilitate tumor outgrowth in 
laryngocarcinoma. However, the detailed mechan
isms by which SKA1 exerts these effects remained 
unclear and thus warrant further investigations.

Although precise regulatory network of SKA1 
remains to be elucidated, it has been proposed that 
SKA1 could affect the prognosis of lung adenocarci
noma through P53 signaling pathway [16]. As we all 
know, P53 signaling pathways are a fundamental 
growth control pathway, and its dysregulation fre
quently occurs in a variety of cancers [22–25]. More 
interestingly, P53 pathway has been illustrated to be 
linked to malignant transformation of head and neck 
precancer, poor head and neck cancer prognosis, as 
well as head and neck cancer development. In detail, 
a study from Tandon et al. identified that p53 is 
a prognostic factor of survival in squamous cell car
cinoma [26]. Another study from Ramos-García 
et al. indicated that p53 elevation implies the malig
nant transformation risk of oral potentially malig
nant disorders [27]. Moreover, Li et al. showed that 
liriodenine induces the apoptosis of human 

Figure 4. P53/bcl-2/bax signaling pathway participates in SKA1-mediated laryngocarcinoma development. (A, B) Human phospho- 
kinase array-membrane was used to identify the differential expression of 39 phospho (p)-kinases in AMC-HN-8 cells with SKA1 
downregulation. (C, D) After P53 Pifithrin-α treatment, cell proliferation (C) and apoptosis (D) were assessed in AMC-HN-8 cells with 
SKA1 downregulation. (E) After P53 Pifithrin-α treatment, the levels of P53 and its downstream target proteins Bax and Bcl-2 in AMC- 
HN-8 cells with SKA1 downregulation were analyzed by western blotting. *P <0.05, **P <0.01, ***P <0.001.
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laryngocarcinoma cells via the upregulation of P53 
expression [17]. Gu et al. reported that miR-552 
promotes laryngocarcinoma cell proliferation and 
metastasis by targeting P53 pathway [18]. These 
findings reminded us that SKA1 might exert its 
roles via P53 pathway in laryngocarcinoma. To ver
ify this hypothesis, we treated AMC-HN-8 cells with 
depleted SKA1 using Pifithrin-α. As expected, after 
treatment with Pifithrin-α, the suppression in pro
liferation level caused by SKA1 knockdown was 
reversed, while the increase of cell apoptosis was 
withdrawn. On the other hand, the main way of 
P53 mediated apoptosis is to promote the gene tran
scription of downstream pro-apoptotic factors, 
which in turn triggers mitochondrial pathways 
[22]. Here, we have to mention the mitochondrial 
dysfunction mediated by the Bcl-2 family, which is 
an important event of cell apoptosis [28–30]. In the 
Bcl-2 family, Bcl-2 and Bax are the representatives of 
suppressing and enhancing cell apoptosis, respec
tively. One more thing that needs to be focused is 
that P53/Bcl-2/Bax interaction has been approved to 
trigger cell apoptosis in multiple diseases [28,31–33]. 
Herein, we analyzed the alterations of P53 and its 
downstream target proteins Bax and Bcl-2 in AMC- 
HN-8 cells where SKA1 was silenced, suggesting that 
p-P53 and Bax ameliorated, while Bcl-2 attenuated. 
Upon Pifithrin-α treatment, these changes were par
tially abolished. Thus, we concluded that SKA1 
might promote the development of laryngocarci
noma via activating the P53/Bcl-2/Bax signaling 
pathway.

Laryngocarcinoma is a common head and neck 
malignancy. Although our study proposed that 
SKA1 participates in the progression of laryngo
carcinoma by activating the P53 signaling path
way, the downstream target of SKA1 regulating 
laryngocarcinoma remains unknown. Many pub
lished literature reported that Cyclin D1 plays an 
important role in the progression of premalignant 
head and neck lesions to cancer and adjacent 
epithelium, and it represents a prognostic indica
tor for head and neck cancer patients, also includ
ing laryngeal carcinomas [34–37]. On the other 
hand, it has been evidenced that knockdown of 
SKA1 downregulated the expression of Cyclin D1 
in human adenoid cystic carcinoma and bladder 

cancer [38,39]. Thus, we speculated that SKA1 
might target Cyclin D1 to participate in the devel
opment of laryngeal cancer. Of course, this 
requires more data to support.

In summary, our study reported the first evi
dence that SKA1 regulates laryngocarcinoma via 
the P53 signaling pathway. Thus, we uncovered 
a novel mechanism of SKA1 in regulating laryn
gocarcinoma, suggesting that SKA1 may be an 
attractive therapeutic molecule for treatment of 
laryngocarcinoma. Although our current 
research provided some important findings, we 
have not yet determined the relationship between 
SKA1 expression and the prognosis of laryngo
carcinoma patients. Moreover, histological grade 
was not also presented in this study. In addition, 
some statistical analyses performed may be 
underpowered due to the small sample size. 
More studies are needed to support the promo
tion role of SKA1 in laryngocarcinoma.
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