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ABSTRACT
A key component of microbiome research is understanding the role of host genetic influence on gut 
microbial composition. However, it can be difficult to link host genetics with gut microbial composi-
tion because host genetic similarity and environmental similarity are often correlated. Longitudinal 
microbiome data can supplement our understanding of the relative role of genetic processes in the 
microbiome. These data can reveal environmentally contingent host genetic effects, both in terms of 
controlling for environmental differences and in comparing how genetic effects differ by environ-
ment. Here, we explore four research areas where longitudinal data could lend new insights into host 
genetic effects on the microbiome: microbial heritability, microbial plasticity, microbial stability, and 
host and microbiome population genetics. We conclude with a discussion of methodological con-
siderations for future studies.

PLAIN LANGUAGE SUMMARY
For humans and animals, host genes play a role in shaping the gut microbiome. However, 
measuring these effects is difficult because host genetic and environmental similarities are often 
correlated. For instance, relatives often live together and share similar diets and lifestyles—forces 
that can also change gut microbial communities. Watching the microbiome over time, through 
longitudinal sampling, can help solve this problem by breaking gene-environment correlations. 
Here, we review this idea and several other research areas where longitudinal data will be helpful 
for understanding host genetic effects on the microbiome. We believe this approach will shed new 
light on the evolution of host–microbe relationships and can inform new microbiome therapies.
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Introduction

Gut microbial taxa – including those under host 
genetic influence – have widespread effects on host 
health and physical functioning, as reviewed in 
recent studies.1–3 They help to digest food,4,5 influ-
ence host behavior,6,7 and regulate host gene 
expression,8,9 metabolites,10,11 and immune 
mechanisms.12 On evolutionary scales, relation-
ships between gut microbes and host genes may 
facilitate local adaptation to novel environments in 
humans (as reviewed in 2), shape adaptive pheno-
typic plasticity across mammalian hosts (as 
reviewed in 13), affect host genetic divergence 
between populations,14 and even, some argue, 
lead to selection of a host and its microbes as 
a single evolutionary unit.15 Given these evolution-
ary implications, it may seem surprising that only 
a minority of microbiome taxa are associated with 
host genetic variation. For instance, few genetic 

variants in hosts are consistently identified as hav-
ing gut microbial correlations across population- 
specific studies (reviewed in 3). Further, in humans, 
very few microbial taxa are heritable (an estimated 
3–13%, on average; 16–19), and those that are most 
frequently heritable have widely varying heritabil-
ity estimates across studies (e.g., 
Christensenellaceae, one of the most consistently 
heritable taxa in humans, exhibits heritability ran-
ging from 0.31 to 0.64 20).

A major challenge with estimating microbiome 
heritability is the difficulty in isolating host genetic 
effects from other drivers of microbiome varia-
tion–especially variation in the environment. Host 
environments play a strong role in shaping gut 
microbiome composition,21,22 and genetic similar-
ity between hosts is often confounded by shared 
environments (e.g., diet and lifestyle 23). As such, 
even studies with large sample sizes struggle to 

CONTACT Laura Grieneisen laura.grieneisen@ubc.ca Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada

GUT MICROBES                                              
2023, VOL. 15, NO. 1, 2178797 
https://doi.org/10.1080/19490976.2023.2178797

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-7286-5001
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2023.2178797&domain=pdf&date_stamp=2023-02-16


detect host genetic effects in the face of environ-
mental correlations.3 For example, Gacesa et al. 24 

found that across 8,208 individuals from 2,756 
family units, only 6.6% of microbes were heritable. 
In contrast, 48.6% of microbial abundances were 
affected by cohabitation, but because relatives often 
cohabitate, the correlation between shared genes 
and shared housing may have obscured the 
researchers’ ability to detect heritable microbes.

This complication is exacerbated by the dynamic 
nature of microbiome community composition 
within a host over time. For example, a study in 
which 20 individual hosts were sampled daily for 
6 weeks found that variations in the abundances of 
most microbes were greater within individual hosts 
than between hosts.25 An additional complication 
is that genetic effects on dynamic host traits can be 
themselves dynamic. For example, the heritability 
of dynamic host traits, such as body mass index 
(BMI), changes over an individual’s lifetime as the 
relative importance of environmental and beha-
vioral factors increase compared to genetic 
effects.26,27 Similar age-related changes in heritabil-
ity have also been found in the gut microbiome.21

To date, most research on host genetic effects on 
the gut microbiome relies on cross-sectional data, 
but time-series data can supplement our under-
standing of the relative role of genetic processes 
in the microbiome in ways that cross-sectional data 
cannot. Broadly, sampling the same individual over 
time can help to reveal environmentally contingent 
host genetic effects, both in terms of controlling for 
environmental differences and in comparing how 
genetic effects differ by environment. Longitudinal 
sampling can also minimize cohort effects. For 
example, 20 note that in a study of age and micro-
biome composition, the association of 
Christensenellaceae abundance with age is based 
on one data point per host, such that if individuals 
in a certain age class have a similar diet or share 
other life history traits, the Christensenellaceae 
result may reflect between-cohort differences 
rather than a true age-related increase in 
Christensenellaceae abundance. Sampling the 
same host multiple times can reveal age-related 
changes in microbial abundances within individual 
hosts. Repeated sampling may also help to amelio-
rate the sample size and power limitations dis-
cussed in the past work3.

In this review, we highlight four areas where 
time-series data are particularly valuable for under-
standing host genetic effects on the microbiome 
and the implications of these patterns for evolution 
and host health. These four areas are (1) heritability 
of microbial phenotypes, (2) local adaptation and 
phenotypic plasticity of the microbiome, (3) life-
time stability and dynamism of microbial commu-
nities, and (4) microbiome population genetics. 
Additionally, we provide a roadmap for other 
researchers by summarizing methods for visualiz-
ing and modeling longitudinal microbiome data 
with associated host genetic information and pro-
posing future directions for the field.

How time series data can inform host genetics 
effects on the gut microbiome

Microbiome phenotype heritability

Quantifying the heritability of complex, dynamic 
phenotypes requires parsing environmental effects 
from genetic effects. In the case of the gut micro-
biome, it is common to define phenotype heritabil-
ity as the proportion of variation in either 
microbiome community composition or the abun-
dances of individual microbial taxa that can be 
explained by host genetic variance.4,21,24 Larger 
sample sizes, which are often advocated for in 
studies of host genetic effects on microbiome 
composition,24 cannot necessarily overcome the 
limitation that host genetic similarity is often cor-
related with environmental similarity.

One approach that can help disentangle gene/ 
environment correlations is to use study designs 
that leverage longitudinal microbiome samples 
from many individual hosts. For instance, a study 
using 16,234 samples from 585 wild baboons found 
that using multiple samples per host led to 
a striking increase in the number of heritable 
microbial taxa detected versus using one sample 
per host.21 Likewise, including multiple samples 
per subject over extended time scales can also 
help break the genetic relatedness/environmental 
similarity correlation that can affect heritability 
estimates in cross-sectional designs, as relatives 
may share environments at a given time point, 
but undergo individualized changes in their physi-
cal and social environments over time. Further, 
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repeated sampling from the same individual 
removes cohort effects when testing how environ-
ments or host traits affect heritability estimates. For 
example, the relationship between host age and 
microbiome heritability can be better teased out 
when, for instance, all four-year-old hosts in the 
data set were not born in the same calendar year, 
and thus have dissimilar early life environmental 
effects. Comparing heritability estimates across 
environments is particularly important because 
heritability estimates of individual microbes are 
environmentally dependent.1 This effect has been 
demonstrated experimentally in a study of the corn 
rhizosphere across field sites 28 and in the observa-
tional study of baboon gut microbes described 
above.21 By repeated sampling of individual hosts 
across changing environments, it is possible to 
paint a broader picture of the context of the chan-
ging relative contributions of additive genetic ver-
sus environmental effects on microbial 
composition (as shown in Figure 1). Similar to 
sampling across multiple physical environments, 
sampling a host at multiple daily timepoints could 
provide an interesting contribution to our under-
standing of heritability, as several gut microbial 
taxa demonstrate a marked circadian rhythm in 
their relative abundances 29 (reviewed in 30).

Longitudinal microbiome data are already being 
used to understand heritability in some health and 
agricultural applications. For example, questions 
about the heritability of early life gut colonization 
and community assembly in humans have been 
addressed by repeated sampling of multiple sets of 

triplet infants.31 In agricultural and livestock 
research, understanding the relationship between 
host genotype, microbes, and phenotype allows for 
targeted breeding of desired traits,1 such that par-
sing host gene-by-environment interactions on 
host phenotypes, as well as gene-environment- 
microbiome interactions, is a high priority.32 One 
such example is a longitudinal study of piglets that 
determined heritable microbes are associated with 
growth rates.33 Agricultural and livestock systems 
also provide great experimental setups for quanti-
fying microbial heritability in changing environ-
mental contexts. For example, planting inbred 
maize lines in different fields over 2 
years revealed host genotype effects on microbiome 
rhizosphere colonization throughout differing 
environments.34

Phenotypic plasticity of the gut microbiome

Gut microbiome community composition is 
a plastic phenotype, but the dynamics of this plasti-
city are not well understood.35,36 Longitudinal data 
can reveal if gut microbial dynamics are individua-
lized. Combining this information with data on host 
genetics could further reveal if host genotype pre-
dicts plasticity in the microbiome phenotype. For 
example, past studies have shown that when hosts 
undergo a change in their environment by moving 
to a new area, their microbiomes likewise change as 
they pick up local microbes.37–39 Further, the rate of 
local microbial acquisition varies between hosts. Six 
humans sampled pre-immigration and monthly for 

Figure 1. Genetic and non-genetic variance components of the microbiome for four highly heritable taxa and one metric of overall 
microbiome composition from up to 585 baboon subjects measured (A) at one, two, five, ten, and twenty timepoints per subject; and 
(B) with timepoints grouped by hydrological year, with varying numbers of timepoints per subject across a mean of 220 subjects 
per year. These data were generated from a data set published as part of.21 Figure 1A emphasizes that increasing the number of 
samples per subject affects our ability to detect host genetic effects, while Figure 1B shows that the relative contribution of genetic 
and environmental components to overall microbiome variance can change over time.
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up to 9 months post-immigration to the US varied in 
the length of time; it took them to acquire local 
microbes, but by 9 months their guts had the same 
dominant taxa as long-term US residents.37 

Similarly, a study of dispersing baboons found that 
males who had lived in a social group for less than 
a year varied considerably in how similar their gut 
microbiota were to other group members, but this 
variation decreased over time.39 Time-series samples 
from dispersing primates and other animals that 
periodically change environments, such as migra-
tory birds, can provide natural experiments to test 
which environmental characteristics predict if hosts 
acquire local microbes, the length of time over which 
such shifts happen, and if the rate of acquisition has 
a genetic component. Quantifying the rate of change 
also provides insight into the mechanisms by which 
hosts acquire local microbes. An immediate change 
could suggest diet is the primary driver, whereas 
gradual acquisition of local microbes implicates hor-
izontal transmission from conspecifics or other 
drivers.

Longitudinal studies could also further our 
understanding of when a plastic microbiome is 
adaptive and to what degree host genetics affects 
microbial plasticity. The ability to acquire the local 
microbiome may provide key fitness advantages to 
the host; indeed, studies have shown that bean bugs 
acquire bacteria from the soil that makes them 
resistant to pesticides,40 and woodrats acquire 
microbes that allow them to degrade dietary plant 
toxins.41 Longitudinal studies on these and other 
systems could further test local adaptation by 
experimentally swapping hosts between different 
environments and testing if fitness improves over 
time as they acquire the microbes of their new 
environment. More broadly, longitudinal data 
could reveal if host-associated microbes shift the 
mean or variance of a host phenotype. A shift in the 
mean could lead to a host phenotype better adapted 
to the current environment, but with less flexibility 
to adapt to a changing future environment. In 
contrast, a microbiome that increased variance in 
a phenotype could lead to increased capacity to 
adapt to environmental change.42

An additional aspect of microbial plasticity that 
could be considered in longitudinal designs is the 
plasticity of individual microbial taxa. Changes in 
microbial gene expression under different 

environmental conditions have been well studied 
in pathogenic bacteria (e.g. Salmonella typhi alters 
virulence factor expression in response to tempera-
ture 43), and temperature-dependent and other 
environmentally dependent changes in gut micro-
bial gene expression could be a key component of 
temporal variation in host–microbiome 
interactions.44

The capacity to adapt to the local environment 
could start at birth; if there is selection for imper-
fect vertical transmission of microbes, it could lead 
to greater microbial variation between offspring, as 
proposed by.45 Microbial variation between off-
spring could increase fitness in variable environ-
ments, thus increasing the chances that one 
offspring will be adapted to the environment.45 

These ideas could be tested by comparing temporal 
microbial trajectories between, for example, nest-
lings from similar hatching dates or pups from the 
same litter. Finally, longitudinal studies have the 
potential to provide insight into which taxa fluc-
tuate and which ones are maintained at more con-
stant levels, illuminating the tradeoff between 
plasticity and stability.

Lifetime stability of gut microbiome phenotypes

Measuring microbiome stability, or the degree of 
microbiome change within a host over time, 
requires time-series data by definition. Although 
individual host signatures on overall microbiome 
community composition can be detected in sam-
ples collected years apart,46 individual taxa compo-
nents of the microbiome are temporally dynamic, 
with most microbes demonstrating large fluctua-
tions over days or weeks (as shown in Figure 2).25 

There are two main ways that host genetic infor-
mation can inform our understanding of micro-
biome stability. First, microbial stability itself could 
be under host genetic influence; i.e., the magnitude 
of change in individual microbial taxa over time 
could be quantified as a phenotype, and heritability 
could be estimated. Second, incorporating host 
genetic information into time-series models of 
microbial stability can provide insight into the 
mechanisms regulating microbial stability.

It is possible that the stability of some micro-
biome phenotypes has a host genetic component; 
i.e., stability could be heritable. In other words, 
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host genetics could control the day-to-day change 
in the microbiome. Although, to the best of our 
knowledge, this hypothesis has not been tested with 
real-world data, there are several reasons why 
maintaining a more stable microbiome can be ben-
eficial for the host. For example, temporal stability 
of ecosystem functions makes ecosystem services 
likewise more stable, and therefore reliable;48 

a stable microbiome has greater resistance against 
colonization by invading microbes, including 
pathogens;49 and major shifts in human micro-
biome composition are associated with illness.50 

However, the microbiome can also settle into an 
unhealthy stable state, which may contribute to 
chronic diseases (e.g., insulin resistance and recur-
rent Clostridium dificile infections) with resistance 
to medical interventions.49 Longitudinal data sets 
could be used to test if taxa that demonstrate sta-
bility over a host’s lifetime are those with abun-
dances that are already linked to host genetics, i.e., 
heritable. In support of this, microbiome taxa that 
have abundances that are highly personalized to 
individual hosts tend to be more heritable than 
taxa that exhibit similar abundance patterns across 
hosts.51 Individual taxon stability could also be 
measured as genetic stability; 46 studied SNP (single 
nucleotide polymorphism) haplotypes of microbes 
and SVs (genomic structural variants) and found 
smaller differences within than between hosts and 
that the degree of microbial genetic stability dif-
fered between microbes. A recent study3 states that 
at least one group of bacterial species that are 

genetically stable over time, Bifidobacterium, also 
has high heritability. Additionally, there may be 
selection at the level of gene functions or pathways, 
rather than at the level of individual microbial taxa, 
and selection could also occur on pathways or 
functional roles filled by multiple taxa.52 In support 
of the idea that hosts and their microbiomes 
experience selection for some functions to be stable 
over time, there is a phylogenetic signature for 
heritability such that taxa that are more closely 
related–and therefore may have similar functions 
and occupy similar niches – may exhibit similar 
host genetic effects.1 Future studies could further 
explore the link between host genetics and func-
tional stability.

Combining host genetic information with micro-
biome time-series data and associated environmen-
tal metadata can reveal under what circumstances 
microbes are stable and provide insight into stability 
mechanisms. Even highly heritable microbial taxa 
demonstrate considerable variation in abundance 
over a host’s lifetime,21 and studies have found 
that the stability of microbiome community compo-
sition changes with age, sickness, and other 
traits.49,53 How individual hosts vary in their degree 
of microbial stability, which microbes are most 
affected, and quantifying the degree of environmen-
tal versus genetic drivers of this variation at different 
temporal time scales are key questions for under-
standing host–microbiome interactions.54 A likely 
mechanism for host genetic control of microbial 
stability is changes in host gene expression, as host 

Figure 2. Stability and reproducibility of the microbiome. (A) A horizon plot shows how a taxon’s abundance does not change in 
consistent ways across time points between individual subjects. Band colors represent quartiles relative to the median. (B) A violin plot 
depicts the mean ± SD relative abundance of a single taxon in each individual subject, highlighting that stability is personalized. These 
data are from the demonstration data set from the BiomeHorizon package.47
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gene expression differences have been linked to host 
genetic control of the microbiome.55 Future work 
could explore if the same changes in gene expression 
that control microbial taxa abundances at individual 
time points also regulate the stability of taxa or 
overall community composition.

Additionally, microbiome time-series data sets 
that include hormone information, such as those 
that measure metabolites of steroid hormones in 
fecal samples,56,57 will be particularly valuable for 
parsing out a second potential mechanism of lifetime 
microbial stability. Glucocorticoids have a pervasive 
genetic component,58–60 and a study on primate 
microbial endocrinology61 proposes that host– 
microbiome signaling via the endocrine system may 
promote microbiome stability. This suggests that one 
potential mechanism for the host genetic influence 
on microbial stability is via glucocorticoid levels.

Host and microbe population genetics

Genetic differences between host populations are 
also often correlated with environmental, social, 
and spatial characteristics, making it difficult to 
determine the relative contributions of these factors 
in shaping local microbiomes.62 Further, due to 
rapid generation times in bacteria, ecological and 
evolutionary processes operate at a similar tem-
poral scale and may interact to shape microbial 
populations.63 Longitudinal data may be useful in 
teasing apart host population-level drivers of 
microbial differences by breaking these correla-
tions and to address several unique questions: Is it 
possible to detect evidence of phylosymbiosis (i.e., 
when microbial community relationships parallel 
host species’ evolutionary relationships 64,65) or 
patterns of co-diversification (i.e., when the taxon-
omy of specific microbes parallels that of the hosts 
66) after controlling for ecological differences? Do 
host populations demonstrate microbial change at 
different rates, and how is this rate affected by local 
landscape characteristics? Similarly, does 
a population always look like itself, or do environ-
mental shifts cause host-associated microbial com-
munities from temporally and geographically 
separated host populations to resemble each other?

Time-series data can help place evidence of phy-
losymbiosis or co-diversification in an ecological 
context. Past work has shown that the genetic 

structure of hosts may parallel (or not) the genetic 
structure of members of their microbial commu-
nities. For example, genetically similar stickleback 
fish populations have more similar microbes,67 but 
in humans, few microbes show biogeographical 
patterns that match host biogeography (reviewed 
in 63). Time-series data are useful because even 
among microbes whose phylogenies parallel host 
genetic relationships, environmental traits may 
modify these signatures. For example, microbiota 
from oysters in environmentally disturbed sites no 
longer exhibit genetic relationships that parallel 
their hosts’ population genetic structure.68 This 
phenomenon has also been shown experimentally; 
the microbiotas of woodrats brought into captivity 
and placed on uniform diets showed stronger host 
phylogenetic structuring than when they were in 
the wild, suggesting that signatures of phylosym-
biosis on microbial composition may be obscured 
by strong environmental effects in wild 
populations.69 Time-series data can also reveal if 
landscape modification is reflected in microbiome 
changes. A recent study by Couch et al.62 advocates 
incorporating spatial elements to model how the 
landscape interacts with host ecology to influence 
population-level microbial variation. Past work has 
shown that geographic and environmental traits 
structure microbiomes between host populations 
of mice, tortoises, and baboons.70–72 By sampling 
host populations over time, as they shift their land-
scape use, it will be possible to test if changes in 
home range use parallel changes in microbial com-
munities. Observational studies of long-term wild 
study systems will be of particular importance in 
answering these questions, as microbial patterns 
observed in controlled lab systems (or even captive 
animals) do not necessarily transfer to what is 
observed in their wild counterparts.1,73 These ques-
tions are also timely, as climate change causes shifts 
in local environments and in animal ranges.

Methodological considerations: incorporating 
host genetics into longitudinal microbiome 
statistics

Incorporating host genetic information into long-
itudinal microbiome models presents a unique sta-
tistical challenge, as the wide range of longitudinal 
study designs that can test different aspects of host 
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genetic effects (e.g., twin studies, family-based 
designs, case–control, and prospective cohort stu-
dies) have a similarly wide range of statistical 
approaches. Even within the microbiome-diet sub-
field, there are no standardized best practices for 
longitudinal study designs.74 A second complica-
tion is that some studies are constrained to irregu-
lar sampling intervals, yielding datasets with 
uneven time between samples. Further, the unit of 
analysis also varies across studies; in this review, we 
have focused on repeated sampling of the same 
individual host, but some longitudinal studies 
may use cage, inbred line, social group, or popula-
tion as their level of analysis.

An additional set of complications that espe-
cially affect longitudinal microbiome studies are 
those associated with data collection and proces-
sing, which broadly fall under the issue of reprodu-
cibility in microbiome studies.75–77 Some common 
methods of sample preservation do not yield con-
sistent microbiome profiles when subjected to 
freeze-thaw cycles and other stresses common to 
fieldwork,75,76 although this can somewhat be ame-
liorated by treating data as compositional.78 Batch 
effects must also be controlled for, as samples col-
lected over extended time periods are often not 
processed at the same time.21,79–81 Approaches to 
account for batch effects include running technical 
replicates across multiple plates and including 
sequencing plates in statistical models,21 and 
using decontam 82 or other software to identify 
and remove contaminants between batches.81

Once sequence data are processed, the first step 
in any longitudinal analysis, whether it includes 
host genetic information or not, is visualizing 
which taxa are changing over time. Stream or line 
graphs are a common approach for visualizing 
temporal microbial changes for a handful of 
microbes in a limited number of hosts.83–86 As an 
alternative, horizon plots can show the temporal 
dynamics of more taxa in a more condensed visual 
space. Several R packages provide horizon plot 
functionality, including CNEr and TSFEL.87,88 

BiomeHorizon is the first R package designed to 
apply horizon plots to microbiome data.47

There are several other software packages in 
R and other statistical environments that are spe-
cifically designed to analyze longitudinal micro-
biome data, and future studies could explore 

integrating host genetic information as well. 
TIME, a web-based interface, guides users through 
multiple workflows to visualize microbial abun-
dances and co-occurrences over time, and to pre-
dict causality (dynamic time warping, Granger 
causality, and Dickey–Fuller tests)86. Ridenhour et 
al. propose an autoregressive integrated moving 
average (ARIMA) time-series model modified to 
handle microbiome dynamics89. This model uses 
untransformed count data as the input, and incor-
porates environmental differences. A study by 
Wanger et al.90 focus on time-varying analyses of 
overall changes in microbial diversity. Chen and 
Li91ʹproposed ZIBR (two-part zero-inflated beta 
regression model with random effects) model 
accounts for the high number of zeros in long-
itudinal data. SynTracker is designed for the level 
of microbial strains92,93 and provides a user- 
friendly walkthrough of microbiome time-series 
analyses, as well as R and matlab tutorials. For 
a more detailed discussion of statistical challenges 
and approaches in analyzing longitudinal micro-
biome data, see the thorough review on the topic by 
Kodikara et al.94

Host relatedness data may also be integrated into 
other common models for measuring temporal varia-
tion in ecological systems, including generalized 
Lotka–Volterra equations,95 multispecies time-series 
data using first-order multivariate autoregressive 
(MAR(1)) models 96), generalized additive models 
(GAMs),51 and the stochastic logistic model with 
environmental noise (SLM).97

To incorporate longitudinal data into heritability 
models, the Animal Model includes options for multi-
ple samples per individual.21,98,99 The ACE model, 
which is often used in twin studies, can be modified 
for repeated measures.100 Quantitative genetics mod-
els can also be extended to include genetic effects on 
the host and genetics effects on the microbiome.42 

Bayesian models could also be used, including 
R packages for calculating heritability estimates from 
generalized linear mixed-effects models using 
a Markov chain Monte Carlo approach 
(MCMCglmm and QCglmm; 101,102). To address the 
issue of compositionality that is inherent to micro-
biome studies and has the potential to affect heritabil-
ity estimates, we recommend permuting host identity 
in any heritability models (e.g., Fig. S10 in a study by 
Grieneisen et al.21).
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Conclusion

The incorporation of host genetic data into long-
itudinal microbiome studies opens up many excit-
ing directions in the microbiome field. The future 
work will leverage a combination of existing collec-
tions, natural history studies of human and wild 
animal populations, and controlled experimental 
approaches.103–105 Further, technical advances will 
improve our ability to characterize temporal 
changes in host gene–microbiome interactions. 
For example, database improvements with more 
GWAS studies will allow for more functional gene 
annotations.63 Although this review focused on the 
gut microbiome, incorporation of host genetic 
effects into longitudinal studies of other bodysite 
microbiomes, such as the oral microbiome,106,107 

skin,108,109 and vagina,110 can provide similarly 
exciting insights into links between microbial 
dynamics and host health.

In addition to the four topic areas we focused 
on in this review, several recent articles highlight 
crucial areas where longitudinal microbiome data 
can contribute.63,104,111–113 We point out that 
many of these areas also have host genetic com-
ponents. These include quantifying disease 
risk;113 understanding intra-individual 
variation;112 linking early life effects with lifetime 
microbiome consequences;104,111 matching 
microbial and host aging, modeling social 
dynamics and transmission, uncovering which 
microbial taxa are heritable, and linking micro-
bial dynamics to host fitness;104 and modeling 
gene recombination rates and characteristics of 
microbes under selection.63

The results from such studies have broad real- 
world applications to human health. Detailing the 
relationship between the gut microbiome and host 
genetics could be important for translational med-
icine applications 114 and personalized 
therapeutics.103 Understanding temporal dynamics 
and host genotype effects could help contribute to 
our understanding of the stable colonization of 
therapeutic microbes.63 Further, they could contri-
bute to the expanding field of microbiome breed-
ing, defined as conducting artificial selection on 
microbiomes that “seeks to change the genetic 
composition of microbiomes in order to benefit 
plant or animal hosts”115.
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