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ABSTRACT
Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for 
such attributes early in the drug development process can save resources and avoid costly late-stage failures. 
Here, we review some of the most important developability properties that can be assessed early on for 
biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic 
properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in 
vivo methods and techniques that can be exploited at different stages of the discovery process to identify 
molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect 
on the most relevant developability parameters for injectable versus orally delivered biologics and provide an 
outlook toward what general trends are expected to rise in the development of biologics.
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Introduction

Bringing a biologic from early discovery to a marketed product is 
an immensely expensive endeavor, with the average investment 
being further compounded by the high attrition rates in clinical 
development.1 While the clinical success of a biologic ultimately 
depends on its safety and efficacy in human patients, the under-
lying properties of these endpoints include everything from drug 
potency, specificity, immunogenicity, and pharmacokinetics to 
biophysical behavior in vivo and during storage.2,3 Moreover, 
with more advanced biologics such as bispecific antibodies and 
antibody-drug conjugates in the pipeline, chemistry, manufactur-
ing, and control (CMC) and regulatory aspects can be key to 
commercial success, when the biologic must be repeatedly pro-
duced at consistently high quality.4 Combined, these performance 
measures are often referred to as a biologics’ “developability”.5 In 
this review, the different developability parameters for biologics 
will be presented together with a discussion on how to assess and 
optimize these using both in silico, in vitro, and in vivo methods 
(Figure 1). When optimally employed, the assessment and 
improvement of developability properties can lead to lower attri-
tion rates, as well as improved manufacturability, enabling the 
production of higher quality, lower cost biologics for the benefit of 
patients worldwide.

Antibody sources

Antibodies and antibody fragments comprise the largest group 
of biologics.6 Antibodies are typically sourced from blood 
plasma,7 hybridomas,8 or recombinant cell lines,9 and origi-
nate from natural (animal or human) or synthetic sequences. 
Both the source and the origin may affect the antibodies’ 
developability profile. Natural antibodies, which are derived 
from natural, non-engineered sequences and typically sourced 
from (immunized) animals or patient populations, are to date 
the most commonly used source of antibodies.7 Such antibo-
dies inherently carry the benefit of having been derived from a 
living creature and have gone through affinity maturation and 
self-tolerance in vivo, which often results in a good develop-
ability profile.7 However, in the context of clinical use, there is 
a stark difference between human and animal-derived antibo-
dies. Whilst the former constitutes antibodies that have a low 
risk of immunogenicity, antibodies of non-human origin may 
elicit severe immune responses in patients, depending on the 
animal from which they were derived. The risk of immuno-
genicity can be reduced in several ways. For example, antibo-
dies can be humanized or animals transgenic for human 
immunoglobulins (e.g., rabbits10 or mice11–14) can be used 
for immunization. A potential limitation of antibodies derived 
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from immunization campaigns is that they will primarily tar-
get the most immunogenic epitopes of an antigen. This can 
limit epitope diversity and potentially prevent the discovery of 
binders to important, but low- or non-immunogenic antigen 
epitopes. Furthermore, inadequate immunization strategies 
can prevent antibodies from being discovered toward targets 
that are highly homologous to targets expressed within the 
immunized host due to self-tolerance.

To avoid these limitations, other types of antibodies have 
increased in popularity, i.e., synthetic antibodies,15,16 as they 
allow the discovery of binders toward, in principle, any target. 
Such antibodies may originate from rationally designed 
recombinant antibody repertoires and are typically discovered 
via in vitro display technologies.17 Using such methodologies 
grants substantial control over the antibody libraries. For 
example, certain amino acid residues known to be detrimental 
to binding interactions can be removed, lengths of variable 
regions can be adjusted, new formats can be experimented 
with, and overall antibody libraries with variability beyond 
nature can be created.18 As a result, this allows for their use 
against a substantially larger target space. Synthetic antibodies, 
however, typically come with the drawback of not having 
undergone in vivo maturation and being derived from a nat-
ural origin. Thus, they may potentially carry unexpected devel-
opability issues, such as unwanted polyreactivity, 
immunogenicity, propensity for aggregation, and poor expres-
sion profiles. Nevertheless, in combination with sophisticated 
display technologies and advanced computational tools, these 
risks can be minimized.

Advances in display technologies

Over the past few decades, display technologies have per-
mitted the creation of large and diverse populations of 

antibodies and other proteins and peptides, from which 
individual variants with desired target-binding properties 
can be isolated.19 The requirements for generating an anti-
body drug, however, do not solely revolve around the 
binding specificity or affinity of the antibody. Other factors 
can affect the likelihood that a lead candidate antibody can 
be developed into an efficacious, manufacturable, safe, and 
stable drug. For example, the propensity of the antibody to 
aggregate upon formulation at higher concentration, the 
extent to which non-specific interactions occur, and the 
pharmacokinetics of the antibody can lead to the failure 
of a lead molecule during the development process.3,5,20

In applying display technologies, populations of antibo-
dies may be derived from re-arranged antibody genes from 
B cells of human and non-human donors, constructed from 
synthetic antibody genes where variation has been intro-
duced during oligonucleotide synthesis or a combination of 
both.21 Developability problems can arise irrespective of 
the starting source and even “natural”, immune-derived 
antibodies may suffer from biophysical liabilities. It has 
also been shown that engineering of lead antibodies with 
a sole focus on improving affinity can generate affinity- 
enhanced variants with poorer biophysical properties.22,23 

For example, Buchanan et al.24 identified an unpaired 
cysteine, and Dobson et al.22 used hydrogen deuterium 
exchange to identify hydrophobic residues (W30 and F31 
in VH complementary-determining region (CDR)1 and L56 
in VH CDR2), which were protected in the initial dimer-
ization preceding aggregation. Alternatively, structures (or 
structural models) could be used to identify hydrophobic 
or positively charged patches as used by Bethea et al.25 

(F99, H100 and W100a in VH CDR3) and Dyson et al.23 

(S52, F54, and R57 in VH CDR2). Based on these 
approaches, individual variants can be produced and 

Figure 1. Schematic overview of antibody sources, discovery strategies, in vitro assays, and in silico methods used to assess developability properties during 
the development of biologics. Antibodies can be of either natural or synthetic origin and are typically discovered using various display technologies or immunization 
strategies, or a combination of these. In addition, antibodies can be derived from patient populations. During the development of antibodies, various in vitro assays in 
combination with in silico methods for machine learning and molecular dynamics can be applied to assess the antibodies’ developability properties and select 
candidates with the best developability profile.
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assessed for improved biophysical characteristics. In some 
cases, the developability issues of clones can be solved by 
identifying problematic regions (e.g., hydrophobic patches), 
producing individual variants, and assessing these for 
improved biophysical characteristics.22,24,25

Historically, the consideration of developability issues has 
been addressed after the initial discovery, affinity optimization, 
and selection of an antibody drug lead for preclinical develop-
ment. Increasingly, drug developers are assessing biophysical 
characteristics earlier in the discovery process, recognizing 
that this will avoid losses in time and money later. Rather 
than waiting to screen tens to hundreds of output clones for 
biophysical characteristics, the ability to create large display 
libraries of variants and select directly for good biophysical 
characteristics would greatly facilitate the search for antibody 
variants with optimal properties.

The power of selection technology, best exemplified by 
display on bacteriophage (phage display),26 has been applied 
to selecting clones for greater thermostability27 by exposing 
libraries of clones to elevated temperatures and selecting for 
retained binding to protein A or protein L, which requires 
correct folding.28 Others have subjected libraries of antibodies 
to acidic conditions to identify again clones that combined 
thermodynamic stability and aggregation-resistant unfolded 
states.28

While selection of clones with low thermostability will 
help identify aggregation propensity, there may be clones 
with normal melting temperature where biophysical pro-
blems only emerge when the antibody is concentrated (e.g., 
to 10–100 mg/mL as required for subcutaneous adminis-
tration). Therefore, additional selection methods are 
needed. The principle underlying the power of phage dis-
play (coupling an encoding gene to its displayed product) 
has also been applied to other display systems using 
baculovirus,29 ribosomes,30 yeast,31 and higher eukaryotes, 
such as mammalian cells.29,31 Mammalian display, in par-
ticular, appears to offer benefits over the other systems. 
Using a mammalian display system23 showed that closely 
related clones, with differing biophysical properties, can be 
distinguished based simply on display levels. The under-
lying mammalian display system, first described by 
Parthiban et al.,32 achieves transcriptional normalization 
by integrating antibody genes into a single genome locus. 
Thus, display levels are determined by the properties of the 
antibody itself, rather than variable transcriptional activity. 
In contrast to secretion-based systems, the expressed anti-
bodies are retained on the cell surface via a transmembrane 
domain and achieve high local concentrations in the endo-
plasmic reticulum or cell surface. Antibodies are therefore 
exposed to high concentrations and clones with poor bio-
physical properties are likely to aggregate at such high 
surface concentrations, with aggregates presumably 
removed by the quality control machinery of the cell. In 
turn, this results in low presentation levels of such aggre-
gation-prone or “sticky” clones.

This ability to detect biophysical properties by mamma-
lian display then permitted selection of clones with 
improved developability profiles from libraries of variants.-
23 In practice, libraries were created, and the clones with 

highest levels of presentation were selected. 
Multiparametric flow cytometry allows simultaneous 
screening for optimal biophysical properties while retaining 
antigen binding, and thereby allows paratopic residues 
involved in target binding to be addressed for improved 
biophysical properties while retaining target binding. The 
power of such a system was exemplified by creating var-
iants of an anti-PCSK9 antibody with superior biophysical 
properties and reduced immunogenicity compared to the 
parental antibody (bococizumab). These and other experi-
ments thereby demonstrate how in vitro display technolo-
gies can be fine-tuned for the discovery of antibodies with 
improved developability profiles ab initio.

Biophysical characterization

Irrespective of which strategy is used for antibody discovery, 
there typically are several early-stage candidates, ranging from 
tens to thousands, that must be reduced to only one candidate 
for cell line development and manufacturing. To select the 
optimal candidate, an increasing amount of attention is being 
paid to biophysical characterization of therapeutic antibodies 
in addition to their functional properties, which enables the 
deselection of antibodies with poor developability properties 
early in the drug development process. There are multiple 
developability assays to facilitate this selection, which have 
been reported to correlate to different extents with attrition 
rates of clinical-stage antibodies.2,3

One key feature of antibody drugs is their high specifi-
city, defined by high on-target binding and low off-target 
and non-specific binding, which is important to reduce the 
risks of abnormal pharmacokinetics and fast antibody 
clearance.33,34 To evaluate non-specific binding, enzyme- 
linked immunosorbent assays (ELISAs), which typically 
involve binding to multiple non-targets, such as single- 
stranded DNA, double-stranded DNA, lipopolysaccharide 
(LPS), insulin, and keyhole limpet hemocyanin (KLH), 
have been most commonly used.3,35–37 For increased sensi-
tivity, assays such as the polyspecificity particle (PSP) 
assay38 can be used, which involves detecting the binding 
of either complex antigen mixtures (e.g., soluble membrane 
proteins from Chinese hamster ovary (CHO) cells) or 
defined protein reagents (e.g., ovalbumin) to immobilized 
antibodies on Protein A coated beads via flow cytometry. 
Similar to the PSP assay, other assays also use complex 
antigen mixtures, including baculovirus particles,39 whole 
cells,38 and cell lysates (polyspecificity reagent, PSR).40 PSR 
has been shown to correlate quite well with cross-interac-
tion chromatography (CIC).41 Thus, another way to study 
non-specific interactions is chromatography. In CIC, non- 
specific protein interactions, such as monoclonal antibodies 
interacting with immobilized polyclonal antibodies, are 
detected via their relative retention times.42–44 A related 
chromatography method, namely standup monolayer chro-
matography (SMAC), instead detects non-specific interac-
tions between monoclonal antibodies and the column.45 

For example, heparin chromatography has been described 
for identifying antibodies with abnormal pharmacokinetics 
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via increased cell-surface interactions, leading to excessive 
pinocytosis.46 In addition to specificity, the SMAC mea-
surements identify antibodies with increased likelihood of 
precipitation and aggregation. Non-specific binding can 
also be induced by surface hydrophobicity, which is often 
quantified using hydrophobic interaction chromatography 
(HIC).47,48

Another key feature of antibody drugs is their high 
colloidal stability and low propensity to self-association 
and aggregation, which is especially important for concen-
trated liquid formulations used for subcutaneous delivery.49 

Several assays have been reported for evaluating antibody 
self-association, including static and dynamic light 
scattering.50,51 While these assays have proven to be valu-
able, they are not compatible with early-stage development 
due to their requirement for high antibody concentrations 
and purity. Therefore, alternative assays have been devel-
oped, including self-interaction chromatography (SIC),52,53 

CIC,41,43 and clone self-interaction by biolayer 
interferometry,44 the latter of which has been shown to 
correlate with SIC and CIC. To enable even higher 
throughput and the use of low antibody concentrations, 
two nanoparticle-based assays have been reported, affi-
nity-capture self-interaction nanoparticle spectroscopy 
(AC-SINS)54–57 and charge-stabilized self-interaction nano-
particle spectroscopy (CS-SINS).50 AC-SINS is most com-
monly performed in a solution mimicking physiological 
conditions (pH 7.4, phosphate-buffered saline),3 and its 
measurements have most commonly been linked to phar-
macokinetic properties,33,58 although it has also been used 
for formulation applications.59 CS-SINS is performed in a 
common formulation condition (pH 6, 10 mM histidine) 
and has been reported to identify antibodies with low 
viscosity and opalescence in concentrated antibody 
formulations.50

A third key feature of therapeutic antibodies is their 
high folding stability. Given the goal that formulated anti-
bodies have a shelf-life of several years, obtaining real-time 
stability data are extremely time-consuming. To accelerate 
stability analysis, various stress conditions are commonly 
used. Thermal stability is typically measured using differ-
ential scanning calorimetry or differential scanning 
fluorimetry.60 In addition to temperature, surface-mediated 
stress can be used to evaluate antibody stability. For exam-
ple, the recently described hydrophobic nanoparticles sur-
face-stress assay was used with 14 antibody variants 
spanning a range of solubility values to identify variants 
characterized by high instability against agitation in the 
presence of air–water interfaces. Furthermore, aggregation 
assessment by this surface-mediated stress assay correlated 
well with other approaches to assess biophysical properties, 
such as temperature-induced aggregation and AC-SINS.61 

Taken together, these and other in vitro assays allow the 
drug developer to select antibodies with combinations of 
preferable developability features. However, all in vitro 
assays require the expression of antibodies, sometimes 
including purification and formulation, followed by experi-
ments to be carried out in the laboratory. To enable 
screening of an even higher number of antibodies, reduce 

cost, manual labor, and the requirement for antibody pro-
teins, in silico methodologies are now gaining increased 
attention and multiple computational strategies to address 
developability exist, and additional ones are being rapidly 
developed.

Big data, machine learning, and computational 
assessments of developability

Computational assessments, which play an important role in 
assessing developability of biologics, are particularly useful in 
the early stages of biotherapeutic drug discovery where usually 
little to no experimental data is available.62–66 For example, an 
ideal stage for applying the computational assessments is 
immediately after sequencing the fragment variable regions 
(Fvs) of the antibody binders obtained from immunizations 
or display experiments, where there is a need to select a subset 
of binders for further experiments (Figure 2). Typical strate-
gies for this selection include clustering of antibodies with 
respect to diversity of VH-VL germline pairs and epitope/ 
paratope diversity. Inclusion of developability assessments at 
this stage is important to ensure focused use of available 
experimental resources, given that immunization campaigns 
often yield several thousands of potential hit sequences. Large 
portions of the encoded antibodies may either not bind in the 
subsequent confirmatory experiments or show multiple devel-
opability challenges. Flagging such antibodies via computa-
tional analyses helps prioritize antibodies for experimental 
testing (Figure 2). The developability assessments at this 
stage can include both sequence and structure-based methods 
or a combination thereof.63,64,67,68

Typical components of developability assessments 
should include detection of motifs for chemical degrada-
tion, such as oxidation, deamidation, Asp isomerization, 
and along with those, motifs for glycosylation and presence 
of non-canonical Cys residues. Percent humanness (or 
“naturalness”),69 potential aggregation-prone regions and 
MHC class II binding immune epitopes can also be pre-
dicted using sequence-based methods.64,70,71 Advances in 
structural prediction of antibody variable regions in recent 
years have enabled fast and reliable high-throughput mod-
eling of the antibody variable regions on a regular basis.72– 

76 Nevertheless, recent contributions on understanding the 
conformational behavior of CDR-H3 and its prediction 
indicate that the need for better models still exist.72,77,78 

It is now feasible to model hundreds or even thousands of 
antibody structures with moderate computational 
resources. These Fv models can be used to compute several 
physicochemical descriptors, such as isoelectric point (pI), 
charge, hydrophobic imbalance, surface areas buried at the 
VH-VL interface along with molecular surface patches.-
64,79,80 These descriptors describe electrostatic as well as 
hydrophobic properties of the antibodies along with their 
conformational stabilities.

The pI of an antibody is an important property that 
potentially impacts the developability in multiple ways. It 
can affect various aspects, including those related to anti-
body purification, formulation (e.g., stability and viscosity), 
and pharmacokinetic properties. Generally, the isoelectric 
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point of therapeutic antibodies is between 6 and 9. 
However, various developability challenges have been 
reported for some antibodies with relatively low (pI <6.5- 
7) or high (pI >8.5-9) isoelectric points.2,36,81–84 For exam-
ple, Bailly et al. revealed that increasing the initially low pIs 
(pIs 6.3-6.7) of humanized antibodies to higher values (pIs 
>7) improved their purification yields and reduced their 
tendency to aggregate.2 Furthermore, the antibody pI 
affects pharmacokinetics, tissue distribution,81 and binding 
to FcRn and thereby the antibody half-life.82 By comparing 
the computed properties of the newly discovered confirmed 
binders (hits) with those of the antibodies in clinic or those 
currently available in the market,3,63,79,80 one can profile 
drug-likeness of the hits.

Among the antibodies chosen for experimental testing, the 
computational developability assessments can help identify 
potential lead molecules that possess an optimal combination 
of functional as well as physicochemical attributes. However, 
depending on peculiarities of individual drug discovery pro-
jects, these lead molecules may need to be affinity matured,85,86 

humanized,87–89 formatted in novel molecular constructs,90 

and further optimized for fitness with development platforms. 
This calls for the use of computational protein engineering 
tools to optimize the lead molecules. If the final molecular 
format of the lead molecule is a monoclonal IgG antibody, 
then computational engineering of the variable regions for 
improved developability attributes is more likely to translate 
into experimentally verifiable results and, surprisingly, only a 
few mutations can make substantial improvements in the 
CMC properties of the drug candidates.68,91–93

Once one or a few optimal lead molecule(s) have been 
selected, the discovery project then moves into the early 
development phase. In this phase, the optimized lead can-
didates are assessed for their fitness with the development 
platform(s). Computational developability assessments 
should now involve modeling the full-length antibody 
structure for a more accurate description of the computed 
properties and their agreement with the standard develop-
ment experiments that involve larger amounts of materials 
and larger sample volumes. Use of multi-scale molecular 
simulations and machine learning models at these stages 
can help with identifying early formulation process chal-
lenges, such as aggregation, diffusion interaction, viscosity 
and solubility,94–104 physicochemical degradation,105–107 

and immunogenicity.108,109 Specifically, use of explicit sol-
vent molecular dynamics (MD) simulations can potentially 
provide a molecular-level understanding of molecular 
response to thermal and other stresses.110 Expanding the 
scope of such simulations to include the considerations of 
formulation buffers, salt, pH, and excipients will pave the 
way toward in silico formulation development for biologics. 
Finally, while most sequence and developability reports are 
based on biophysical models, machine learning methods 
for predicting developability parameters are being devel-
oped that infer developability parameters from the anti-
body sequence without the need for structural 
modeling.111,112

While the above-discussed machine learning approaches 
are discrimination tasks (e.g., prediction of variable X), 
deep learning also allows for the possibility of “generative 

Figure 2. Knowledge and physics-based approaches for characterizing biophysical properties of antibodies. Left panel, knowledge-based: Overview of critical 
steps for sequence-based in silico prediction of biophysical properties from several thousands of potential hit sequences. Right panel, physics-based: A) The antibody 
binding interface exists as an ensemble of conformations, which includes binding competent as well as non-binding states. Partially unfolded conformations also exist 
with a lower probability. B) Different conformations exhibit different properties, where partially unfolded conformations may aggregate which leads to further 
unfolding. In C) and D), the hydrophobicity profile of two different conformations of the TNF-α binding antibody golimumab is mapped on its molecular surface using 
localized free energy of hydration. The two conformations show a significantly altered hydrophobicity profile and will therefore most likely interact differently with 
other hydrophobic molecules.
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machine learning”, which consists in learning the under-
lying features of a training dataset of antibody sequences 
with a specific property and then generating new antibody 
sequences, different from the training dataset, but with 
similar properties (also called features) as in the training 
dataset, where features may consist of developability 
parameters,113 binding parameters, or both.69,114–116 

Interestingly, using a simulation framework, it was recently 
shown that generative learning can explore new binding 
and developability spaces.114 However, it remains to be 
determined to what extent out-of-distribution (generation 
of antibody sequences with features that were not included 
in the training dataset) learning is feasible and how much 
training data is necessary for achieving this task.64 In 
addition, so far, no antibody-focused generative approaches 
exist that would allow the generation of antibodies with 
multiple pre-specified features.117,118 Large-scale simula-
tions may help in understanding the minimal data com-
plexity necessary for such tasks.114,119–122 In summary, 
computation plays an important role in assessing the devel-
opability of biologics.

Biophysical properties of biologics from structure 
and molecular dynamics

Structural and dynamic characterization of antibodies is a 
prerequisite for engineering properties, such as chemical mod-
ifications, antigen recognition and receptor binding.123,124 The 
three-dimensional structure of proteins, in particular antibo-
dies, is not static, but fluctuates constantly.125,126 These fluc-
tuations can occur on different timescales, ranging from the 
low nanosecond timescale up to seconds.127 Even rare confor-
mations can be relevant if they lead to a modification that is 
irreversible or part of a one-sided equilibrium, for example in 
aggregation or chemical modifications (Figure 2A).128–130 

Furthermore, several studies have used molecular dynamics 
simulations to estimate the thermal stabilities of antibodies. 
For instance, the fraction of native contacts computed from 
simulations at high temperature has been shown to correlate 
with experimental melting temperatures.131

To elucidate the function and properties of antibodies, 
single-static structures are not always sufficient and thus, 
the antibody paratope may rather be characterized as con-
formational ensembles in solution.125,127,132 These paratope 
ensembles have been described by correlated CDR loop 
movements and interdomain and elbow angle 
rearrangements.125,133,134 This high flexibility and confor-
mational diversity of the antigen-binding site, in particular 
of the CDR-H3 loop, challenges antibody structure 
prediction.132,135 Despite the substantial advances in anti-
body structure prediction,72–76 it is critical to carefully 
evaluate the structure model before further processing, as 
some of the models can contain structural inaccuracies, 
substantially deteriorating biophysical surface property 
predictions.136–138 Special care has to be taken when pre-
dicting antibody structures based on apo X-ray structures, 
which can be distorted by crystal packing effects and con-
sequently do not correspond to the dominant solution- 
structure.125,132,139

Accounting for the high conformational diversity of anti-
bodies by considering them as ensembles in solution can 
facilitate not only structure prediction but also guide the engi-
neering workflow, facilitate identification of developability 
liabilities and optimize biophysical properties.136,140 For 
instance, it has been shown that aggregation of antibodies is 
accelerated by low-population states (Figure 2A-B) that 
become more frequent near hydrophobic surfaces and at 
phase boundaries.141 The hydrophobic interaction with the 
surface leads to a conformational shift toward more hydro-
phobic conformations, which in turn are more prone to aggre-
gate (Figure 2A-B). In the same way, elevated temperatures 
shift the ensemble toward aggregation-prone conformations. 
This effect is experimentally seen as an irreversible 
aggregation.128,142,143 Therefore, it is necessary to describe 
antibody properties as an ensemble of structures. Molecular 
dynamics simulations127,144 provide such an ensemble in solu-
tion, thereby increasing the probability that the conformations 
responsible for hydrophobic or aggregation behavior are 
included (Figure 2C-D). Several works have studied the effect 
of conformational ensembles on hydrophobicity. While more 
coarse methods based on hydrophobicity scales are in general 
less sensitive to structural differences,145,146 a study based on 
explicit solvent thermodynamics found a critical influence of 
input structures and side chain orientations.136

It has been shown that both binding and biophysical 
properties46 of antibodies can be charge-dependent. 
However, the pKa of amino acids in proteins remains 
highly challenging to predict. In contrast to empirical 
methods such as protein pKa calculation,147 which assign 
protonation states for a single structure, constant pH mole-
cular dynamics allows for the incorporation of protonation 
changes in structural sampling.148,149 Capturing the 
changes in protonation is particularly important for design-
ing pH responsive antibodies, for example targeting acid-
ified tumor microenvironments.

Thus, we strongly suggest considering antibodies as con-
formational ensembles in solution, which can improve struc-
ture prediction and allow assessment of biophysical properties 
that facilitate the development of antibody therapeutics.

Cellular assays for developability assessment

To a patient’s immune system, therapeutic biologics are 
foreign molecules, and therefore they may be immuno-
genic. Immunogenicity arising from structural traits and 
formulations can trigger both acute and long-term issues, 
such as innate and adaptive immune activation,150 acute 
cytokine storms,151 or a rise of anti-drug antibodies (ADA) 
causing neutralization of the drug and loss of therapeutic 
efficacy.152,153 Complex formation between ADA and the 
biologic can have detrimental effects to patients,154 which 
may be tied to an innate immune response leading to 
antigen presentation, secretion of inflammatory cytokines, 
and activation of T and B cells.155 Depending on the type 
of immune cells involved, immune activation may or may 
not lead to ADAs.155–157 A driver for antibody immuno-
genicity is T cell activation and subsequent cytokine 
release.158,159 This may be addressed in vitro by the use 

6 M. L. FERNÁNDEZ-QUINTERO ET AL.



of immune cell activation assays, where pooled peripheral 
blood mononuclear cells are exposed to candidate biologics 
to reveal the presence of activating T cell epitopes.158 The 
general principle of such assays is illustrated in Figure 3. 
This type of assay has been shown to correlate with clinical 
immunogenicity of monoclonal IgG antibodies by revealing 
increased T cell proliferation and release of pro-inflamma-
tory cytokines such as IL-2 and IFN-γ,160 and have been 
highlighted as important tools by both the European 
Medicines Agency and the US Food and Drug 
Administration.161,162 While such tools are often used to 
de-risk pre-clinical development, the in-patient immuno-
genicity of biologics remains difficult to predict, likely due 
to variations in drug delivery, the therapeutic context in 
which a given biologic is used, as well as the complexity of 
the human immune repertoire, including individual haplo-
type of human leukocyte antigens.

Both IgG antibodies and albumin-based biologics have 
favorable transport properties within and across barriers, 
providing them with a long plasma half-life of three weeks 
on average in humans. This arises from their ability to 
bind to the neonatal Fc receptor (FcRn), which resides 
predominantly in acidified endosomes in a multitude of 
both non-hematopoietic and hematopoietic cell types.-
163,164 Here, FcRn encounters its ligands following their 
cellular entry by fluid-phase pinocytosis and binds to 
them in a pH-dependent fashion, where binding occurs 
at mildly acidic pH, and no binding or release occurs at 
neutral pH. This directs cellular recycling or transcytosis, 
and as such, FcRn engagement rescues the ligands from 
intracellular degradation, which results in high blood con-
centrations and long plasma half-life. The efficiency by 
which different biologics undergo this process has an 
enormous impact on their pharmacokinetic properties 
and biodistribution. This has spurred establishment of 
biophysical methods to determine pH-dependent binding 
kinetics toward FcRn by, for instance, the use of surface 
plasmon resonance, microscale thermophoresis, and affi-
nity chromatography techniques, with the aim to predict 
the efficiency of FcRn-mediated transport.165–168 While 
these accessible and high-throughput biophysical methods 

can provide information regarding binding at a given pH 
condition, they typically do not unravel how the mole-
cules bind FcRn throughout a pH gradient, and therefore 
do not directly mimic a cellular setting. However, the pH 
gradient can be mimicked by analytical FcRn affinity 
chromatography, where a gradual increase in pH is used 
to address dissociation of FcRn-targeted molecules from 
the receptor coupled to the matrix.166,169 While such stu-
dies can reveal valuable information, caution should be 
taken, as they do not account for the fact that FcRn is 
embedded in a negatively charged cell membrane and 
follows transport pathways involving different endosomal 
structures.170–172 Furthermore, they do not account for 
the diversity by which different cell types use FcRn for 
both ligand transport and antigen presentation and pro-
cessing of immune complexes in concert with Fcγ 
receptors.164,173–178 In addition, the stoichiometry of 
FcRn in complex with both IgG and albumin in a cellular 
context is complex and far from fully understood.179–181 

Thus, a need remains for reliable assays that can be used 
to dissect the determinants of cellular handling of IgG and 
albumin-based formats in both a FcRn-independent and 
dependent manner. This type of insights may guide lead 
selection by identifying so-called “red flags”, including, 
for example, polyreactivity, stability, and unfavorable 
pharmacokinetics early in the discovery process.3,79,80,182 

These traits arise from biophysical properties such as sur-
face charge, charge patches, isoelectric point, and hydro-
phobicity, and affect both FcRn binding, cellular 
transport, and in vivo performance.80,168,169,183 Therefore, 
cellular assays mimicking these traits are vital, and may 
provide necessary data input for computational 
analysis.3,80

Indeed, cellular assays addressing both FcRn-mediated 
cellular recycling and transcytosis exist and have been 
used to reveal insights on how FcRn-engaging formats 
are taken up and sorted.84,165,173,174,183–188 These assays 
have further been used to predict in vivo characteristics, 
exemplified by correlations between cellular transport 
properties and plasma half-life or clearance.84,165 The 
assays can include advanced live cell imaging to track 

Figure 3. Schematic illustration of a Peripheral Blood Mononuclear Cell (PBMC) immunogenicity assay. A) PBMCs are isolated from healthy donors. B) Isolated 
cells are cultured in cell media with added candidate biologics. C) Candidate biologics are taken up by antigen presenting cells (APCs) and presented to T cells in 
culture. If the biologic is immunogenic, this may lead to T cell activation and concurrent cytokine secretion. D) Immunogenicity assessment can then be performed by 
phenotyping the T cells following stimulation with candidate biologics and measuring cytokine levels in culture supernatant.
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both the receptor and its ligands and yield valuable 
mechanistic insights.171,189,190 However, while useful and 
yielding high resolution, imaging relies on protein label-
ing, which may affect overall stability as well as FcRn 
binding and transport.184,191 While many reports focus 
on measuring the amounts of molecules transported out 
of, or across cells, the rate of intracellular accumulation 
and degradation should also be accounted for. The impor-
tance of considering these parameters is exemplified by 
the use of a human endothelial cell-based recycling assay 
(HERA), where the cells overexpress human FcRn.165 

HERA can be used for screening of the ability of FcRn- 
targeted molecules to be taken up, followed by their res-
cue from intracellular accumulation and/or degradation 
(Figure 4A). Notably, HERA only requires small amounts 
of proteins, and there is no need for labeling, as the 
parameters can be measured by ELISA setups on collected 
samples. Furthermore, the assay allows for manipulation 
of pH and blocking of the ligand binding sites, as well as 
modulation of the receptor expression level,165,168,183 

which enables tailoring of the assay to specific needs and 
questions (Figure 4B). This provides a broad utility, and 
the cellular readout correlates with in vivo data. For 
example, HERA screening of IgG1 Fc-engineered variants 
with distinct FcRn binding kinetics revealed a predictive 
correlation with their plasma half-life in human FcRn 
transgenic mice (Figure 4C).165 In a recent study, HERA 
was used to address the efficiency by which different IgG1 
Fc-containing biologics undergo cellular recycling, which, 
in combination with studies in transgenic mouse models, 
hints at the underlying reasons for the observably short 
half-life of IgG1 Fc-fusions compared to monoclonal IgG1 

antibodies with corresponding specifities.168 Importantly, 
the study also addresses the discrepancy between recycling 
and transcytosis, which may be revealed by combining 
recycling assays with transwell studies.84,168,186 The latter 
allows for quantification of FcRn-mediated transcytotic 
transport, which, as opposed to recycling, correlates with 
increased clearance.84

To realize the full utility of the cellular assays described 
above, the biophysical properties of biologics need to be 
considered. Factors such as the surface charge of Fc-fused 
structures may affect the cellular handling of biologics in 
both FcRn-dependent and independent manners. For 
example, the antibodies briakinumab and ustekinumab 
bind to the same target, the p40 subunit of IL12/23, but 
their varying charge profiles confer vastly different half- 
lives in humans.169,183,192,193 Specifically, the charge of the 
briakinumab Fv alters its interaction with FcRn.169,183,194 

Cellular studies have revealed that this causes FcRn-inde-
pendent cellular accumulation of briakinumab, which 
explains its shorter half-life.183 Interestingly, the same 
study found that the half-life of briakinumab can be 
improved by Fc-engineering, exemplifying that modulat-
ing the core binding to FcRn may adjust for unfavorable 
biophysical traits of Fc-fused structures. It also exempli-
fies the complexity tailored cellular assays may reveal. 
These are just a few of many existing examples of how 
distal structural traits may affect Fc binding to 
FcRn.164,194,195 Furthermore, HERA and other cellular 
assays can also be used to address transport of albumin- 
based molecules, which reflect their in vivo pharmacoki-
netic properties and ability to cross polarized mucosal 
epithelial cell surfaces.165,167,184,196

Figure 4. Human Endothelial Recycling Assay (HERA) as a tool for in vitro pharmacokinetic assessment and addressing FcRn-targeting strategies. A) 
Generalized HERA protocol. (1) Stably FcRn-transfected human microvascular endothelial cells (HMEC)-1 are seeded, prior to (2) adding FcRn-binding candidate 
biologics to two parallel cell plates. Following an incubation period, (3) cells from one plate are lysed to obtain an uptake sample. For the other plate, the media is 
exchanged to recycling medium, and after another incubation period, (4) the medium is harvested as a recycling sample, and (5) the cells are lysed to obtain a residual 
sample. Candidate biologics in all samples are quantified by an ELISA tailored for specific detection of the assessed biologic. B) Variations of the HERA protocol, 
enabling analysis of both FcRn-dependent and -independent uptake, cellular accumulation, and FcRn-dependent recycling. Variations include (1) performing the 
uptake step at mildly acidic extracellular pH, effectively forcing intracellular accumulation of biologics by preventing FcRn-mediated recycling, (2) manipulating FcRn- 
expression or blocking binding to FcRn to analyze FcRn-dependent and -independent cellular accumulation, and (3) introducing competition for FcRn binding to mirror 
endogenous competition on the ligand-binding sites of FcRn and its effects on the cellular transport for FcRn-binding biologics. C) HERA data can be used to address 
the impact of structural design of candidate biologics on FcRn-mediated cellular transport and unspecific cellular accumulation. For some candidate biologics, HERA 
data may allow for calculation of a score that correlates with plasma half-life in human FcRn-transgenic mice.
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Preclinical pharmacokinetic assessment in mice

While cellular assays can guide selection and design of a 
limited set of lead biologic candidates, the in vivo behavior of 
drug candidates must subsequently be evaluated in reliable 
animal models. While non-human primates closely mimic 
human biology, their use for early development is limited by 
cost, accessibility, and ethical concerns. Hence, use of smaller 
animals, like mice, are preferred. However, such studies should 
be carefully planned and account for cross-species binding and 
expression differences between mice and humans, such as 
target recognition of antibody-based biologics. For example, 
while being a potent vascular endothelial growth factor 
(VEGF)-blocker in humans, the widely used anti-VEGF 
human IgG1 bevacizumab is unable to block mouse VEGF, 
implying that mice could not have been used in its 
development.197,198 Additionally, our understanding of FcRn 
biology has revealed major differences that must be taken into 
consideration when conventional mice are used. This is due to 
large differences in ligand binding to mouse and human FcRn, 
where mouse IgG binds very weakly to the human form, and 
human IgG binds stronger to mouse FcRn than to the human 
counterpart.199,200 Despite reports of a correlation between the 
pharmacokinetics of wild-type human IgG1 variants in con-
ventional mice and humans,199 IgG1 variants that have been Fc 
engineered for enhanced human FcRn engagement and half- 
life extension fail to engage mouse FcRn efficiently due to loss 
of pH-dependent binding, resulting in short plasma half-life.-
165 These cross-species differences have motivated the devel-
opment of mouse strains transgenic for human FcRn and 
lacking mouse FcRn. These transgenic mice are today the 
gold standard for pharmacokinetic evaluation of human IgG- 
based biologics,201–204 and importantly, data generated in 
them correlates with data from both non-human primates 
and clinical observations.205,206

An important, largely overlooked aspect of pharmacoki-
netic studies of antibodies in mice is their unusually low 
levels of endogenous IgG, which arises from the pathogen- 
free housing needed for experimental animal facilities.-
201,207,208 Naturally, injected IgG and albumin-based ther-
apeutics will compete for binding to FcRn in the presence 
of large amounts of IgG and albumin, which have concen-
trations of approximately 12 and 40 mg/mL, respectively.-
164,209 This places competitive pressure on the ligand 
binding sites of FcRn, which modulates the plasma half- 
life of injected IgG and albumin.196,201,210,211 The absence 
of this pressure may mask relevant differences between 
candidate biologics,196 which should thus be accounted 
for in order to accurately predict pharmacokinetic proper-
ties. This can be achieved by pre-injection of high concen-
trations of intravenous IgG (IVIg).201,208 In addition, 
advances have recently been made in offering a relevant 
competitive setting in mice by creating human FcRn trans-
genic mice that also express human IgG1-Fc.201,202 

Similarly, there are large differences regarding albumin 
binding across species. For instance, mouse FcRn binds 
poorly to human albumin,200,212 which effectively prevents 
human albumin-based formats from being rescued from 
intracellular degradation. Under these conditions, the 

plasma half-life of albumin drops to levels similar to irre-
levant proteins of a size above the renal clearance 
threshold.213 Using human FcRn transgenic mice may cor-
rect for this issue. Additionally, such mice constitutively 
produce large amounts of endogenous albumin, effectively 
introducing a competitive environment for human 
albumin.196 In fact, human FcRn binds more efficiently to 
mouse albumin than the human counterpart,200,212 which 
increases the competitive pressure thathuman albumin- 
based biologics face in these mice. Alternatives offering a 
more biologically relevant setting include using human 
FcRn-expressing mice lacking endogenous albumin, and 
preloading them with human albumin, much like introdu-
cing IVIg when studying IgG,167,196,204 or using transgenic 
mice where mouse albumin has been replaced with the 
human counterpart.214,215

Cell line development and manufacturing of biologics

Most biologics are expensive therapeutic agents adminis-
tered directly into the body of patients. Therefore, it is of 
the utmost importance that they are produced in an effi-
cient, safe, and reproducible manner. The use of mamma-
lian cells for production of marketed antibody therapeutics 
is most common (www.antibodysociety.org/antibody-thera 
peutics-product-data), but biologics may also be made in 
bacteria, yeast, and cell free expression systems.216 

Production via mammalian cell cultivation most often 
involves billions of living cells, and it is challenging to 
control and reliably reproduce the complex biological pro-
cesses involved at large scales. Therefore, substantial efforts 
go into the development of ideal cell lines for manufactur-
ing biologics that stably express the product for more than 
60 generations at high yields with consistent product qual-
ity in a highly reproducible process. As a result of these 
efforts, the development of production cell lines has been 
improved over the past decades,217 going from random 
integration of protein-expressing gene(s) followed by 
extensive screening for high-producing clones218 to more 
targeted approaches, including targeted gene integration for 
reproducible growth and yield219,220 and insertion of larger 
genetic elements221 to obtain robust high producing cell 
lines, and incorporating numerous cell engineering strate-
gies to gain consistent product quality.222–226

Even though high-yielding and robust cell line develop-
ment approaches have substantially advanced over the past 
decades, efficient production of biologics remains a contin-
uous challenge. One contributing issue is the increasing 
complexity of biologics, such as heterologous proteins 
that can cause added cellular stresses and potentially cell 
death. Another challenge is the change in expression sys-
tems for biologics that often occurs between the early 
research stage and the later cell line development stage. 
Transient human expression systems are often preferred 
early on due to the ease and speed of production of work-
able product quantities,227 while stable CHO cell lines are 
preferred for commercial production.9 This change can 
cause profound differences in the product yield and quality 
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(e.g., glycosylation, aggregation, protein folding), which 
means the product needs to be thoroughly re-characterized 
in the new expression system prior to commercial manu-
facture. Issues such as low product yield and changes in 
product quality that may compromise efficacy, quality, and 
patient safety are frequently encountered during cell line 
development.

The earlier the cell line development is considered dur-
ing drug development, the higher the chances are for 
successful manufacturing. Numerous studies have shown 
that poor biophysical properties, such as aggregation pro-
pensity, are often linked to inefficient production in stable 
cell lines, underlining the importance of using prediction 
tools for biophysical properties as an early manufacturabil-
ity indicator.93,228 The chances of successful manufacturing 
can also be increased by using a robust and flexible cell line 
development platform that combines early product assess-
ment and stable cell line generation. A targeted integration 
platform with predictable high yield has strong potential in 
this regard, where the biologic can be produced in the 
same cell line from discovery to commercial 
manufacturing.219,229–231 Flexibility can be added by for 
example having a library of different glycoengineered cell 
lines,226 from where the desired glycosylation profile that 
determines the biologic’s stability, plasma half-life, and 
immunogenicity can be investigated and chosen. The cell 
line that provides the desired glycosylation profile of the 
product could then be used directly for large-scale 
manufacturing.

Antibodies for oral application

To date, most approved biologics are delivered as inject-
ables, and the molecules, therefore, enter the circulatory 
system and exert their activity there or in tissues. However, 
alternative approaches are being explored, particularly for 
combating gastrointestinal (GI) infections.232–234 For such 
biologics, developability aspects are equally important as 
for injectable molecules. However, while properties such 
as plasma half-life and immunogenicity are critical factors 
for intravenously administered biologics, other aspects, 
such as stability in the GI tract and shelf-life are more 
important for orally available biologics that exert their 
function in the GI tract. Moreover, different quality para-
meters, such as product purity and presence of other pro-
teins, may potentially be of less concern for orally 
administered biologics, as the GI tract normally encounters 
a wide range of macromolecules. As an example of how 
biologics can be optimized for the oral route, Fiil et al.235 

engineered a highly biophysically stable homodivalent VHH 
construct for feed applications and demonstrated its func-
tionality in inhibiting proliferation of enterotoxigenic E. 
coli (ETEC) in piglets.235 A key factor in their early design 
was the choice of a linker that was surprisingly more stable 
under GI conditions compared to the more natural hinge 
region of IgG3, which had previously been used as a linker 
for other orally delivered proteins.235,236 Similarly, Virdi et 
al. experimented with other formats, such as IgA-like mole-
cules, which were also demonstrated to be effective in 

inhibiting ETEC proliferation in the GI tract of piglets.237 

In this case, it was speculated that the incorporation of an 
Fc region would increase the retention time in the GI tract, 
which is conceptually similar to extending half-life.

In some cases, the biophysical stability of a biologic can 
be further optimized during the discovery process or via 
subsequent protein engineering efforts. In the case of nano-
bodies, one approach involves intracellular selection, which 
has been shown to select for nanobodies with higher 
stability.238 This can be followed with experiments in 
which nanobodies are subjected to elevated temperatures 
before the screening process, enabling the identification of 
nanobodies with higher refolding capacity,239 as well as 
protein engineering efforts where nanobodies are further 
stabilized against high temperature and proteases via the 
introduction of additional disulfide bonds between oppos-
ing beta strands.240–242

Finally, when a biologic is to be delivered orally, the use of 
alternative expression systems, such as microbial fermentation, 
the use of algae or transgenic plants, or even in situ production 
by engineered cells, may be considered.243–246 Such systems 
can potentially reduce both cost and time for production of the 
biologics, which could expand the range of applications for 
such molecules.

Concluding remarks

Recently, a shift has occurred within the discovery and 
development of biologics, from mainly focusing on high 
affinity and specificity to the target, hitting the right epi-
tope, and conveying the desired function, to now also 
taking developability aspects into consideration. This broa-
dened discovery and multidimensional engineering mindset 
is likely to yield better drug candidates, as well as reducing 
the number of late-stage failures during drug development. 
However, in many cases, especially with completely novel 
types of biologics, it is not always clear what constitutes a 
good developability profile, although some examples of 
such profiles (e.g., marketed drug-likeness79 and the 
Therapeutic Antibody Profiler80) are beginning to emerge. 
With more sequence information and biophysical data 
becoming publicly available, the task of establishing guid-
ing principles on developability is becoming more 
approachable. Within this field, we expect that in silico 
predictions will play an increasingly larger role early in 
the discovery process, as they allow for very high-through-
put analysis at low cost (when established). However, using 
in silico models may come with some inherent uncertain-
ties due to biases in existing datasets, and re-evaluating 
algorithms and both expanding existing and building new 
datasets will continue to be important. During generation 
of these datasets, it is likely beneficial to include and 
explore molecules that may not be predicted to have super-
ior developability profiles.

Another complication is the fact that some biophysical 
properties are inherently dynamic, such as aggregation and 
partial unfolding, and it can be important that in silico 
methods are able to incorporate molecular behavior in 
their prediction. As an example, as structure models are 
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not always exact, simulations that take this into account are 
likely needed as a complement to steady-state models to 
improve the accuracy and reliability of biophysical predic-
tions. To further improve the in silico approaches for the 
development of optimal biologics, both knowledge-based 
and physics-based methods are needed. Another hurdle 
for development of reliable in silico models is the lack of 
self-consistent and reproducible data obtained from experi-
ments performed on a large number of molecules per-
formed under similar conditions using similar protocols 
and instruments. The ongoing digital transformation of 
the biopharmaceutical industry is expected to ameliorate 
this difficulty and facilitate the generation of improved 
artificial intelligence and machine learning methods. 
Finally, the formation of collaborative consortia between 
industry and academia in a pre-competitive space to make 
self-consistent and reproducible data available for machine 
learning will be another great step forward in the improve-
ment of in silico approaches and models.

In addition to in silico methods, we foresee that biophy-
sical methods will continue to play a role to assess devel-
opability measures. Automation, miniaturization, and 
digitalization are key trends within drug development. 
Combined with novel in vitro assays, this may enable 
much more powerful and intelligent screening and charac-
terization early in the discovery process for new biologics. 
However, a challenge in this area remains. While having a 
powerful discovery engine can be a major advantage for 
developing new biologics, it is both complicated and 
expensive to build up such capacity and educate personnel 
in the use of advanced systems. Moreover, as medicines are 
becoming increasingly more tailored and personalized, ver-
satility and modularity of large discovery platforms need to 
be improved, so that they are not only optimized to dis-
cover modalities against a single type of indication.

Another avenue that will aid the development of biologics is 
the generation and use of animal models that better reflect the 
clinical setting and how the biologic performs in humans. In 
this regard, some important aspects include pharmacokinetics, 
immunogenicity, efficacy, and engagement of effector 
functions.

As biologics are often complex molecules to manufac-
ture, it is of high importance that expression systems and 
purification methods are optimized to enable repeated, 
reproducible production of high-quality material. This 
involves optimization of yields, folding, post-translational 
modifications, such as glycosylation, and reduction of host 
cell proteins. Here, it is expected that glycoengineering will 
continue to play an important role, and we foresee that the 
consideration of glycosylation patterns (and other post- 
translational modifications) early in the discovery process 
might improve success rates for many protein-based biolo-
gics. In this area, however, much remains unknown, and it 
will be important to better establish knowledge and guide-
lines for how not only to engineer biologics to have 
human-like post-translational modifications, but also to 
have modifications that are even better than the corre-
sponding human ones.

As a final remark, it is worth mentioning that most 
biologics to date are administered as injectables. In the 
future, it is expected that more biologics will be delivered 
orally, by the pulmonary route, or by other routes. This 
will undoubtedly have an influence on how new biologics 
should be developed and formulated, and may allow use of 
entirely new production systems.

Abbreviations

AC-SINS Affinity-capture self-interaction nanoparticle spectroscopy
ADA Anti-drug antibodies
APC Antigen presenting cell
CDR Complementary-determining region
CHO Chinese hamster ovary
CIC Cross-interaction chromatography
CMC Chemistry, manufacturing, and control
CS-SINS Charge-stabilized self-interaction nanoparticle spectroscopy
ETEC Enterotoxigenic E. coli
FcRn Neonatal Fc receptor
Fvs Fragment variable regions
GI Gastrointestinal
HERA Human endothelial cell-based recycling assay
HIC Hydrophobic interaction chromatography
KLH Keyhole limpet hemocyanin
LPS Lipopolysaccharide
MD Molecular dynamics
PBMC Peripheral blood mononuclear cell
PSP Polyspecificity particle assay
PSR Polyspecificity Reagent
SIC Self-interaction chromatography
SMAC Standup monolayer chromatography
VH Variable heavy
VL Variable light
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