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ABSTRACT
Accurate spatial and temporal regulation of cell cycle progression is essential for cell proliferation 
and organismic development. This review demonstrates the role of microspherule protein 58kD, 
commonly known as MCRS1, as a key cell cycle regulator of higher eukaryotic organisms. We 
discuss the isoforms and functional domains of MCRS1 as well as their subcellular localization at 
specific stages of the cell cycle. These molecular characteristics reveal MCRS1’s dynamic regulatory 
role in gene expression, genome stability, cell proliferation, and organismic development. 
Furthermore, we discuss the molecular details of its seemingly opposite, tumor-suppressive or 
tumor-promoting, role in different types of cancer.

ARTICLE HISTORY
Received 1 June 2022 
Revised 21 September 2022 
Accepted 4 November 2022 

KEYWORDS
MCRS1; histone acetylation; 
genome stability; mTOR; 
chromosome segregation; 
tumorigenesis

1. Introduction

In eukaryotes, a cell cycle is composed of interphase, 
mitotic phase, and cytokinesis. Accurate regulation 
of cell cycle progression is essential for cell prolifera-
tion and organismic development. MCRS1 is one of 
the important cell cycle regulators. MCRS1 was first 
reported as a nucleolar protein whose overexpres-
sion was linked to tumorigenesis [1,2]. Since its dis-
covery, many different binding partners of MCRS1 
in multiple cellular pathways have been identified 
[3–10]. The biological functions of MCRS1 are 
quite diverse because it participates in various path-
ways such as regulation of transcription factors for 
cell proliferation and stress response, histone post-
translational modification, mRNA targeting and 
translation, telomerase expression, senescence 
induction, mTOR pathway activation, centrosome 
integrity, and microtubule dynamics. (Figure 1).

In this review, we summarize and discuss the 
studies of MCRS1 with its molecular characteriza-
tion, major functions, regulatory mechanisms, and 
roles in developmental biology and tumorigenesis. 
We intend to provide a comprehensive understand-
ing of the dynamic roles of MCRS1 and address the 
unanswered questions in the context of cell cycle 
regulation and genomic stability maintenance.

2. The molecular characteristics of MCRS1

Microspherule protein 58kD (MSP58) was first iden-
tified as a p120-associated protein localized at the 
nucleolar microspherules by the yeast two-hybrid 
screen [2]. Since then, MSP58 has been reported to 
interact with a variety of factors functioning in gene 
expression, genome stability, cell proliferation, and 
tumorigenesis. The major functional domains of 
MSP58 include NLS (nuclear localization sequences), 
SANT (switching-defective protein 3, adaptor 2, 
nuclear receptor co-repressor, transcription factor 
TFIIIB), CC (coiled-coil), and FHA (forkhead- 
associated) domains (Figure 2). These domains are 
highly conserved from zebrafish to humans 
(Figure 3), and play important roles to regulate the 
function of MCRS1.

2.1. Isoforms of MCRS1 and their expression

In humans, MSP58 has three isoforms as a result of 
alternative splicing, and each transcript produces 
a polypeptide with a specific length [8,9]. The 
MSP58 transcript encodes a polypeptide of 462 
amino acids, the p78 isoform contains 534 amino 
acids, and the MCRS2 isoform contains 475 amino 
acids (Figure 3). MCRS1 is commonly used as the 
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generic name for both MSP58 and p78, although some 
studies challenged the existence of p78 due to incon-
sistent sequencing data [8,9]. Thus, in this review, we 
use MCRS1 to specifically refer to MSP58.

MCRS1 is ubiquitously expressed in most tissues 
(Figure 4) but the expression is differentially regulated 
in different cell cycle stages [9,11]. MCRS1 expression 
is induced to the maximal level during the early 

S phase and soon declines as cells progress to the G2 
phase, suggesting its specific role in the S phase to 
promote cell cycle progression [9,11].

2.2. Subcellular localization of MCRS1

MCRS1 and its isoforms are localized to specific sub-
cellular regions for distinct functions, including the 

Figure 1. Diverse functions of MCRS1 and its isoforms in different subcellular compartments. In the nucleus, MCRS1 interacts with 
a variety of transcription factors, histone modifiers, and chromosome remodelling complexes to regulate cell proliferation and stress 
responses. In the nucleolus, it activates rRNA transcription and controls activity of transcription regulators by sequestration. In the 
cytosol, it binds to FMRP to regulate mRNA translation. On the cytoplasmic surface of lysosome, it interacts and activates mTOR 
pathway regulators. It also localizes at the centrosome for keeping its integrity and regulating k-fiber dynamics during mitosis. 
Figure produced by BioRender.
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nucleus, nucleolar microspherule, centrosome, cen-
triolar satellite, lysosome, and cytoplasm. The nuclear 
localization is determined by the presence of nuclear 
localization sequences (NLS). MCRS1 contains two 

NLSs, of which NLS1 ranges from amino acids 32 to 
56 and NLS2 ranges from amino acids 113 to 123 [12]. 
Interestingly, NLS1 mutation leads to decreased rRNA 
expression, suggesting its alternative role as 

Hs_p78   1   MTRGT-----GGTAQRGRSGPGLSPDGIWMAKELYLKTSSVKEAGEGPRGLAGEGGWGGVPFAEALRILGGPNPTISLLARSQGLLDSSLMASGTA---- 
Hs_MCRS2 1   MTRGT-----GGTAQRGRSGPD-----------------------------------------------------------SQGLLDSSLMASGTA---- 
Hs_MSP58 1   MDKD-----------------------------------------------------------------------------SQGLLDSSLMASGTA---- 
Ms_MCRS1 1   MDKD-----------------------------------------------------------------------------SQGLLDSSLMASGTA---- 
Cc_TOJ3  1   MTVTALLGIPPRTSNESSAIFALNQDGAARTRCRILNDVISASGSSSPWRPAGDGEASAGP-------VGAAIPTGGPVTGSGSPGPPPLMASGAA---- 
Xl_MCRS1 1   ------------------------------------------------------------------------------------MMDSLL---ASA---- 
Dr_MCRS1 1   MEKD-----------------------------------------------------------------------------VKAVVPSAVGAGSSVGPMV 
Dm_MCRS2 1   MEAS------RITAIASSAVSVTAPNPPTVSTIPTAAASTLIQVGVSP---------------------------------ATTTMPTPAATTTTT---- 

Hs_p78   91  --SRSEDEESLAGQKRASSQAL---GTI-------PKRRSSSRFIKRKKFDDELVESSLAKSSTRAKGASGVEPGR-----------------------C 
Hs_MCRS2 32  --SRSEDEESLAGQKRASSQAL---GTI-------PKRRSSSRFIKRKKFDDELVESSLAKSSTRAKGASGVEPGR-----------------------C 
Hs_MSP58 19  --SRSEDEESLAGQKRASSQAL---GTI-------PKRRSSSRFIKRKKFDDELVESSLAKSSTRAKGASGVEPGR-----------------------C 
Ms_MCRS1 19  --SRSEDEESLAGQKRASSQAL---GTI-------PKRRSSSRFIKRKKFDDELVESSLAKSSTRVKGAGGVESGR-----------------------C 
Cc_TOJ3  89  --SRSEDEEPLSGSKRGSVQPT---GAV-------PKRRSSSRFIKRKKFDDELVESSLAKSSSRAKG--GVEPGR-----------------------C 
Xl_MCRS1 9   --SRSEDEDSSAGNKRSLPQGS---GLV-------PKRRSSSRFIKRKKFDDELVESSLAKSTSRARGPSGGEPGR-----------------------Y 
Dr_MCRS1 24  SQSRSEDEQS-AAVKRSAAQAFSGAGLI-------PKRRSSSRSIKRKKFDDELVESSLAKSTTRVKGQPVIEPIR-----------------------C 
Dm_MCRS2 57  --TIGSTASSAVGISTPIRNPI---SNLQIEQQNDQKRRSSSRTIKRKRFDDEIVEYNIAVPTNRS-GTDANRSSRPRTTSQNYPALVGVPHTTLAPLNI 

Hs_p78   157 SGSEPSSS---------EKKK-VSKAPSTPVPPSPAPAP-GLT--------------------------------KRVKKSKQPL--QVTKDLGRWKPAD 
Hs_MCRS2 98  SGSEPSSS---------EKKK-VSKAPSTPVPPSPAPAP-GLT--------------------------------KRVKKSKQPL--QVTKDLGRWKPAD 
Hs_MSP58 85  SGSEPSSS---------EKKK-VSKAPSTPVPPSPAPAP-GLT--------------------------------KRVKKSKQPL--QVTKDLGRWKPAD 
Ms_MCRS1 85  SGSEPSSS---------EKKK-VSKAPSTPVPPSPAPTP-GLT--------------------------------KRVKKSKQPL--QVTKDLGRWKPAD 
Cc_TOJ3  153 SGSEASSS---------EKKK-VSKAVSTPVAPSPVPAP-SLA--------------------------------KRMKKSKQPL--QVTKDLGRWKPAD 
Xl_MCRS1 75  SGSEPSSS---------EKKKQVCKAISTPAPPSPAPSP-SIA--------------------------------KRIKKSKQPL--QVTKDLGRWKPAD 
Dr_MCRS1 93  PGSDLMSS---------DKKKGLKSASSLTPPLTMVIAPSSMT--------------------------------KRMKKNKQPL--QITKDLGRWKPTD 
Dm_MCRS2 152 PTSTPQTPLSVDSLLPGTPSTVASLSLATPTTPAPLATPLPVAPIVTAVAHPKPPAMERSTTSERRSRPVRPASKKAQRRNGRPMGQMATKDLGRWKPID 

Hs_p78   212 DLLLINAVLQTNDLTSVHLGVKFSCRFTLREVQERWYALLYDPVISKLACQAMRQLHPEAIAAIQSKALFSKAEEQLLSKVGSTSQPTLETFQDLLHRHP 
Hs_MCRS2 153 DLLLINAVLQTNDLTSVHLGVKFSCRFTLREVQERWYALLYDPVISKLACQAMRQLHPEAIAAIQSKALFSKAEEQLLSKVGSTSQPTLETFQDLLHRHP 
Hs_MSP58 140 DLLLINAVLQTNDLTSVHLGVKFSCRFTLREVQERWYALLYDPVISKLACQAMRQLHPEAIAAIQSKALFSKAEEQLLSKVGSTSQPTLETFQDLLHRHP 
Ms_MCRS1 140 DLLLINAVLQTNDLTSVHLGVKFSCRFTLREVQERWYALLYDPVISKLACQAMRQLHPEAIAAIQSKALFSKAEEQLLSKVGSSSQPTLETFQDLLHTHP 
Cc_TOJ3  208 DLLLINAVLQTNDLTSVHLGVKFSCRFNCGRSRSAGTRCSMTPSSPSWACQAMRQLHPEAIAAIQSKVLFSKAEEQLLSKVGSMSQPTLDTFQELLHKHP 
Xl_MCRS1 131 DLLLINTVLQTNDLHAVHLGAKFSCRFTLNEIQERWYALLYDPVLSKLACQAIRQLHPEVIAAIQSRVLFSKAEEQLLSIVSSASQPTLDTFQGLLNKHP 
Dr_MCRS1 150 DLLLINAVLQTTDLTSVHLGVKFSCRFTLREIQERWYALLYDPVISKLAWQAMRQLHPEAIAAIQSKALFSQAEEALLAKITSNSQPKLDVFQDLLNKHP 
Dm_MCRS2 252 DLALIIGIQQTNDLRIIHRGVKFSCKFTLQELQQRWYALLYEPAVSRIAVSAIRNLHPELVESVQRKALYSVQEEDLLGTIKSSEQPKLEQFQELLDKNA 

Hs_p78   312 DAFYLARTAKALQAHWQLMKQYYLLEDQTVQPLPK-GDQVLNFSDAEDLIDDSKLKDMRDEVLEHELMVADRRQKREIRQLEQELHKWQVLVDSITGMSS 
Hs_MCRS2 253 DAFYLARTAKALQAHWQLMKQYYLLEDQTVQPLPK-GDQVLNFSDAEDLIDDSKLKDMRDEVLEHELMVADRRQKREIRQLEQELHKWQVLVDSITGMSS 
Hs_MSP58 240 DAFYLARTAKALQAHWQLMKQYYLLEDQTVQPLPK-GDQVLNFSDAEDLIDDSKLKDMRDEVLEHELMVADRRQKREIRQLEQELHKWQVLVDSITGMSS 
Ms_MCRS1 240 DAFYLARTAKALQAHWQLMKQYYLLEDQTVQPLPK-GDQVLNFSDAEDLIDDSKLKDMRDEVLEHELTVADRRQKREIRQLEQELHKWQVLVDSITGMGS 
Cc_TOJ3  308 DVFYPSRTAKALQLHWQLMKQYYLLDDQTVQPLPK-GDQVLNFSDAEDMLDDNKLKDVRDDVLEHELTVADRRQKREIRQLEQELHKWQVLVDSITGMNS 
Xl_MCRS1 231 EVFYMSRTAKSLQVHWQLMKQYYLLEDQTVQPLPK-GDQVLNFSDAEDMLEDSKLRETRDEVLEHELTVADRRQKREIRQLEQELNRWQVLVDSITGMSS 
Dr_MCRS1 250 NVFYPSRTAKNLLVHWQLLKQYYLLEDQSVQPLPK-GEQVLNFSDAEQVVDDAKLKDSRDEVLEHELMIADRHQKREIRQLEQELPRWQVLVDSITGMNS 
Dm_MCRS2 352 SVFYCARTAKSLQNHWLLLKQYTLLPDQSVKPIYGTDQQPLSFSDAEDQIFEHDLNEPRDEALEMERALADRRNKRNIRLLENELSRWAVLVDSVLSPTA 

Hs_p78   410 -PDFDNQTLAVLRGRMVRYLMRSREITLGRATKDNQIDVDLSLEGPAWKISRKQGVIKLKNNGDFFIANEGRRPIYIDGRPVLCGSKWRLSNNSVVEIAS 
Hs_MCRS2 351 -PDFDNQTLAVLRGRMVRYLMRSREITLGRATKDNQIDVDLSLEGPAWKISRKQGVIKLKNNGDFFIANEGRRPIYIDGRPVLCGSKWRLSNNSVVEIAS 
Hs_MSP58 338 -PDFDNQTLAVLRGRMVRYLMRSREITLGRATKDNQIDVDLSLEGPAWKISRKQGVIKLKNNGDFFIANEGRRPIYIDGRPVLCGSKWRLSNNSVVEIAS 
Ms_MCRS1 338 -PDFDNQTLAVLRGRMVRYLMRSREITLGRATKDNQIDVDLSLEGPAWKISRKQGVIKLKNNGDFFIANEGRRPIYIDGRPVLCGSKWRLSNNSVVEIAS 
Cc_TOJ3  406 -PDFDSQTLAVLRGRMVRYLMRSREITLGRATKDNQIDVDLALEGPAWKISRKQGVIKLKNNGDFFIANEGRRPIYIDGRPVLGGNKWKLNNNSVVEIAS 
Xl_MCRS1 329 -PDFDTQTLAVLRGRMVRYLMRSREITLGRATKDNQIDVDLSLEGPAWKISRKQGVIKLKNNGDFFLANEGRRAIYIDGRPVLPGSKWKLSHNSVVEISG 
Dr_MCRS1 348 -PDFDNQTLAALRGRMVRYLMRSREITLGRATKDKQIDVDLSLEGPAWKISRKQGIIKLKNNGDFFIANEGRRPIYIDGRPVLSGNKWKLNNNSVMEIAG 
Dm_MCRS2 452 ASEFDNQTLACLCGRHVRYLMRSKEITFGRDAKDCVVDVDLGLEGPAAKISRRQGTIKLRSNGDFFIANEGKRAIFIDGTPLLSANKARLGHNCTVEISG 

Hs_p78   510 LRFVFLINQDLIALIRAEAAKITPQ-- 
Hs_MCRS2 451 LRFVFLINQDLIALIRAEAAKITPQ-- 
Hs_MSP58 438 LRFVFLINQDLIALIRAEAAKITPQ-- 
Ms_MCRS1 438 LRFVFLINQDLIALIRAEAAKITPQ-- 
Cc_TOJ3  506 LRFVFLINQDLITLIKTEAAKMAQQ-- 
Xl_MCRS1 429 LRFVFLINQDLISLIKAEAAKVIQS-- 
Dr_MCRS1 448 LRFVFLINQELISLIKAEAAKMNQP-- 
Dm_MCRS2 552 LRFTFLVNYELINAIRQESAKTSNPLN 

Figure 3. Multiple sequence alignment of MCRS1 orthologs by the MUSLCE algorithm of the SnapGene. Human MCRS1 isoforms 
(Hs_p78, Hs_MCRS2, and Hs_MSP58) and their orthologs (mouse Ms_MCRS1, quail Cc_TOJ3, frog Xl_MCRS1, zebrafish Dr_MCRS1, 
and fly Dm_MCRS2) are aligned based on sequence similarity. Highly conserved amino acid residues (>50%) are highlighted in 
green. SANT, CC, and FHA domains are marked with brown, red, and dark blue lines, respectively.
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a nucleolar localization sequence (NoLS). However, in 
MCRS2, KRKK on amino acids 66–69 serves as an 
NLS and KKSK on amino acids 133–136 does as an 
NoLS [13]. The CC and FHA domains near the 
C-terminus also seem to direct nucleolar localization 
as well. The centrosome localization of MCRS1 and its 
isoforms is mediated by the FHA domain [3,14,15]. In 
humans, MCRS1 is specifically recruited to the minus 
end of mitotic spindles at the centrosome to regulate 
spindle dynamics [14]. In Drosophila, dMCRS2 is 
localized at the centrosome as well as the telophase 
midbody [16]. In zebrafish, MCRS1 is recruited to the 
centriolar satellite through the dynein complex [17]. 
MCRS1 can also localize at the surface of late endo-
somes or lysosomes, which signals the activation of the 
mTORC1-Rheb GTPase axis when free amino acids 
are present [18]. Other studies revealed the distribu-
tion of MCRS1 in the cytoplasm. In hippocampal 
neurons, MCRS1 colocalizes with FMRP in the cyto-
plasm, where they target mRNP to distal synapses for 
translation regulation [5]. In HeLa cells, MCRS1 inter-
acts with cytoplasmic ASK1 to regulate H2O2- 
mediated apoptosis [19], and it also binds to Pkmyt1 
for cell proliferation regulation in the cytoplasm of the 
gastric cancer cells [20]. Overall, the spatial distribu-
tion in different subcellular compartments of MCRS1 

and its isoforms demonstrates their diverse functions 
in the cells.

3. Cellular functions of MCRS1

3.1. MCRS1 in transcription and translation

Eukaryotic transcription by RNA polymerases is 
a complex process and is precisely controlled by 
DNA regulatory sequences and their associated 
transcription factors. Transcription factors specifi-
cally recognize and bind to regulatory sequences 
such as promoters and enhancers, which triggers 
the recruitment of coactivators to promote RNA 
polymerase binding and transcription initiation. 
Alternatively, the interaction between silencers 
and repressors recruits corepressors to inhibit the 
action of RNA polymerase [21,22]. Chromatin 
modifiers, chromosome remodeling complex, and 
mediator complex are also critical players to facil-
itate transcription initiation and elongation 
[23,24]. Chromatin modifiers covalently modify 
histone lysine residues by methylation, acetylation, 
ubiquitination, or sumoylation, and serine/threo-
nine residues by phosphorylation [25]. These 
modifications function as histone codes to direct 
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recruitment of downstream regulators for control-
ling transcription [23,26]. After transcription, nas-
cent RNAs are further spliced and transported to 
the cytosol for protein translation. All these pro-
cesses require fine regulation, and MCRS1 is iden-
tified to play fundamental roles in them. Thus, we 
will discuss in detail how MCRS1 regulates various 
transcription factors, chromatin remodelling com-
plex, histone acetyltransferases, rRNA transcrip-
tion [4,6,10,11,27–30], and mRNA translation [5].

3.1.1 Regulating transcription factor activities

MCRS1 and MCRS2 regulate the activities of tran-
scription factors and their binding partners in the 
nucleus and nucleolus. Lin et al. showed that 
MCRS1 inhibits Daxx activity by relocalization to 
the nucleolus [10]. Daxx is a transcription factor 
for glucocorticoid receptor -dependent gene 
expression in the nucleus and Fas-induced apop-
tosis in the cytoplasm [31]. When MCRS1 binds to 
Daxx, it redirects Daxx to the nucleolus for its 
inhibition. MCRS2 inhibits the transcription activ-
ity of RTA similarly [32]. RTA promotes the 
expression of lytic genes during Epstein-Barr 
virus infections. MCRS2 relocates RTA to the 
nucleolus to prevent it from interacting with the 
viral genes in the nucleus.

Protein activities can be both positively and 
negatively regulated by MCRS1 and its isoforms 
in the nucleus. p78 binds to transcription factor 
ICP22 to regulate the expression of herpes simplex 
virus genes. Similarly, p78 binds to the nuclear 
protein DIPA to control the expression of the 
hepatitis delta virus genome [4,11]. MCRS2 binds 
to and inhibits Nrf1, a transcription factor 
involved in antioxidant response and embryonic 
development [29]. Similarly, MCRS1 inhibits 
STRA13, a hypoxia-inducible bHLH transcription 
factor, to suppress various cell proliferation path-
ways [8]. By contrast, MCRS1 binds to and acti-
vates transcription factor Six1 to promote proper 
craniofacial development during early embryogen-
esis [33]. In addition, Xu et al. reported that 
MCRS1 interacts with ASK1 in the cytoplasm for 
its inhibition [19].

The regulatory role of MCRS1 on rRNA tran-
scription seems to be contradicted in two studies. 
Shimono et al. claimed that MCRS1 colocalizes 

with Mi2β, RFP, and UBF in the nucleolus to 
activate rRNA transcription [6]. However, Yang 
et al. stated that MCRS1 inhibits rRNA transcrip-
tion via RINT1, a Rad50-interacting protein that 
maintains genomic stability and cell homeostasis 
[34]. The discrepancy may originate from the dif-
ferent genetic backgrounds of the cell lines used in 
these studies.

On the other hand, Andersen et al. showed that 
Drosophila dMCRS2 directly stimulates RNA poly-
merase II activity [35]. dMCRS2 binds to both 
CDK11 and RNA polymerase II to enhance the 
expression of their target genes. The study further 
showed that dMCRS2 can specifically recruit 
MOF, an H4K16 acetyltransferase, to the promoter 
region of cyclin genes to enhance their expres-
sion [35].

3.1.2 Regulating histone modifications

MCRS1 regulates histone tail modification and 
chromatin remodeling in the nucleus through sev-
eral distinct pathways. In Drosophila, MOF is 
a major component of the dosage compensation 
complex that determines the male sex. 
Interestingly, mass spectrometric analysis of MOF 
identified the highly conserved NSL complex as 
a novel binding protein of MOF [36]. The NSL 
subunit includes NSL1, NSL2, NSL3, WDS, and 
dMCRS2. It controls the expression of more than 
4000 housekeeping genes by acetylating H4K16 
within their promoters via MOF [28,37]. H4K16 
acetylation, which is promoted by H4K20me2, 
activates gene expression via MLL4 H3K4 methyl-
transferase [38,39]. dMCRS2 depletion reduces the 
NSL complex stability and inhibits the recruitment 
of MOF and RNA polymerase II to the promoters 
of target genes [28,35]. Global genomic analyses 
identified the DNA replication-related element as 
the major target sequence of NSL-mediated RNA 
polymerase II recruitment [40].

In humans, MCRS1 interacts with distinct chro-
mosome remodeling units such as the INO80 
complex, BRG1 ATPase of the SWI/SNF complex, 
and Mi-2β helicase of the NURD complex 
[6,27,41]. Furthermore, the SANT domain of 
MCRS1 directly binds to histone H3 tail and 
recruits HDAC1 as well as Pontin/Reptin complex 
to regulate histone acetylation, which in turn 
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controls bile acid transporter gene expression in 
liver cells [42]. Pontin and Reptin are ATPases that 
function in various cellular activities including 
DNA replication, gene expression, DNA damage 
repair, telomere maintenance, mTOR activation, 
and microtubule dynamics [43]. Interestingly, the 
HDAC1-mediated transcription regulation of 
MCRS1 seems to be independent of the INO80 
or NSL-associated pathways. Altogether, these 
data suggest that MCRS1 interacts with distinct 
sets of chromatin modifiers to regulate gene 
expression.

3.1.3 Regulating mRNP targeting and 
translation

MCRS1 regulates the localization and translation 
of polyribosomal mRNP in neurons [5]. FMRP is 
an mRNP binding protein exhibiting G-quartet 
binding activity in hippocampal neurons. It 
binds to mRNP to inhibit translation. MCRS1 is 
a binding partner of FMRP and it is proposed to 
escort FMRP-containing mRNP to the somato- 
dendritic region for spatial translation regulation. 
MCRS1 overexpression redistributes one of the 
FMRP isoforms to the nucleolus, where it 
becomes inactivated. In addition, MCRS1 also 
binds directly to mRNP to control its translation.

3.2 MCRS1 in chromosome segregation

Sister chromatids are evenly segregated in mitosis 
to form two genetically identical cells. This highly 
dynamic process needs to be precisely regulated by 
a set of sophisticated machinery. After nuclear 
envelope breakdown , chromosomes start to con-
dense and the bipolar spindle apparatus start to 
assemble. Microtubules nucleated from centro-
somes search and capture the kinetochores on 
the centromeres. The proper kinetochore- 
microtubule attachment allows chromosomes to 
be aligned along the metaphase plate [44]. Then, 
sister chromatids are pulled apart toward the 
opposite poles in anaphase and cytokinesis sepa-
rates the cytoplasm to generate two genetically 
identical daughter cells. The whole process is 
tightly governed by three types of microtubules, 
including polar microtubules, astral microtubules, 
and k-fibers [44,45]. The stability and dynamics of 

the spindle apparatus are regulated by various 
spindle assembly factors via Ran GTPase [46]. 
MCRS1 is identified as one such factor that speci-
fically regulates centrosome integrity and k-fiber 
dynamics [14]. In addition, MCRS1 controls the 
expression of mitotic genes as a subunit of the NSL 
complex [16].

3.2.1 Regulating centrosome integrity

Centrosome integrity is critical in maintaining 
microtubule architecture and normal cell cycle. 
p78/MCRS1 can regulate centrosome dynamics 
[3,17,41]. Hirohashi et al. stated that siRNA- 
mediated p78 depletion inhibits cell proliferation, 
increases cell death, and decreases polyploid cells. 
However, Hsu et al. reported that apoptosis is 
elevated in cells with MCRS1 silencing, but so is 
the number of polyploid cells. It is unclear whether 
the discrepancy in the polyploid cell population is 
due to the knockdown of different isoforms or 
different efficiencies, but both studies revealed 
MCRS1’s effect on centrosome dynamics. In zeb-
rafish, Lee et al. revealed that MCRS1 is localized 
to the centriole satellites and interacts with dynein 
motors to translocate the centriole satellites. 
MCRS1 inactivation greatly disrupts the distribu-
tion of centriole satellites, leading to increased 
apoptosis.

3.2.2 Regulating k-fiber dynamics

MCRS1 regulates mitotic spindle assembly 
[14,47]. Vernos et al. showed that MCRS1 facil-
itates microtubule assembly in vitro after being 
detached from importin-β. MCRS1 depletion per-
turbs chromosome alignment in metaphase, lead-
ing to significantly longer mitotic time. MCRS1 
stabilizes the minus end of chromosome-driven 
microtubules in early prometaphase as well as 
k-fibers in metaphase by inhibiting MCAK/ 
KIF2C kinesin complex. Furthermore, S35/S36 
phosphorylation on MCRS1 by Aurora A kinase 
is required for the fine regulation of k-fiber 
dynamics [48].

Yang et al. revealed that MCRS1 can be phos-
phorylated by Mps1, a key upstream kinase in the 
spindle assembly checkpoint during mitosis. This 
further demonstrates MCRS1’s function in 
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chromosome segregation [15]. MCRS1 phosphor-
ylation is required to recruit the microtubule- 
destabilizing kinesin KIF2A to the centrosomes. 
Mutations on the phosphorylation site results in 
reduced KIF2A localization, increased inter- 
centrosome distance, and increased chromosome 
misalignments. Together, these studies reported 
that MCRS1 inactivation generates seemingly 
opposite effects on two similar microtubule- 
destabilizing kinesins, which needs further investi-
gation for clarification.

3.2.3 Regulating mitotic gene expressions

MCRS1 also regulates cell cycle progression at the 
transcriptional level. Pavlova et al. showed that the 
NSL complex, the stability of which is dependent 
on MCRS1, controls the expression of many kine-
tochore and centrosome genes, and thus its inacti-
vation generates various mitotic defects [16,28]. 
However, the role of NSL complex in cell cycle 
progression is complex because several subunits of 
the NSL complex are specifically localized to mito-
tic structures such as chromosomes, kinetochores, 
midbodies, and centrosomes, suggesting its addi-
tional role in mitotic processes. Thus, it is impor-
tant to study the mitotic role of the NSL complex 
in both the transcription-dependent and transcrip-
tion-independent manner in the future. This can 
be addressed by using an inducible protein degra-
dation system to instantly break down MCRS1 
upon mitotic entry [49].

3.3 MCRS1 in cell proliferation

Growth factors signal cell proliferation in eukar-
yotes. Extracellular growth factors bind to cogni-
tive membrane receptors to trigger signal 
transduction pathways promoting cell division, 
and mTOR is one such pathway regulated by 
MCRS1. mTOR pathway senses whether an ade-
quate amount of nutrients is available to support 
cell proliferation [50]. Specifically, sufficient amino 
acids, nucleotides, and growth factors can activate 
mTORC1 kinase on the cytosolic side of lysosomes 
via several small GTPases. Activated mTORC1 
phosphorylates downstream effectors to facilitate 
protein translation, nucleotide synthesis, rRNA 

transcription, glycolysis, and autophagy inhibition. 
These processes collectively promote cell growth 
and proliferation. Studies revealed that MCRS1 
promotes the mTOR pathway and subsequent 
cell proliferation [18,51]. On the other hand, 
MCRS1 also inhibits cell proliferation by regulat-
ing telomerase activities during DNA replication. 
As an essential prerequisite for mitosis, replication 
of linear eukaryotic DNA faces an intrinsic pro-
blem, which is telomere shortening. It particularly 
threatens genome integrity during extensive cell 
divisions. Thus, eukaryotic cells manage to protect 
telomeres by using telomerase to extend telomeric 
sequences [52,53]. MCRS1 was shown to be an 
essential component in telomerase regulation 
[9,54] and further to regulate senescence during 
DNA damage response [41].

3.3.1 Promoting cell proliferation: mTOR 
activation

MCRS1 promotes cell proliferation via the mTOR 
pathway [18,51]. mTORC1 is a major kinase in the 
mTOR pathway that can be activated by Rheb 
GTPase and inhibited by TSC1/2 GAP. 
According to Fawal et al., when cells sense the 
presence of growth factors and nutrients, MCRS1 
promotes the dissociation of Rheb from TSC1/2 
GAP, which activates mTORC1 on the lysosomal 
surface for cell proliferation [18]. On the other 
hand, Brandt et al. proved that MCRS1 activates 
the mTOR pathway to maintain intestinal home-
ostasis [55]. The suppression of MCRS1 or 
mTORC1 in intestinal epithelial cells causes repli-
cation defects, leading to a high degree of DNA 
damage and chromosome instability. This is most 
likely caused by the inactivation of carbamoyl- 
phosphate synthase 2 (CAD), a target of 
mTORC1 responsible for nucleotide supply during 
the S phase [56]. Brandt et al. also showed that 
MCRS1 perturbation promotes tumorigenesis 
when in association with inflammatory bowel dis-
ease, but prevents tumorigenesis when exposed to 
a genetic predisposition with familial adenomatous 
polyposis. The difference is likely caused by the 
distinct genetic context, specifically, different 
degrees of ongoing DNA damage, in two 
conditions.
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3.3.2 Suppressing cell proliferation: telomerase 
inhibition and cell senescence

MCRS1 and MCRS2 can be tumor-suppressing in 
other scenarios through their interaction with telo-
merase. MCRS2 interacts with the telomerase- 
inhibitory protein LPTS/PinX1 to suppress telomerase 
activity in the nucleolus and other nuclear foci [9]. 
MCRS2 also directly inhibits hTERT telomerase by 
binding to its N-terminus. As a result, MCRS2 over-
expression significantly reduces telomere length, lim-
iting long-term cell proliferation. On the other hand, 
MCRS1 regulates hTERT expression via TEIF [54]. 
TEIF promotes hTERT expression but MCRS1 pre-
vents TEIF from approaching the promoter region of 
hTERT. Overall, MCRS1 and MCRS2 can downregu-
late hTERT telomerase at the transcriptional level as 
well as the post-translational level to suppress the 
oncogenic proliferation of cells. However, shortening 
telomere length can be a risk factor for certain types of 
cancer, because it promotes the breakage-fusion- 
bridge cycle and increases chromosome instability 
[52]. Therefore, MCRS1-induced hTERT inactivation 
may limit or facilitate tumorigenesis in a context- 
dependent manner. This relationship is supported by 
Brandt et al., which demonstrated MCRS1’s dual 
effects on tumorigenesis in the intestinal epithe-
lium [55].

In addition, MCRS1 regulates cell senescence via 
p53/p21-dependent pathways [41]. MCRS1 overex-
pression activates p53-dependent DNA damage 
response and arrests cell growth. Loss of p53 allows 
cells to bypass senescence and become proliferative 
again. Thus, p53 is the key mediator of MCRS1- 
induced senescence.

4. Regulation of MCRS1 activity

We have demonstrated MCRS1’s complex regulatory 
role in transcription, translation, chromosome segre-
gation, and cell proliferation. Here, we aim to address 
the expression regulation of MCRS1 itself and discuss 
how this drives MCRS1 to function properly in differ-
ent pathways.

4.1. Modulating MCRS1 expression

MCRS1 expression is regulated by growth factor sig-
naling and miRNA interference. TOJ3, quail MCRS1, 

is immediately expressed in response to v-Jun 
mediated growth factor signalling pathways [1]. In 
human cells, MCRS1 expression is induced at the 
early S phase when cells are released from the G1 
block upon serum addition [9,11]. Similarly, MCRS1 
expression is upregulated in most cancer types because 
of their constitutively activated growth factor signal-
ling [41] (Figure 5). Meanwhile, MCRS1 expression is 
repressed by miRNAs targeting its 3’-UTR. In lung 
cells, the reduced miR-129 level leads to MCRS1 upre-
gulation and promotes tumorigenesis [57]. In liver 
cells, the anti-tumorigenic miR-186 inhibits MCRS1 
expression to suppress hepatocellular cancer develop-
ment [58].

4.2. Modulating MCRS1 degradation

MCRS1 degradation can be regulated by the ubiqui-
tin-proteasome system in response to cell proliferation 
and DNA damage pathways. MCRS1 is targeted by E3 
identified by Differential Display (EDD), a ubiquitin 
E3 ligase, before its destruction in proteasomes [59]. 
Thus, inactivation of EDD stabilizes MCRS1 and 
causes it to accumulate. Perturbation of MCRS1 or 
EDD deregulates cyclin expressions, leading to abnor-
mal cell cycle. This is consistent with the fact that 
MCRS1 regulates cyclin expressions [35,41]. 
However, it is unclear whether EDD directly stimu-
lates MCRS1 ubiquitination, as RNAi-mediated EDD 
knockdown does not significantly decrease MCRS1 
ubiquitination. Along the lines of ubiquitination, 
a yeast two-hybrid screen identified BRCA1- 
associated protein 1 (BAP1), a de-ubiquitination 
enzyme frequently mutated in clear cell renal cell 
carcinoma (ccRCC), as an MCRS1 binding partner 
[60]. BAP1 deficiency upregulates MCRS1 ubiquitina-
tion and degradation, so cells with polyploidy or 
multi-lobed nuclei occur at a higher frequency. 
These studies validate ubiquitination as a key mechan-
ism to control the protein level of MCRS1.

4.3. Modulating MCRS1 activity by 
phosphorylation and acetylation

MCRS1 activity can be regulated by phosphory-
lation and acetylation. In mitosis, MCRS1 S35/ 
S36 is phosphorylated by Aurora A kinase [48]. 
This modification maintains the integrity of the 
minus end of k-fibers in dividing cells while 

626 C.-J. HUANG ET AL.



mutations on S35/S36 destabilize and shorten 
k-fibers. On the other hand, MCRS1 S65 can 
be phosphorylated by Mps1 kinase, a process 
that recruits KIF2A to the minus end of mitotic 
spindles to facilitate chromosome alignments in 
metaphase [15]. Large-scale proteomic studies 
further revealed many putative sites subject to 
phosphorylation or acetylation. However, the 
corresponding kinases and acetyltransferases are 
to be determined [61–65].

5. MCRS1 in development and tumorigenesis

Accurate regulation of cell proliferation and 
genomic stability is essential for organismic 
development. Thus, its deregulation inevitably 
results in pathological consequences such as 
birth defects or tumorigenesis. Here, we aim to 
address the critical role of MCRS1 in early 

embryonic development and its deregulation in 
tumorigenesis.

5.1. In early embryonic development

The developmental roles of MCRS1 have been 
widely studied in mice, fruit flies, frogs, and zebra-
fish. In mice, MCRS1 is essential during early 
embryonic development [66]. MCRS1 mutant 
embryos grow normally up to the blastocyst stage 
but the epiblast lineage fails to develop functionally 
during the gastrulation stage. The hepatocyte- 
specific MCRS1 deletion perturbs the expression of 
key membrane transporter genes, leading to cirrho-
sis liver [42]. In Xenopus, MCRS1 interacts with Six1, 
a homeodomain transcription factor essential for 
craniofacial development [33]. An RNAi-mediated 
MCRS1 knockdown in their embryos results in 
defective otic vesicles in the neural ectoderm. In 
Drosophila, MCRS1 inactivation by the P element 
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leads to early larval lethality (flybase.org/reports/ 
FBgn0263832). In zebrafish, homozygous mcrs1 
mutants remain viable but develop smaller brains 
and eyes due to enhanced apoptosis [17]. These 
mutants also carry centriole satellite defects asso-
ciated with reduced ciliogenesis in the olfactory pla-
code. Together, these studies corroborate the 
essential roles of MCRS1 in early embryonic 
development.

5.2. In tumorigenesis

MCRS1 can promote the oncogenic transformation of 
cells in many organisms. In quail, TOJ3 is immediately 
expressed upon v-Jun activation for the neoplastic 
transformation of fibroblast cells [1]. TOJ3 overex-
pression alone triggers the anchorage-independent 
growth of fibroblast cells. Similarly, MCRS1 overex-
pression transforms mice embryonic fibroblast cells to 
become cancerous, and this transformation can be 
repressed by the non-catalytic domain of PTEN on 
the C-terminus [67]. It is interesting to see PTEN’s 
tumor-suppressing activity reside in the non-catalytic 
domain rather than the catalytic phosphatase domain, 
as the latter directly regulates the oncogenic PI3K 
signaling pathway.

In humans, MCRS1 overexpression is observed in 
various types of cancers and it is associated with poor 
prognosis (Figure 5). MCRS1 is significantly enriched 
in glioblastoma and neuroblastoma tissues associated 
with higher malignant grades and poor prognosis [68– 
71]. MCRS1 is also upregulated in colorectal tumors 
compared to their adjacent non-cancerous tissues 
[72]. This upregulation is positively correlated with 
tumor invasion, local recurrence, tumor grade, and 
UICC stage, whereas downregulation of MCRS1 
reduces the levels of cyclin D1, CDK4, and pRb and 
inhibits cell growth [73]. Djouder group further 
showed that MCRS1 overexpression is correlated 
with poor prognosis and mTORC1 signaling in 
colon cancer [18,55]. Interestingly, unlike MCRS1, 
MCRS2 expression is significantly decreased in color-
ectal tumors compared to their corresponding non- 
tumor tissues, suggesting isoform-specific functions 
[74]. MCRS1 is also overexpressed in esophageal squa-
mous cell carcinoma (ESCC) cell lines and it regulates 
cell cycle progression by altering the levels of p21, 
CDK4, and cyclin D1 [75]. In non-small cell lung 
cancer (NSCLC), MCRS1 is one of the upregulated 

genes on chromosome arm 12q13, a region with fre-
quent chromosomal aberrations [76]. MCRS1 pro-
motes the tumorigenic epithelial-to-mesenchymal 
transition (EMT) via miRNAs [57,77,78]. 
Specifically, MCRS1 overexpression directly upregu-
lates miR-155, which inhibits the expression of tumor- 
suppressor Rb1. This pathway alters the expression 
profile of mitotic genes such as MYC, E2F2, PCNA, 
and Ki67; and downregulates many cell junction pro-
teins to promote EMT, tumor invasion, and metasta-
sis. In hepatocellular carcinoma (HCC), MCRS1 
promotes cell proliferation and serves as a good prog-
nostic marker for HCC patients [79]. In renal cell 
carcinoma (RCC), MCRS1 depletion significantly 
inhibits cell proliferation, migration, and invasion 
[80]. In gastric cancer (GC), MCRS1 overexpression 
is positively correlated with tumor invasiveness, dif-
ferentiation grade, and metastatic stage, and it serves 
as an independent prognostic factor [81]. However, 
Wang et al. reported contradicted data in gastric can-
cer, in which MCRS1 overexpression inhibits cell 
growth, migration, and invasion via Pkmyt1 interac-
tion [20].

MCRS1 can also play anti-tumorigenic roles. 
Brandt et al. showed that MCRS1 depletion promotes 
DNA damage and chromosome aberrations, which 
provides a selective advantage in the inflammatory 
milieu for tumorigenesis [55]. According to the 
Cancer Profiling Array which examined cancer- 
specific MCRS1 expression levels, though MCRS1 is 
overexpressed in most cancer types, certain cancers 
have MCRS1 expression downregulated [41]. 
Therefore, the effect of MCRS1 on tumorigenesis 
may highly depend on the genetic context of different 
cell types (Figure 5).

6. Conclusion

MCRS1 is involved in the regulation of transcription 
factors, epigenetic histone modification, chromatin 
remodeling, mRNP transport, telomerase activity, 
DNA damage response, cell senescence, mTOR sig-
naling, microtubule dynamics, and centrosome integ-
rity. The striking functional diversity may be rooted in 
its transcriptional, translational, and post- 
translational regulation of a variety of downstream 
targets. In fact, the MCRS1-containing NSL complex 
can control the expression of thousands of housekeep-
ing genes. Therefore, MCRS1 becomes a central player 
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to regulate cell proliferation and multi-cellular organ-
ism development, and its deregulation causes devas-
tating consequences in organisms such as cancer.

Many open questions remain to be answered 
before we can gain a more comprehensive under-
standing of MCRS1. First of all, it will be impor-
tant to identify which functions are transcription- 
dependent or transcription-independent. 
Secondly, since MCRS1 can be both pro- 
tumorigenic and anti-tumorigenic, we are also 
interested in whether the isoforms of MCRS1 exhi-
bit opposite effects during tumorigenesis. Thirdly, 
given MCRS1’s participation in many diverse cel-
lular activities, we wonder whether it has one 
common biochemical feature to support all diverse 
activities. For instance, can MCRS1 control the 
assembly of different large complexes such as 
Pontin/Reptin ATPase does in various pathways? 
In addition, further studies are required to deci-
pher how post-translational modifications of 
MCRS1 contribute to its activation, localization, 
and function. Lastly, its detailed regulatory 
machinery of centrosome and microtubule 
dynamics during chromosome segregation is to 
be revealed. Addressing these questions will dee-
pen our understanding of the sophisticated regula-
tions leading to organismic development and 
cancer.
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