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Abstract

Background.—Investigation of personality traits and pathology in large, generalizable clinical 

cohorts has been hindered by inconsistent assessment and failure to consider a range of personality 

disorders (PDs) simultaneously.

Methods.—We applied natural language processing (NLP) of electronic health record notes to 

characterize a psychiatric inpatient cohort. A set of terms reflecting personality trait domains were 

derived, expanded, and then refined based on expert consensus. Latent Dirichlet allocation was 

used to score notes to estimate the extent to which any given note reflected PD topics. Regression 

models were used to examine the relationship of these estimates with sociodemographic features 

and length of stay.

Results.—Among 3623 patients with 4702 admissions, being male, non-white, having a low 

burden of medical comorbidity, being admitted through the emergency department, and having 

public insurance were independently associated with greater levels of disinhibition, detachment, 

and psychoticism. Being female, white, and having private insurance were independently 

associated with greater levels of negative affectivity. The presence of disinhibition, psychoticism, 

and negative affectivity were each significantly associated with a longer stay, while detachment 

was associated with a shorter stay.
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Conclusions.—Personality features can be systematically and scalably measured using NLP 

in the inpatient setting, and some of these features associate with length of stay. Developing 

treatment strategies for patients scoring high in certain personality dimensions may facilitate more 

efficient, targeted interventions, and may help reduce the impact of personality features on mental 

health service utilization.
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Introduction

Personality disorder (PD) diagnoses have an important public health impact as they predict 

increased utilization of medical and mental health care services (Twomey et al., 2015; 

Tyrer et al., 2015; Huprich, 2018). Studies using structured diagnostic interviews have 

identified a PD diagnosis in 40–82% of psychiatric outpatient populations (Zimmerman et 
al., 2005; Newton-Howes et al., 2010; Beckwith et al., 2014) and in 64–74% of psychiatric 

inpatient populations (Grilo et al., 1998; Keown et al., 2005; Stevenson et al., 2011), further 

increasing utilization in these settings (Twomey et al., 2015).

The variability in these prevalence estimates suggests the challenge of studying PDs in 

real-world settings. Despite high levels of usage of health care resources, and high rates 

of polypharmacy and hospital admissions (Quirk et al., 2016) and the economic burden 

associated (Soeteman et al., 2008), evaluating personality dimensions is still not a part of 

routine assessment in psychiatric inpatient units (Fok et al., 2014; Jacobs et al., 2015). 

Likewise, in administrative data sets, PDs may not be coded consistently, or may be treated 

as a single undifferentiated category (Jiménez et al., 2004; McLay et al., 2005; Compton 

et al., 2006; Jacobs et al., 2015; Newman et al., 2018). On the other hand, the current 

categorical diagnosis for PDs has been questioned as not scientifically valid, while PD 

clinical features are being increasingly understood as dimensional phenotypes (Bjelland et 
al., 2009; Haslam et al., 2012; Skodol, 2012; Tyrer et al., 2015). Accordingly, the DSM-5 

and ICD-11 have both moved toward dimensional models of PD (Bach et al., 2018a,b) and 

remain to be studied. Novel approaches to explore personality dimensions in psychiatric 

cohorts are needed (Quirk et al., 2016).

To address this gap, we applied natural language processing (NLP) of electronic health 

records (EHRs) to characterize a large inpatient psychiatric cohort (Manning and Schiitze, 

1999). We hypothesized that EHR notes would capture relevant clinical descriptions as 

unstructured data, quantifiable by validated algorithmic tools that have been previously used 

for medical (Yu et al., 2014; Yim et al., 2016) and mental health research (Althoff et al., 
2016; Can et al., 2016; McCoy et al., 2016; Birnie et al., 2018; McCoy et al., 2018; Afshar 

et al., 2019). In particular, we examined the relationship between these dimensions and 

sociodemographic and clinical features, as a means of more comprehensively characterizing 

personality psychopathology in a real-world setting.
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Methods

Subjects

Sociodemographic and clinical data were extracted from the health records of patients in the 

adult psychiatry inpatient unit at Massachusetts General Hospital between 2010 and 2016. 

Sociodemographic data included age, sex, race, and type of insurance, as well as relevant 

clinical factors such as admission route (i.e. either via the emergency room or not), length 

of stay, and Charlson Comorbidity Index. Admission and discharge documentation were 

extracted for estimation of personality trait domains by NLP. These EHR data were managed 

as an i2b2 datamart (Murphy et al., 2010).

The Partners HealthCare Human Research Committee approved the study protocol, waiving 

the requirement for informed consent as detailed by 45 CFR 46.116 as no participant contact 

was required in this study based on secondary use of data arising from routine clinical care.

Generation of personality phenotypes

Building on our prior work in transdiagnostic psychiatric phenotypes, we developed 

personality-specific transdiagnostic phenotypes based on NLP (McCoy et al., 2018). This 

process seeds an NLP model using expert-defined, or curated, terms. As with our prior 

work, we consulted relevant texts to guide phenotypic seed term generation; in this case, the 

DSM-5 and ICD-11. The DSM-5 (section III) (American Psychiatric Association, 2013) and 

ICD-11 (Tyrer et al., 2015; Bach and First, 2018) assess PDs based on determining levels 

of functioning/impairment and stylistic traits organized in personality dimensions. In the 

DSM-5, these dimensions are Negative Affectivity, Detachment, Antagonism, Disinhibition, 

and Psychoticism. The ICD-11 includes the same dimensions, except Psychoticism, and 

adds Anankastia (or Compulsivity) as a new dimension. Definitions of overlapping 

dimensions are similar between the DSM-5 and ICD-11 (Bach et al., 2018b). These 

extracted trait domain definitions, according to Skodol (2018) and Tyrer et al. (2015), 

are shown in Table 1 along with the examples of personality features that comprise 

these dimensions. These DSM-5 and ICD-11 derived terms were then expanded using the 

Personality Inventory for DSM-5 items (Krueger et al., 2012), other personality trait studies 

(Ashton et al., 2004, 2012; Bach et al., 2018a, 2018b), and a thesaurus (Dictionary.com, 

LLC, 2019). From the generated synonym list, a clinically refined set of NLP seed terms 

was selected based on expert consensus (S.A.B., R.H.P.; Table 1).

As these pre-selected term lists are unlikely to capture the full diversity of clinical 

vocabulary, we applied a previously reported method for expanding clinical vocabularies 

(McCoy et al., 2018). In this method, Latent Dirichlet allocation (LDA) is used to fit a 

probabilistic topic model to all documents. The use of topic loadings as LDA-determined 

phenotypes has been used for computational phenotyping and is discussed in our prior 

research (McCoy et al., 2017, 2018). Briefly, with an LDA-based topic model, documents 

are probability distributions over topics, and each topic is a probability distribution over the 

full vocabulary (Blei et al., 2003; Blei, 2012). The posterior distributions of the term-topic 

distributions are inspected to identify the topic under which the cumulative probability 

of the expert-selected personality token within each list is greatest. This total cumulative 
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probability of the seed word list is used to identify the relevant topic. Thereafter, that topic’s 

topic-document weights are used as the phenotype for the relevant domain. In essence, 

this approach asks which LDA topics capture the greatest number of curated tokens for 

a given PD, and then uses the ‘best’ topic to represent that disorder. The tokens (terms) 

incorporated in topics corresponding to each concept are listed in Table 1, and the entire 

process is outlined in Fig. 1. For the topic modeling, we used the R interface to a Gibbs 

sampler implementation of LDA (topicmodels v0.2), one of many widely used open source 

implementations of LDA licensed under free software licenses (McCallum, 2002; Řehůřek 

and Sojka, 2010; Grün and Hornik, 2018).

Study design and analysis

We used robust clustering to account for individuals with multiple admissions. Linear 

regression modeling adjusting for sex, age, race, insurance type, Charlson Comorbidity 

Index, and route of admission was used to analyze personality domain loadings in 

different sociodemographic profiles. Linear regression adjusting for these sociodemographic 

variables, as well as for other personality trait domains, was used to explore the association 

between personality trait domains and hospital length of stay. Analyses utilized Stata/SE 

13.1 (Statacorp, College Station, TX, USA).

Results

Characteristics of the full set of 4702 admissions for 3623 individuals are displayed 

in Table 2. Individual personality trait domains differed in their association with 

sociodemographic features (Table 3). Being male, non-white, having a low burden of 

medical comorbidity, being admitted through the emergency room, and having public 

insurance were independently associated with higher levels of disinhibition, detachment, 

and psychoticism. On the other hand, being female, white, and using private insurance 

were independently associated with increased levels of negative affectivity. Age was 

also associated with personality features: on average, patients with increased levels of 

disinhibition and psychoticism were younger, while patients with more negative affectivity 

were older.

We next examined the association between personality trait domains extracted from clinical 

notes and length of inpatient stay. As shown in Table 4, the presence of disinhibition, 

psychoticism, and negative affectivity was significantly associated with a longer length of 

stay. In contrast, detachment was associated with a shorter length of stay. A 10% increase 

in the disinhibition domain score was associated with a ~2.7-day increase in length of stay. 

Similarly, a 10% increase in the psychoticism and negative affectivity domain scores was 

associated with an increase in length of stay of ~0.8 and ~0.7 days, respectively. On the 

other hand, having a 10% increase in detachment features was associated with a decreased 

length of stay by nearly 0.3 days.

Discussion

As anticipated based on studies using traditional personality measures, we observed an 

association between sociodemographic features and individual personality trait domains 
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(Lynn and Martin, 1997; Kjelsås and Augestad, 2004). Demographic profiles are useful to 

predict certain behaviors (Krismayer et al., 2019), but their relationship with dimensional 

traits is less studied (Al-Halabí et al., 2010).

In particular, we found that greater scores in disinhibition, negative affectivity, and 

psychoticism were associated with a significantly longer length of stay, while a greater 

score in detachment was associated with a decreased length of stay. One way to interpret 

the effect sizes we observed is to compare our results to the US national average length 

of stay in inpatient psychiatric units, which is 6.6 days (Heslin et al., 2015). According to 

our results, an increase of 10% in the disinhibition dimension score may increase inpatient 

length of stay by 40% when compared to the national average. Likewise, patients scoring 

10% higher in either psychoticism or negative affectivity may have an increased length of 

stay by an extra 12% when compared to the national average. Conversely, an increase of 

10% in the detachment dimension score may decrease length of stay by 6% when compared 

to the national average. Given these results, personality may be a relevant factor to consider 

in terms of length of stay in the psychiatric inpatient setting.

While there is no doubt that PDs in general are associated with an increase in mental 

health services use in the outpatient setting (Twomey et al., 2015; Tyrer et al., 2015), this 

relationship has been less clear in terms of psychiatric inpatient services use. In contrast 

to our results, several epidemiological studies (Jacobs et al., 2015; Piccinelli et al., 2016; 

Pauselli et al., 2017; Newman et al., 2018) and service use studies (Jiménez et al., 2004; 

McLay et al., 2005; Compton et al., 2006; Leontieva and Gregory, 2013; Habermeyer et al., 
2018) have shown that PDs do not necessarily increase, and may even shorten, length of 

stay. Consequently, personality may have been overlooked as an addressable factor in efforts 

to optimize services use. Only a few studies have found that personality was associated 

with an increased length of stay (Tyrer and Simmonds, 2003; Fok et al., 2014). However, 

neither of these studies explored which personality traits or diagnosis was associated with 

this outcome.

The only prior study we identified that similarly investigated the association between 

different personality types and use of services in the psychiatric inpatient setting is Keown 

et al. (2005). This study considered a cohort of 193 patients from a community served by 

a mental health team in the UK, who were assessed using a structured interview, diagnosed 

according to the ICD-10, and followed over a 4-year period. Keown et al. found that 

among non-psychotic patients, having paranoid, dependent, and emotionally unstable PD 

was associated with an increased length of stay by 150 days in the 4-year period when 

a patient had one PD disorder, and up to 321 days for patients who had two or all of 

these PD disorders. Among psychotic patients, length of stay was associated with having 

more paranoid and anxious traits. Conversely, in the latter group of psychotic patients, the 

presence of anankastic traits was associated with a shorter length of stay.

The results of the Keown et al. study are in line with those from our study, since there 

is evidence of a correspondence between unstable personality and disinhibition, between 

paranoid personality and psychoticism, and between anxiety/dependence and negative 

affectivity (Skodol, 2018). On the other hand, unlike the Keown et al. study, we found 
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that detachment – and not anankastic traits – was associated with a shorter length of 

stay. Interpersonal distance and restriction in the expression of affect may be associated 

with diminished expression of need for care, so when behavioral symptoms remit, these 

patients may be more likely to be discharged. However, the anankastia domain also shows a 

correlation with detachment (Skodol, 2018), ranging from 0.46 (Bach et al., 2018b) to 0.79 

(Lugo et al., 2019).

Limitations

There are several limitations of our study to be considered. Extracting personality trait 

domains from EHR notes of psychiatry inpatients is limited by the fact that topics identified 

by the NLP process may account for state-related symptoms in the context of acute 

psychiatric syndromes like depression or psychosis, and not for stable personality traits. 

However, some studies show that trait assessments established during acute episodes (e.g. 

a major depressive episode) may be valid reflections of personality pathology rather than 

artifacts of symptomatic state (Morey et al., 2010; Sevilla-Llewellyn-Jones et al., 2017). 

Another alternative is that personality may itself influence symptom expression, and hence 

a clinical feature may be an expression of both symptoms and traits (von Gunten et al., 
2009; Widiger, 2011). Personality dimensions and common psychiatric disorders also covary 

(Wright and Simms, 2015) and may be part of spectra, that is, larger constellations of 

syndromes sharing some common features (Kotov et al., 2017). The approach taken here 

does not distinguish trait from state effects, but it may still capture relevant clinical features 

at a given point in time.

Conversely, this study does address several key limitations in the prior evidence base. First, 

personality diagnosis tends to be overlooked by clinicians; some studies indicate that PD 

prevalence may be underestimated in psychiatry inpatient settings (Fok et al., 2014; Jacobs 

et al., 2015), especially in the absence of structured assessments (Zimmerman et al., 2008; 

Leontieva and Gregory, 2013; Newman et al., 2018). Second, when using only a clinical 

diagnostic approach, there may be a variation regarding which disorders are more likely to 

be diagnosed and which may be overlooked. This may be based on factors such as symptom 

severity, expectation of response to treatment, or familiarity with particular PD diagnoses 

(Zimmerman and Morgan, 2013; Zimmerman, 2016). Finally, most prior personality studies 

have used a categorical diagnostic approach for PD diagnosis, which has been criticized for 

its questionable validity (Haslam et al., 2012; Skodol, 2012; Tyrer et al., 2015).

To address these limitations, we used NLP and machine learning as a novel method to 

overcome underdiagnosis, selective diagnosis, and lack of characterization of personality 

in the inpatient setting. In particular, our methodology allows access to extensive clinical 

information, deliberations, and clinicians’ clinical judgment that may not be reflected in 

coded diagnoses. Likewise, we used a dimensional model to assess personality, in contrast 

to previous studies that used a categorical approach. This method may account more 

realistically for specific and clinically significant personality features in the inpatient setting.
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Conclusion

In aggregate, our study suggests that personality features can be systematically and scalably 

measured using NLP in the inpatient setting, and that these features may relevantly 

contribute to service utilization. Developing treatment strategies for patients scoring high 

in PD features may facilitate more efficient, targeted interventions, and may help reduce the 

impact on mental health service utilization.
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Fig. 1. 
Diagram of personality phenotype generation through the transfer of human expert language 

model into model learned through unsupervised machine learning. A probabilistic topic 

model is learned from patients’ clinical documentation through LDA. The learned topics 

are then matched to the personality symptom domains by linking the learned topic under 

which expert-identified tokens are most common. Thereafter, the linked topics are used as 

the phenotype for the linked personality domain.

Barroilhet et al. Page 11

Psychol Med. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barroilhet et al. Page 12

Ta
b

le
 1

.

Pe
rs

on
al

ity
 tr

ai
t d

om
ai

ns
 in

 D
SM

-5
 a

nd
 I

C
D

-1
1

P
er

so
na

lit
y 

tr
ai

t 
do

m
ai

n
D

ia
gn

os
ti

c 
sy

st
em

D
ef

in
it

io
n

M
ai

n 
pe

rs
on

al
it

y 
fe

at
ur

es
P

er
so

na
lit

y 
tr

ai
ts

 u
se

d 
as

 t
op

ic
s

N
eg

at
iv

e 
af

fe
ct

iv
ity

D
SM

-5
 a

nd
 

IC
D

-1
1

Fr
eq

ue
nt

 a
nd

 in
te

ns
e 

ex
pe

ri
en

ce
s 

of
 h

ig
h 

le
ve

ls
 o

f 
a 

w
id

e 
ra

ng
e 

of
 n

eg
at

iv
e 

em
ot

io
ns

 
(e

.g
. a

nx
ie

ty
, d

ep
re

ss
io

n,
 g

ui
lt/

sh
am

e,
 w

or
ry

, 
an

ge
r, 

et
c.

),
 a

nd
 th

ei
r 

be
ha

vi
or

al
 (

e.
g.

 s
el

f-
ha

rm
) 

an
d 

in
te

rp
er

so
na

l (
e.

g.
 d

ep
en

de
nc

y)
 

m
an

if
es

ta
tio

ns

D
ep

re
ss

ed
, 

pe
ss

im
is

tic
, 

re
m

or
se

fu
l, 

an
xi

ou
s,

 w
or

ri
ed

, 
su

bm
is

si
ve

, 
de

pe
nd

en
t

D
ep

re
ss

iv
e,

 d
ep

re
ss

in
g,

 d
ep

re
ss

ed
, d

ep
re

ss
io

n,
 o

ve
rw

he
lm

ed
, d

is
he

ar
te

ne
d,

 d
is

pi
ri

te
d,

 
di

sc
ou

ra
gi

ng
, g

lo
om

y,
 g

lu
m

, d
ow

nc
as

t, 
ch

ee
rl

es
s,

 d
im

, h
op

el
es

s,
 h

op
el

es
sn

es
s,

 m
el

an
ch

ol
ic

, 
m

el
an

ch
ol

y,
 d

is
m

al
, d

es
pa

ir
ed

, d
es

pa
ir

, d
is

co
ur

ag
ed

, d
is

co
ur

ag
in

g,
 d

es
po

nd
en

t, 
sa

dn
es

s,
 s

ad
, 

so
rr

y,
 r

em
or

se
, r

em
or

se
fu

l, 
un

ha
pp

y,
 d

is
co

ns
ol

at
e,

 m
is

er
ab

le
, o

pp
re

ss
ed

, s
un

k,
 s

un
ke

n,
 b

lu
e,

 
bl

ue
s,

 d
ej

ec
te

d,
 m

is
er

y,
 s

or
ro

w
fu

l, 
un

lu
ck

y,
 s

or
ro

w
, s

pi
ri

tle
ss

, d
es

ol
at

e,
 g

ri
m

, s
ob

bi
ng

, r
ip

pe
d,

 
cr

y,
 c

ry
in

g,
 w

ee
pi

ng
, n

os
ta

lg
ic

, r
eg

re
tf

ul
, l

on
gi

ng
, y

ea
rn

in
g,

 h
om

es
ic

k,
 n

eg
at

iv
e,

 f
at

al
is

tic
, 

di
ss

at
is

fa
ct

io
n,

 d
is

sa
tis

fi
ed

, d
em

or
al

iz
ed

, d
is

ap
po

in
tin

g,
 d

is
ap

po
in

te
d,

 f
ru

st
ra

te
d,

 f
ru

st
ra

tio
n,

 
pe

ss
im

is
m

, p
es

si
m

is
tic

, r
es

ig
na

tio
n,

 r
es

ig
ne

d,
 r

es
ig

n,
 g

ui
lt,

 p
iti

fu
l, 

gu
ilt

y,
 a

nx
io

us
, t

ro
ub

le
d,

 
w

or
ry

in
g,

 v
ul

ne
ra

bl
e,

 m
oo

dy
, e

m
ot

io
na

l, 
in

se
cu

re
, f

ri
gh

te
ne

d,
 a

fr
ai

d,
 a

pp
re

he
ns

iv
e,

 c
ar

ef
ul

, 
co

nc
er

ne
d,

 d
is

tr
es

s,
 d

is
tr

es
se

d,
 f

ea
rf

ul
, f

id
ge

ty
, r

es
tle

ss
, s

ca
re

, s
ca

re
d,

 u
ne

as
y,

 ju
m

py
, n

er
vy

, 
ne

rv
ou

s,
 s

hi
ve

ry
, u

nq
ui

et
, w

or
ri

ed
, w

or
ry

, j
itt

er
y,

 u
pt

ig
ht

, c
lu

tc
he

d,
 d

is
tu

rb
in

g,
 d

is
tu

rb
ed

, 
dr

ea
di

ng
, t

en
se

d,
 te

ns
e,

 s
en

si
tiv

e,
 a

ng
ui

sh
, s

hy
, s

po
ok

ed
, n

eu
ro

tic
, e

dg
y,

 u
nr

es
tf

ul
, u

ns
et

tle
d,

 
in

ad
eq

ua
te

, l
oo

se
, l

os
t, 

lo
os

er
, f

ru
itl

es
s,

 u
se

le
ss

, w
ea

ry
, b

lu
nt

, d
ul

l, 
je

al
ou

s,
 in

st
ab

ili
ty

, u
ns

ta
bl

e,
 

ov
er

se
ns

iti
ve

, h
yp

er
se

ns
iti

ve
, p

an
ic

, p
an

ic
ky

, i
nd

ec
is

io
n,

 in
de

ci
si

ve
, s

en
tim

en
ta

l, 
fr

ag
ile

, 
to

uc
hy

, w
hi

ni
ng

, c
om

pl
ai

ni
ng

, s
ug

ge
st

ib
le

, h
es

ita
tin

g,
 v

ic
tim

iz
at

io
n,

 v
ic

tim
, i

nf
lu

en
ce

ab
le

, 
ir

re
so

lu
te

, w
ea

kn
es

s,
 w

ea
k,

 d
ou

bt
fu

l, 
co

w
ar

d,
 ti

m
or

ou
s,

 ti
m

id
, b

as
hf

ul
, s

ub
m

is
si

ve
ne

ss
, 

su
bm

is
si

ve

A
nt

ag
on

is
m

/
di

ss
oc

ia
lit

y
D

SM
-5

 a
nd

 
IC

D
-1

1
B

eh
av

io
rs

 th
at

 p
ut

 th
e 

in
di

vi
du

al
 a

t o
dd

s 
w

ith
 o

th
er

 p
eo

pl
e,

 in
cl

ud
in

g 
an

 e
xa

gg
er

at
ed

 
se

ns
e 

of
 s

el
f-

im
po

rt
an

ce
 a

nd
 a

 c
on

co
m

ita
nt

 
ex

pe
ct

at
io

n 
of

 s
pe

ci
al

 tr
ea

tm
en

t, 
as

 w
el

l 
as

 a
 c

al
lo

us
 a

nt
ip

at
hy

 to
w

ar
d 

ot
he

rs
, 

en
co

m
pa

ss
in

g 
bo

th
 u

na
w

ar
en

es
s 

of
 o

th
er

s’
 

ne
ed

s 
an

d 
fe

el
in

gs
, a

nd
 a

 r
ea

di
ne

ss
 to

 u
se

 
ot

he
rs

 in
 th

e 
se

rv
ic

e 
of

 s
el

f-
en

ha
nc

em
en

t

M
an

ip
ul

at
iv

e,
 

de
ce

itf
ul

, 
gr

an
di

os
e,

 c
al

lo
us

, 
ho

st
ile

, v
io

le
nt

M
ea

n,
 p

re
te

nt
io

us
, i

m
po

lit
e,

 tr
ea

ch
er

ou
s,

 u
nf

ai
rn

es
s,

 u
nf

ai
r, 

hy
po

cr
iti

ca
l, 

gr
as

pi
ng

, b
oa

st
fu

l, 
co

rr
up

t, 
fa

ls
e,

 li
e,

 li
ar

, l
yi

ng
, d

is
ho

ne
st

, s
m

ug
, g

re
ed

y,
 h

au
gh

ty
, o

st
en

t, 
os

te
nt

at
io

us
, 

sn
ob

, s
no

bb
is

h,
 c

on
ce

ite
d,

 a
nt

ag
on

is
tic

, s
el

fi
sh

, r
ud

e,
 c

ol
dn

es
s,

 c
ol

d,
 s

us
pi

ci
ou

sn
es

s,
 

su
sp

ic
io

us
, v

en
ge

fu
l, 

re
ve

ng
ef

ul
, r

et
al

ia
to

ry
, m

an
ip

ul
at

iv
e,

 a
rr

og
an

t, 
ca

llo
us

, g
ra

nd
io

si
ty

, 
gr

an
di

os
e,

 h
os

til
ity

, h
os

til
e,

 d
ec

ei
tf

ul
, e

xp
lo

ita
tiv

e,
 e

go
ce

nt
ri

c,
 c

al
cu

la
tin

g,
 d

ev
io

us
, 

co
nn

iv
in

g,
 u

ns
cr

up
ul

ou
s,

 d
is

in
ge

nu
ou

s,
 r

eb
uf

fi
ng

, r
ej

ec
tiv

e,
 n

on
co

m
pl

ia
nt

, h
es

ita
nt

, u
nw

ill
in

g,
 

di
so

be
di

en
ce

, d
is

ob
ed

ie
nt

, i
ns

ub
or

di
na

te
, s

ub
ve

rs
iv

e,
 r

eb
el

lio
us

, r
eb

el
, r

eb
el

lio
us

, d
is

ru
pt

iv
e,

 
de

fi
an

t, 
ag

gr
es

si
on

, a
gg

re
ss

iv
e,

 v
io

le
nc

e,
 v

io
le

nt
, r

ut
hl

es
s 

ag
ita

tio
n,

 a
gi

ta
te

d,
 c

ri
tic

, c
ri

tic
al

. 
A

nt
ag

on
is

tic
, s

el
fi

sh
, f

ie
rc

e,
 m

ut
in

ou
s,

 e
xp

lo
si

on
, e

xp
lo

si
ve

, b
os

sy
, a

ut
ho

ri
ta

ri
an

, h
ur

tf
ul

, 
br

us
qu

e,
 c

ho
le

ri
c,

 h
ar

d,
 ir

ri
ta

bl
e,

 ir
ri

ta
bi

lit
y,

 r
ou

gh
, p

ro
vo

ki
ng

, t
yr

an
t, 

ty
ra

nn
ic

al
, e

go
is

tic
, 

eg
ot

is
tic

al
, e

go
tis

t, 
pi

til
es

s,
 li

tig
io

us
, b

el
lic

os
e,

 o
ve

rb
ea

ri
ng

, o
pp

re
ss

iv
e,

 in
to

le
ra

nc
e,

 in
to

le
ra

nt
, 

an
gr

y,
 ir

as
ci

bi
lit

y,
 te

st
in

es
s,

 te
st

y,
 te

tc
hy

, i
ra

sc
ib

le
, q

ua
rr

el
so

m
e,

 s
ur

ly
, f

un
da

m
en

ta
lis

t, 
po

le
m

ic
al

, d
og

m
at

ic
, e

xt
re

m
is

t, 
he

ar
tle

ss
, h

ar
sh

, v
eh

em
en

t, 
di

sp
ut

at
io

us
, r

oi
st

er
in

g,
 e

xc
ita

bl
e,

 
po

m
po

us
, p

re
te

nd
in

g,
 s

tin
gy

, d
ec

ei
vi

ng
, i

ns
in

ce
re

, m
is

er
ly

, a
va

ri
ci

ou
s,

 d
is

lo
ya

l, 
un

tr
ut

hf
ul

, 
ve

na
l, 

go
ss

ip
, g

os
si

py
, m

al
ic

io
us

, b
et

ra
yi

ng
, b

oa
st

in
g,

 f
la

tte
ri

ng
, m

er
ce

na
ry

, s
ly

, v
in

di
ct

iv
e,

 
en

vi
ou

s

D
is

in
hi

bi
tio

n
D

SM
-5

 a
nd

 
IC

D
-1

1
O

ri
en

ta
tio

n 
to

w
ar

d 
im

m
ed

ia
te

 g
ra

tif
ic

at
io

n,
 

le
ad

in
g 

to
 im

pu
ls

iv
e 

be
ha

vi
or

 d
ri

ve
n 

by
 

cu
rr

en
t t

ho
ug

ht
s,

 f
ee

lin
gs

, a
nd

 e
xt

er
na

l 
st

im
ul

i, 
w

ith
ou

t r
eg

ar
d 

fo
r 

pa
st

 le
ar

ni
ng

 o
r 

co
ns

id
er

at
io

n 
of

 f
ut

ur
e 

co
ns

eq
ue

nc
es

Ir
re

sp
on

si
bl

e,
 

im
pu

ls
iv

e,
 

di
st

ra
ct

ib
le

, 
re

ck
le

ss
, 

th
ou

gh
tle

ss

D
is

tr
ac

tib
le

, i
m

pe
tu

ou
s,

 h
as

ty
, i

m
pa

tie
nt

, r
ec

kl
es

s,
 th

ou
gh

tle
ss

, r
is

ky
, c

ar
el

es
s,

 u
nc

on
sc

io
us

, 
fo

ol
ha

rd
y,

 d
ar

ed
ev

il,
 d

ar
e,

 d
ar

in
g,

 b
ra

sh
, o

ve
rb

ol
d,

 im
pu

ls
iv

e,
 c

ap
ri

ci
ou

s,
 im

m
at

ur
e,

 f
ec

kl
es

s,
 

fi
ck

le
, f

lig
ht

y,
 h

ar
eb

ra
in

ed
, i

nc
au

tio
us

, l
ax

, s
ca

tte
rb

ra
in

ed
, u

nc
ar

ef
ul

, u
np

re
di

ct
ab

le
, s

lo
pp

y,
 

in
ef

fi
ci

en
t, 

ne
gl

ig
en

t, 
ne

gl
ec

te
d,

 la
zi

ne
ss

, l
az

y,
 ir

re
sp

on
si

bl
e,

 a
im

le
ss

, u
nr

el
ia

bl
e,

 in
do

le
nt

, 
lic

en
tio

us
, f

ri
vo

lo
us

, u
nt

id
y,

 d
is

or
de

rl
y,

 la
ng

ui
d,

 id
le

, i
nc

on
st

an
t, 

im
pr

ec
is

e,
 im

pr
ud

en
t, 

ir
ra

tio
na

l, 
ra

m
bl

in
g,

 u
nd

is
ci

pl
in

ed
, u

nr
ef

le
ct

in
g,

 d
is

so
lu

te
, b

un
gl

in
g,

 in
ac

cu
ra

te
, u

nf
ai

th
fu

l, 
in

at
te

nt
iv

e,
 s

ill
y,

 c
hi

ld
is

h,
 in

co
ns

id
er

at
e,

 u
nw

is
e,

 in
co

ns
eq

ue
nt

, u
np

er
se

ve
ri

ng

D
et

ac
hm

en
t

D
SM

-5
 a

nd
 

IC
D

-1
1

A
vo

id
an

ce
 o

f 
so

ci
oe

m
ot

io
na

l e
xp

er
ie

nc
e,

 
in

cl
ud

in
g 

bo
th

 w
ith

dr
aw

al
 f

ro
m

 
in

te
rp

er
so

na
l i

nt
er

ac
tio

ns
 (

ra
ng

in
g 

fr
om

 
ca

su
al

, d
ai

ly
 in

te
ra

ct
io

ns
 to

 f
ri

en
ds

hi
ps

 
to

 in
tim

at
e 

re
la

tio
ns

hi
ps

) 
an

d 
re

st
ri

ct
ed

 

D
et

ac
he

d,
 

un
m

ot
iv

at
ed

, 
in

se
ns

iti
ve

, 
re

se
rv

ed
, a

vo
id

an
t, 

is
ol

at
ed

, a
lo

of

A
lo

of
, r

et
ir

in
g,

 in
se

ns
iti

ve
, w

ith
dr

aw
n,

 a
vo

id
an

t, 
an

he
do

ni
c,

 d
et

ac
he

d,
 is

ol
at

ed
, r

es
er

ve
d,

 
di

st
an

t, 
un

so
ci

ab
le

, r
em

ot
e,

 u
na

pp
ro

ac
ha

bl
e,

 u
nc

om
m

un
ic

at
iv

e,
 in

tr
ov

er
te

d,
 r

es
tr

ai
ne

d,
 

re
tir

ed
, r

et
re

at
ed

, s
hr

in
ki

ng
, d

is
in

te
re

st
ed

, i
nc

ur
io

us
, i

nd
if

fe
re

nt
, n

on
-g

re
ga

ri
ou

s,
 o

ff
is

h,
 

re
cl

us
e,

 r
ec

lu
si

ve
, s

ile
nt

, s
ol

ita
ry

, s
ta

nd
of

fi
sh

, t
ac

itu
rn

, u
nc

om
pa

ni
on

ab
le

, u
nc

on
ce

rn
ed

, 
un

de
m

on
st

ra
tiv

e,
 u

nf
or

th
co

m
in

g,
 u

ni
nt

er
es

te
d,

 a
pa

th
et

ic
, d

if
fi

de
nt

, i
m

pe
rv

io
us

, n
on

ch
al

an
t, 

un
ca

ri
ng

, u
ni

nv
ol

ve
d,

 u
nr

es
po

ns
iv

e,
 u

ns
ym

pa
th

et
ic

, d
is

pa
ss

io
na

te
, h

ee
dl

es
s,

 li
st

le
ss

, 

Psychol Med. Author manuscript; available in PMC 2023 March 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barroilhet et al. Page 13

P
er

so
na

lit
y 

tr
ai

t 
do

m
ai

n
D

ia
gn

os
ti

c 
sy

st
em

D
ef

in
it

io
n

M
ai

n 
pe

rs
on

al
it

y 
fe

at
ur

es
P

er
so

na
lit

y 
tr

ai
ts

 u
se

d 
as

 t
op

ic
s

af
fe

ct
iv

e 
ex

pe
ri

en
ce

 a
nd

 e
xp

re
ss

io
n,

 
pa

rt
ic

ul
ar

ly
 li

m
ite

d 
he

do
ni

c 
ca

pa
ci

ty
no

np
ar

tis
an

, p
as

si
on

le
ss

, p
hl

eg
m

at
ic

, s
co

rn
fu

l, 
un

ar
ou

se
d,

 u
ne

m
ot

io
na

l, 
un

m
ov

ed
, 

un
pr

ej
ud

ic
ed

, u
ns

oc
ia

l, 
la

co
ni

c,
 r

et
ic

en
t, 

cu
rt

, u
ne

m
pa

th
et

ic
, d

um
b,

 s
pe

ec
hl

es
s,

 u
ne

xp
re

ss
iv

e,
 

ap
ar

t, 
se

cl
ud

ed
, a

w
ay

, s
eq

ue
st

er
ed

, c
an

di
d,

 im
pe

rs
on

al
, l

ac
ka

da
is

ic
al

Ps
yc

ho
tic

is
m

O
nl

y 
D

SM
-5

E
xh

ib
iti

ng
 a

 w
id

e 
ra

ng
e 

of
 c

ul
tu

ra
lly

 
in

co
ng

ru
en

t, 
od

d,
 e

cc
en

tr
ic

, o
r 

un
us

ua
l 

be
ha

vi
or

s 
an

d 
co

gn
iti

on
s,

 in
cl

ud
in

g 
bo

th
 th

ou
gh

t p
ro

ce
ss

 (
e.

g.
 p

er
ce

pt
io

n,
 

di
ss

oc
ia

tio
n)

 a
nd

 c
on

te
nt

 (
e.

g.
 b

el
ie

fs
)

E
cc

en
tr

ic
, 

ab
no

rm
al

, o
dd

, 
bi

za
rr

e,
 s

tr
an

ge
, 

w
ei

rd

E
cc

en
tr

ic
, u

nc
on

ve
nt

io
na

l, 
za

ny
, m

ad
ca

p,
 p

ec
ul

ia
r, 

od
d,

 s
tr

an
ge

, b
iz

ar
re

, w
ei

rd
, c

ra
zy

, 
ex

tr
av

ag
an

t, 
fr

ea
k,

 g
ro

te
sq

ue
, u

nu
su

al
, s

in
gu

la
r, 

w
ild

, l
ud

ic
ro

us
, r

id
ic

ul
ou

s,
 o

ut
la

nd
is

h,
 

fl
am

bo
ya

nt
, a

w
kw

ar
d,

 a
w

ry
, d

ow
dy

, e
rr

at
ic

, i
di

os
yn

cr
at

ic
, k

oo
ky

, o
ff

be
at

, q
ui

rk
y,

 w
hi

m
si

ca
l, 

ab
er

ra
nt

, n
ut

ty
, b

en
t, 

od
db

al
l, 

an
om

al
ou

s,
 c

oc
ke

ye
d,

 f
re

ak
is

h,
 f

un
ky

, q
ua

in
t, 

qu
iz

zi
ca

l, 
un

co
m

m
on

, u
nr

ea
so

na
bl

e

A
na

nk
as

tia
O

nl
y 

IC
D

-1
1

N
ar

ro
w

 f
oc

us
 o

n 
th

e 
co

nt
ro

l a
nd

 r
eg

ul
at

io
n 

of
 o

ne
’s

 o
w

n 
an

d 
ot

he
rs

’ 
be

ha
vi

or
 to

 e
ns

ur
e 

th
at

 th
in

gs
 c

on
fo

rm
 to

 th
e 

in
di

vi
du

al
’s

 
pa

rt
ic

ul
ar

is
tic

 id
ea

l. 
T

ra
its

 in
 th

is
 d

om
ai

n 
in

cl
ud

e 
co

nc
er

n 
w

ith
 f

ol
lo

w
in

g 
ru

le
s 

an
d 

m
ee

tin
g 

ob
lig

at
io

ns

R
ig

id
, 

pe
rf

ec
tio

ni
st

, 
pe

rs
ev

er
at

iv
e,

 
ob

se
ss

iv
e,

 
st

ub
bo

rn
, 

co
nt

ro
lli

ng

D
ut

if
ul

, d
is

ci
pl

in
ed

, p
un

ct
ua

l, 
sc

ru
pu

lo
us

, n
ea

t, 
pe

rs
ev

er
in

g,
 o

rg
an

iz
ed

, a
m

bi
tio

us
, m

et
ic

ul
ou

s,
 

pr
ec

is
e,

 o
rd

er
ly

, i
nd

us
tr

io
us

, t
ho

ro
ug

h,
 ti

dy
, s

tu
di

ou
s,

 p
er

fe
ct

io
n,

 p
er

fe
ct

io
ni

st
ic

, m
et

ho
di

ca
l, 

ri
go

ro
us

, f
au

ltl
es

s,
 in

ar
tis

tic
, t

ra
di

tio
na

l, 
co

nv
en

tio
na

l, 
bu

si
ne

ss
lik

e,
 s

ys
te

m
at

ic
, d

em
an

di
ng

, 
fu

ss
y,

 e
xa

ct
in

g,
 r

ig
id

, o
ve

rp
ro

du
ct

iv
e,

 in
fl

ex
ib

le
, m

or
al

is
tic

, i
ns

is
te

nt
, f

la
w

le
ss

, p
er

fe
ct

, 
de

ta
ile

d,
 in

tr
an

si
ge

nt
, s

te
rn

, s
tr

in
ge

nt
, s

tu
bb

or
n,

 h
ea

ds
tr

on
g,

 o
bs

tin
at

e,
 f

ix
ed

, u
ny

ie
ld

in
g,

 
bu

llh
ea

de
d,

 c
ha

ng
el

es
s,

 o
bd

ur
at

e,
 s

tr
ic

t, 
st

if
fn

es
s,

 s
tif

f,
 c

ho
os

y,
 f

in
ic

ky
, s

qu
ea

m
is

h,
 e

xa
ct

, 
pa

in
st

ak
in

g,
 o

bs
es

si
ve

, o
bs

es
si

ve
ne

ss
, p

un
ct

ili
ou

s,
 q

ue
ru

lo
us

, s
tic

kl
in

g

Psychol Med. Author manuscript; available in PMC 2023 March 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barroilhet et al. Page 14

Table 2.

Cohort characteristics at admission

Variables N = 4702

Age at discharge [years, mean (SD)] 44.97 (16.64)

Length of stay [mean (SD)] 9.95 (3.96)

Log Charlson Comorbidity Index [mean (SD)] 3.14 (3.96)

Sex [male, n (%)] 2327 (49.37)

Public Insurance [n (%)] 2873 (60.96)

Admission through emergency room [n (%)] 3130 (66.41)

Race/ethnicity [n (%)]

 White 3412 (72.40)

 Black 466 (9.89)

 Hispanic 395 (8.38)

 Aslan 176 (3.73)

 Other 253 (5.37)

Diagnosis at admission [n (%)]

 Major depressive disorder 1021 (21.73)

 Bipolar disorder 605 (12.88)

 Other mood disorders 510 (10.85)

 Schizophrenia 432 (9.19)

 Other psychosis 389 (8.28)

 Substance use disorders 146 (3.11)

 Anxiety and other neurotic disorders 121 (2.58)

 Personality disorders 26 (0.55)

 Other disorders 1449 (30.84)
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Table 4.

Regression model of personality trait domains and hospital length of stay (n = 4687 admissions)

Variables Model with personality trait domains

β (95% confidence interval)
a

p-value

Personality domain

 Disinhibition 2.705 (2.182 to 3.228) <0.001

 Psychoticism 0.802 (0.188 to 1.416) 0.010

 Negative affectivity 0.723 (0.231 to 1.215) 0.004

 Antagonism/Dissociality 0.571 (−0.355 to 1.499) 0.227

 Anankastia −0.116 (−0.325 to 0.093) 0.277

 Detachment −0.290 (−0.566 to −0.015) 0.039

Sociodemographic features

 Age at discharge 0.009 (0.007 to 0.012) <0.001

 Sex, male −0.088 (−0.144 to −0.032) 0.002

 Race, white 0.037 (−0.027 to 0.102) 0.262

 Public insurance −0.001 (−0.053 to 0.054) 0.981

 Admission through ER −0.154 (−0.218 to −0.089) <0.001

 Charlson Comorbidity Index −0.007 (−0.015 to 0.001) 0.094

ER, emergency room.

aβ (95% confidence interval) is equal to the variation (and its 95% CI) in days of length of stay, if the named personality trait domain score 
increased/decreased by 10%.
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