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Abstract

Diagnostic accuracy studies in pulmonary tuberculosis (PTB) are complicated by the lack of

a perfect reference standard. This limitation can be handled using latent class analysis

(LCA), assuming independence between diagnostic test results conditional on the true

unobserved PTB status. Test results could remain dependent, however, e.g. with diagnostic

tests based on a similar biological basis. If ignored, this gives misleading inferences. Our

secondary analysis of data collected during the first year (May 2018 –May 2019) of a com-

munity-based multi-morbidity screening program conducted in the rural uMkhanyakude dis-

trict of KwaZulu Natal, South Africa, used Bayesian LCA. Residents of the catchment area,

aged�15 years and eligible for microbiological testing, were analyzed. Probit regression

methods for dependent binary data sequentially regressed each binary test outcome on

other observed test results, measured covariates and the true unobserved PTB status.

Unknown model parameters were assigned Gaussian priors to evaluate overall PTB preva-

lence and diagnostic accuracy of 6 tests used to screen for PTB: any TB symptom, radiolo-

gist conclusion, Computer Aided Detection for TB version 5 (CAD4TBv5�53),

CAD4TBv6�53, Xpert Ultra (excluding trace) and culture. Before the application of our pro-

posed model, we evaluated its performance using a previously published childhood pulmo-

nary TB (CPTB) dataset. Standard LCA assuming conditional independence yielded an

unrealistic prevalence estimate of 18.6% which was not resolved by accounting for condi-

tional dependence among the true PTB cases only. Allowing, also, for conditional depen-

dence among the true non-PTB cases produced a 1.1% plausible prevalence. After

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0282417 March 2, 2023 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Keter AK, Lynen L, Van Heerden A, Wong

E, Reither K, Goetghebeur E, et al. (2023)

Evaluation of tuberculosis diagnostic test accuracy

using Bayesian latent class analysis in the presence

of conditional dependence between the diagnostic

tests used in a community-based tuberculosis

screening study. PLoS ONE 18(3): e0282417.

https://doi.org/10.1371/journal.pone.0282417

Editor: Kamal Kishore Chopra, New Delhi

Tuberculosis Centre, INDIA

Received: December 20, 2022

Accepted: January 15, 2023

Published: March 2, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0282417

Copyright: © 2023 Keter et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: This work is based

on analysis of secondary data published in the

https://orcid.org/0000-0003-2141-4838
https://doi.org/10.1371/journal.pone.0282417
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282417&domain=pdf&date_stamp=2023-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282417&domain=pdf&date_stamp=2023-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282417&domain=pdf&date_stamp=2023-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282417&domain=pdf&date_stamp=2023-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282417&domain=pdf&date_stamp=2023-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0282417&domain=pdf&date_stamp=2023-03-02
https://doi.org/10.1371/journal.pone.0282417
https://doi.org/10.1371/journal.pone.0282417
http://creativecommons.org/licenses/by/4.0/


incorporating age, sex, and HIV status in the analysis, we obtained 0.9% (95% CrI: 0.6, 1.3)

overall prevalence. Males had higher PTB prevalence compared to females (1.2% vs.

0.8%). Similarly, HIV+ had a higher PTB prevalence compared to HIV- (1.3% vs. 0.8%). The

overall sensitivity for Xpert Ultra (excluding trace) and culture were 62.2% (95% CrI: 48.7,

74.4) and 75.9% (95% CrI: 61.9, 89.2), respectively. Any chest X-ray abnormality,

CAD4TBv5�53 and CAD4TBv6�53 had similar overall sensitivity. Up to 73.3% (95% CrI:

61.4, 83.4) of all true PTB cases did not report TB symptoms. Our flexible modelling

approach yields plausible, easy-to-interpret estimates of sensitivity, specificity and PTB

prevalence under more realistic assumptions. Failure to fully account for diagnostic test

dependence can yield misleading inferences.

Introduction

The World Health Organization (WHO) recommends that a case of tuberculosis (TB) be con-

sidered “bacteriologically confirmed” if the biological specimen yields a positive test result on

smear microscopy, culture, or WHO-recommended rapid molecular test for TB (e.g. Xpert

MTB/RIF) [1, 2]. A combination of any two or all of the three microbiological tests can also be

used to ascertain the presence of active TB. However, inference based on an imperfect refer-

ence standard, or a combination of imperfect reference standards, is prone to bias. To over-

come this problem, latent class analysis (LCA) can be used to evaluate imperfect diagnostic

tests, including the reference standard itself. This approach is used for identifying unobserved

mutually exclusive subgroups in the population using information from the measured individ-

ual characteristics [3]. It has enjoyed extensive application in many disciplines, medical and

non-medical. In the medical field, extensive applications have been carried out in HIV and

cancer screening [4, 5]. Over the past few decades, there has been growing interest in the bio-

medical field, including the evaluation of diagnostic tests in the absence of a gold standard in

the field of infectious diseases, in both human and veterinary medicine [4, 6]. LCA was applied

in the early 1980s to evaluate the performance of two skin tests, Tine and Mantoux, for the

detection of TB [7, 8]. Recently, it was applied to evaluate the diagnostic tests used to diagnose

children suspected of childhood pulmonary TB (CPTB) in South Africa [9]. In its application,

standard LCA assumes that conditional on the true disease status the diagnostic test misclassi-

fication error rates (MER) are independent. This implies that the MER of the diagnostic tests

are also constant across the underlying subpopulations [7]. This conditional independence

model (CIM), yields misleading inferences when the data under consideration violate the

assumptions. In practice, diagnostic test dependence can remain even after conditioning on

the true disease status, especially for diagnostic tests based on a similar biological basis.

For example, the three sputum-based microbiological tests for detecting mycobacterium

bacilli are more likely to be dependent among the true PTB cases because individuals with

higher bacillary load are more likely to test positive for active TB on the three diagnostic tests

[9, 10]. This dependence is likely higher when the same sputum sample is used. Conversely,

the absence of TB bacilli in the sample induces negligible dependence. Hence, conditional on

the true non-TB status the three microbiological tests are presumed independent [9, 10]. TB-

compatible symptoms such as cough, fever, night sweats, and unexplained weight loss among

others are manifestations of the severity of the disease encoded in high bacillary load. How-

ever, a high proportion of bacteriologically confirmed cases are asymptomatic [11]. Similarly,

radiological methods such as radiologist interpretation of chest X-ray and Computer Aided
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Detection for TB (CAD4TB) are more likely to be positive when true TB patients are symp-

tomatic because positivity rates are linked to the progression of the disease and increasing

damage to the lungs. Nonetheless, a high proportion of bacteriologically confirmed cases with

chest X-ray abnormalities are also asymptomatic [12]. This reveals a low chance of dependence

between (any) TB symptom, radiological methods and microbiological tests among the true

PTB cases. On the contrary, radiologist interpretation of chest X-ray images and CAD4TB are

more likely dependent among true PTB cases.

TB symptoms can also be associated with other etiologies such as bacterial pneumonia,

malaria, non-tuberculous mycobacteria and chronic obstructive pulmonary disease (COPD).

Hence, they can also be wrongly interpreted as suggestive of PTB by a clinician, a radiologist

or CAD4TB that identifies abnormalities in the chest using chest X-ray images. This also

induces dependence between TB symptoms, radiologist conclusion and CAD4TB among the

true non-PTB cases. Additionally, a reported history of recent TB infection can be identified

by chest X-ray and Xpert MTB/RIF. This also creates a conditional dependence between X-

ray-based methods and Xpert MTB/RIF among the true non-PTB cases.

Further, the performance of TB symptom screening, the three microbiological tests and

radiography-based diagnosis can also be affected by comorbidities such as advanced HIV dis-

ease. This induces additional dependence between these diagnostic methods, separately

among the true PTB cases and the true non-PTB cases [9]. Hence, the estimation of PTB prev-

alence and properties of TB symptoms, microbiological tests and radiography-based diagnosis

in the presence of test dependence is nontrivial. Using standard CIM is therefore expected to

yield incorrect inferences.

In a quest to circumvent the limitations of CIM with 2 latent classes, models that allow iso-

lation of the covariance between diagnostic tests have been proposed [8, 10, 13]. Dendukuri

and Joseph proposed Bayesian versions of the fixed effects model by Vacek (1985) and the ran-

dom effects model by Qu et al (1996) [14]. Although the random effects LCA could handle

higher-order covariance terms, it proceeds under distributional assumptions and functional

relationships between the diagnostic test properties and the random effects that may not be

verifiable from the data. While arguing that modelling of covariance terms is difficult to com-

bine with expert opinion, Berkvens et al (2006) extended the approach based on conditional

probabilities [15] that was previously applied to two diagnostic tests [16]. We find this method

the most attractive and appealing because it is easy to relate to clinical practice and easy to elicit

prior distributions for the parameters from experts. This approach involves the specification of

the model for the joint probability of a combination of multiple diagnostic tests as a function

of the overall disease prevalence, sensitivity and specificity of the first diagnostic test and con-

ditional probabilities of the other diagnostic tests using the chain rule of conditional probabil-

ity. We propose a modification to this approach such that the conditional probabilities of the

diagnostic tests are modelled using regression methods for dependent binary outcomes [17].

The probit link function is used to relate the outcome and the independent variables [18].

Hence, we call these models regressive probit models. We extend the method to incorporate

measured categorical variables known to affect the prevalence and diagnostic test accuracy

[19]. Higher-order covariance terms can be estimated by incorporating higher-order interac-

tion terms in the model. Priors will then be assigned to the regression parameters. Though not

a requirement, this approach benefits from some logical ordering in the diagnostic tests. This

aligns well with algorithms where a subject usually undergoes initial screening using a WHO

TB symptom screen followed by one or more diagnostic tests, culminating in confirmatory

testing using Xpert MTB/RIF or culture.

We evaluated our proposed approach using previously published data of hospitalized chil-

dren suspected of childhood pulmonary TB (CPTB) in two facilities in Cape Town, South
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Africa [9]. We then applied our method to analyze data from a community-based multi-mor-

bidity survey conducted in a rural district of KwaZulu Natal province, South Africa [20].

Methods

Model

Let the random variable Yj, j = 1,2,. . .,J denote the jth diagnostic test and the random variable

D denote the latent (unobserved/unmeasured) disease status such that Yj = 0(1) if the jth diag-

nostic test result is negative (positive) and D = 0(1) if the true disease status is negative (posi-

tive). Under the assumption of conditional independence, the joint probability of a

combination of test results from a set of J diagnostic tests Y = (Y1, Y2,� � �,YJ) is given by [21]

PrðyÞ ¼
X1

d¼0

PrðD ¼ dÞ
YJ

j¼1

PrðYj ¼ yjjD ¼ dÞ ð1Þ

However, for J dependent diagnostic tests Eq (1) is wrong and will lead to incorrect infer-

ences. Under Bayesian inference, we extended Eq (1) to allow modelling of the joint probabil-

ity of a set of J dependent diagnostic tests in a function of disease prevalence, sensitivity and

specificity of the first diagnostic test and such probabilities of the earlier diagnostic tests condi-

tional on the results of already modelled test outcomes, using chain-rule of conditional proba-

bility (Section 1 in S1 File). We extended the model to additionally include observed covariates

known to affect the diagnostic accuracy and/or prevalence.

Applications

Childhood pulmonary tb (cptb) data. This study was conducted between February 2009

and June 2014 in two hospitals in Cape Town, South Africa among hospitalized children sus-

pected of CPTB. The participants were consecutively enrolled if they presented with signs and

symptoms akin to CPTB. Children aged below 15 years with cough lasting >2 weeks were

enrolled if they had a household contact with TB in the past 3 months preceding enrollment,

lost or failed to gain weight in the past 3 months preceding enrollment, had a positive skin test

to purified protein derivative, or had a chest radiography suggestive of CPTB. Children who

had received TB treatment or prophylaxis for>72 hours before enrollment, who were not resi-

dents of Cape Town, who failed to produce induced sputum specimens or whom the legal par-

ent or guardian failed to give informed consent were excluded. The diagnostic tests involved

in this study were 1) tuberculin skin test (TST), 2) chest X-ray (radiography), 3) smear micros-

copy, 4) Xpert MTB/RIF (Xpert) and 5) culture. Further details of the study are found else-

where [9]. According to the experts in the original study, the three microbiological tests based

on sputum samples (smear microscopy, Xpert and culture) are more likely dependent in chil-

dren with CPTB because the sensitivities of these tests are functions of the severity of CPTB

[9]. Chest X-ray findings were assumed to have negligible dependence with the other diagnos-

tic tests because it is based on a different marker of CPTB. TST was assumed to be negatively

correlated with microbiological tests among children with severe disease because TST has

been reported to be less sensitive in persons, particularly adults, with a severe disease which

can be associated with a higher bacillary burden. All these diagnostic tests were assumed to be

independent among the children without CPTB [9]. In the previous analysis, the authors used

a Gaussian random effect on the probit scale to represent CPTB bacterial load. They also

allowed the sensitivities of culture, Xpert and smear microscopy and the sensitivity of TST to,

respectively, have linear and quadratic functions of this random effect. The sensitivity of the

chest X-ray was held constant. We aimed to evaluate evidence of residual dependence amongst
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test errors and its impact on the estimated prevalence and diagnostic test properties, and com-

pare our findings to those obtained in the previous two studies [9, 10]. Data for a total of 749

children were included in our analysis.

Active TB case-finding study in KwaZulu-Natal, South Africa (“Vukuzazi” study). The

data for this analysis were collected in the rural uMkhanyakude district of northern KwaZulu

Natal during the first year (May 2018—May 2019) of a community-based multimorbidity

screening programme in South Africa (“Vukuzazi” study) [20, 22, 23]. This dataset was

accessed and analyzed in conformity with the binding agreement contained in [20]. Individu-

als aged�15 years and residents of households in the Africa Health Research Institute (AHRI)

Data Surveillance System (DSS) area were eligible for enrollment. Briefly, posterior-anterior

digital chest X-rays were obtained from the participants and subsequently interpreted by

CAD4TB version 5 (CAD4TBv5). CAD4TBv5 calculated a score (ranging from 0–100) indicat-

ing lung abnormalities and the likelihood of active pulmonary TB. Within seven days of enroll-

ment, an expert radiologist with>35 years of experience reviewed all the chest X-rays in a

central setting blinded from CAD4TBv5 score and any other patient information and classified

them as depicting either normal or abnormal lung fields. For the chest X-ray images depicting

abnormal lung fields, the radiologist further classified them as highly suggestive of active TB or

not suggestive of active TB. CAD4TBv6, an updated version of CAD4TBv5, became available

after data collection and was used to calculate CAD4TBv6 scores retrospectively. In total, 9914

participants meeting the eligibility criteria were enrolled in the study. Following WHO guide-

lines for TB prevalence surveys, participants were eligible for microbiological testing if they

reported any cardinal TB symptom (fever, night sweats, weight loss or cough) or if they had an

abnormal chest X-ray as indicated by CAD4TBv5 score above a predefined triaging threshold

or if the radiologist indicated abnormal lung fields despite CAD4TBv5 score below the thresh-

old. Sputum samples from 4976 participants were analyzed for Mycobacterium tuberculosis
using Xpert Ultra MTB/RIF1 (Xpert Ultra) and liquid MGIT culture. Further details of the

study are found elsewhere [12, 22, 23]. In this analysis, we consider any TB symptom (Y1),

radiologist conclusion (Y2), CAD4TBv5�53 (Y3), CAD4TBv6�53 (Y4), Xpert Ultra (Y5), and

culture (Y6) (Fig 1). A technical description of how the thresholds for CAD4TB version 5 and

version 6 were determined is given in Section 3 of the S1 File. Xpert Ultra, when positive, pro-

vides a semiquantitative result defined either as very low, low, medium or high. It also provides

an additional category called “trace” classified as the lowest level in the semiquantitative scale.

It has low quantities of Deoxyribonucleic Acid (DNA) and often corresponds to paucibacillary

specimens [12, 24, 25]. Due to the emerging uncertainty regarding the clinical significance of

“trace” laboratory findings that occur as the only microbiological evidence for TB [12, 26], we

excluded this category from the Xpert Ultra positive i.e. it is defined as negative (hereinafter

defined as Xpert Ultra (excluding trace)). A total of 4976 participants eligible and tested with

microbiological tests were included in our analysis.

As depicted in Fig 1, the TB bacillary load ðUþ
1
Þ, which indicates the presence of PTB and is

the source of conditional dependence between microbiological tests, is usually not routinely

measured (or observed). Similarly, the radiological features ðUþ
2
Þ such as cavitation, volume

loss and fibrosis in the lungs among other manifestations that indicate the extent of lung dam-

age are also not usually measured. The presence of these radiological changes ðUþ
2
Þ among the

symptomatic individuals with PTB induces dependence between radiological interpretations

and CAD4TB results. Given that higher bacillary load is linked to PTB-compatible symptoms

such as cough which is a consequence of cavitation in the lungs attributable to higher bacillary

load, the unmeasured radiological features ðUþ
2
Þ indicative of the extent of lung damage is cor-

related with the unmeasured (high) bacillary load ðUþ
1
Þ. The unmeasured radiological features
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ðU �
3
Þ due to other etiologies such as bacterial pneumonia, past PTB and COPD among symp-

tomatic individuals without PTB induces dependence between any TB symptom, radiological

interpretations and CAD4TB results.

Statistical analysis

In the analysis of CPTB data, we allowed TST (Y1), radiography (Y2), microscopy (Y3), Xpert

(Y4) and culture (Y5) as the possible ordering of the diagnostic tests. First, we fitted the condi-

tional independence model (CIM) (Model 0). Next, we hierarchically fitted three other models

allowing for conditional dependence between the diagnostic tests. The models considered in

the analysis of CPTB data and the dependencies allowed are presented in Table 1. Model 1 was

based on expert opinion [9], Model 2 adds dependence between TST and radiography in non-

CPTB cases to Model 1, while Model 3 additionally allows dependency of all diagnostic tests

with radiography among the true CPTB cases. Model 4 is the reduced version of Model 3 that

omits the dependence between TST and radiography in non-CPTB cases. The structure of the

models and the priors assigned to the parameters are presented in (S1 Table in S1 File).

For Vukuzazi, we allowed any TB symptom (Y1), radiologist conclusion (Y2),

CAD4TBv5�53 (Y3), CAD4TBv6�53 (Y4), Xpert Ultra (excluding trace) (Y5) and culture (Y6)

as the sequence of the available set diagnostic indicators. Using the radiologist’s conclusion

based on the chest X-ray findings we derived two variables: any chest X-ray abnormality (vs.

normal lung fields), and chest X-ray abnormality suggestive of active TB (vs. abnormalities

NOT suggestive of active TB combined with normal lung fields). We then performed two sets

of analyses to evaluate the set of six diagnostic tests. The first analysis incorporates the radiolo-

gist’s conclusion as any chest X-ray abnormality in the set of six diagnostic tests. The second

incorporates the radiologist’s conclusion as chest X-ray abnormality suggestive of active TB in

the set of six diagnostic tests.

Fig 1. Heuristic model of diagnostic tests, unobserved PTB status, measured covariates and unobserved sources of

diagnostic test dependence for Vukuzazi data.

https://doi.org/10.1371/journal.pone.0282417.g001
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First, we fitted the CIM (Model 0). Next, we hierarchically fitted four other models allowing

for conditional dependence between the diagnostic tests. Similarly, the models considered in

the analysis of Vukuzazi data and the dependencies allowed are presented in Table 1. Model 1

relaxes the assumptions in Model 0 to allow conditional dependence between the radiologist

conclusion, CAD4TBv5 and CAD4TBv6 and conditional dependence between Xpert Ultra

(excluding trace) and culture among the true PTB cases. Model 2 adds to Model 1 the condi-

tional dependence between any TB symptom, radiologist conclusion, CAD4TBv5 and

CAD4TBv6 among the true non-PTB cases. Model 3 relaxes the assumptions in Model 2 to

additionally allow conditional dependence between all the diagnostic tests except any TB

symptom among the true PTB cases. Model 4 further relaxes the assumptions in Model 3 to

additionally allow conditional dependence between all the diagnostic tests among the true

PTB cases. Model 2 was identified as the model that best explains the conditional dependence

in the data. Consequently, the conditional probabilities in the model were adjusted for the

available measured covariates (age, sex and HIV status) known to affect the performance of

the diagnostic tests and the prevalence of PTB. This model is presented in Fig 1. There was no

evidence of varying estimates of specificity for Xpert Ultra (excluding trace) and culture across

age, sex and HIV subpopulations. Hence, the analysis did not adjust for these covariates in the

corresponding probit regression models. From the available dataset in the repository, age was

already categorized in a ten-year interval. However, in our analysis, we collapsed the age

groups into twenty-year intervals to avoid overfitting among the true PTB cases. Model selec-

tion was based on deviance [27, 28]. Among the competing models, the model with smaller

deviance is considered to fit the data well. We also calculated the root mean square error

(RMSE) deviation, defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðf̂ � f Þ2
q

where f̂ and f are the predicted and observed fre-

quencies respectively, to assess the predictive power of the model. A smaller estimate of RMSE

indicates good predictive power of the model among the competing models. Stochastic model-

ling using LCA was used to determine the threshold scores for CAD4TBv5 and CAD4TBv6. A

detailed description and illustration of how the cut-off values were determined are given in

(Section 3 in S1 File). The plausibility for the inclusion of CAD4TBv5 and CAD4TBv6 in the

same model was assessed using a scatter plot of the scores for the two versions (S3 Fig in

Table 1. Models considered in the analysis of CPTB and Vukuzazi datasets.

CPTB Dependencies allowed

TB-positive TB-Negative

Model 0 • None • None

Model 1 • Between TST (Y1), microscopy (Y3), Xpert (Y4) and culture (Y5) • None

Model 2 • Between TST (Y1), microscopy (Y3), Xpert (Y4) and culture (Y5) • TST (Y1) and radiography (Y2)

Model 3 Between TST (Y1), radiography (Y2), microscopy (Y3), Xpert (Y4) and culture (Y5) • TST (Y1) and radiography (Y2)

Model 4 • Between TST (Y1), radiography (Y2), microscopy (Y3), Xpert (Y4) and culture (Y5) • None

Vukuzazi

Model 0 • None • None

Model 1 • Between radiologist conclusion (Y2), CAD4TBv5�53 (Y3) and CAD4TBv6�53 (Y4)

• Between Xpert Ultra (Y5) and culture (Y6)

• None

Model 2 • Between radiologist conclusion (Y2), CAD4TBv5�53 (Y3) and CAD4TBv6�53(Y4)

• Between Xpert Ultra (Y5) and culture (Y6)

• Any TB symptom (Y1), radiologist conclusion (Y2),

CAD4TBv5�53 (Y3), CAD4TBv6�53 (Y4)

Model 3 • Between radiologist conclusion (Y2), CAD4TBv5�53 (Y3), CAD4TBv6�53 (Y4), Xpert

Ultra (Y5) and culture (Y6)

• Any TB symptom (Y1), radiologist conclusion (Y2),

CAD4TBv5�53 (Y3), CAD4TBv6�53 (Y4)

Model 4 • Between any TB symptom (Y1), radiologist conclusion (Y2), CAD4TBv5�53 (Y3),

CAD4TBv6�53 (Y4), Xpert Ultra (Y5) and culture (Y6)

• Any TB symptom (Y1), radiologist conclusion (Y2),

CAD4TBv5�53 (Y3), CAD4TBv6�53 (Y4)

https://doi.org/10.1371/journal.pone.0282417.t001
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S1 File). Using Model 2 adjusted for age, sex and HIV status, we provide a sensitivity analysis

with the Xpert Ultra positive including the “trace” category (S15 Table in S1 File).
Using probit regression methods for dependent binary outcomes, we sequentially regressed

each binary test outcome on the other observed test results conditional on the true unknown

PTB status. Model parameters were assigned Gaussian priors (S1-S5 Tables in S1 File). Expert

opinion was utilized to understand the potential dependencies and prior knowledge of some

parameters. Inferences were based on the median summaries of the posterior distributions of

PTB prevalence, diagnostic test sensitivity and specificity. We present the estimates and the

95% credible intervals (95% CrI).

We ran 50,000 Monte Carlo iterations with the first 25,000 discarded as ‘burn-in’. For all

analyses, convergence in model fitting was assessed by running three parallel chains. To reduce

autocorrelation every 10th iteration was saved (“thinning”) [29]. Trace plots and Gelman-

Rubin convergence diagnostics were used to monitor mixing in the chains (S4-S10 Figs in S1

File). All analyses were implemented in R version 4.2.1 using R2jags package for R version

4.2.1. [30, 31]

Inclusivity in global research

Additional information regarding the ethical, cultural, and scientific considerations specific to

inclusivity in global research is included in the S1 Checklist.

Results

Childhood pulmonary TB (CPTB) data

Results from the analysis of CPTB data are shown in Table 2. The results from the model

under the assumption of conditional independence (Model 0) can be misleading. Specifically,

this model overestimates the sensitivity of culture thus incorrectly portraying this diagnostic

test as (near) perfect. The model based on expert opinion (Model 1) gives similar results to

those reported in a previous study [10]. The results reported in [9] are slightly different from

our findings possibly because the model was adjusted for measured covariates. However, the

95% credible intervals for the estimates from all the models overlap substantially. Based on the

deviance, the model that accounts for conditional dependence between all the diagnostic tests

except radiography among children with CPTB and between TST and radiography among the

children without CPTB (Model 2) performed as good as the model that accounts for condi-

tional dependence between all the diagnostic tests among children with CPTB and between

TST and radiography among the children without CPTB (Model 3). Nonetheless, the reduc-

tion in deviance from 102.1 for Model 2 to 101.7 for Model 3 does not outweigh the complexity

in Model 3. This leaves Model 2 as the model of choice. Model 2 produced estimates of sensi-

tivity for microbiological tests (smear microscopy, Xpert and culture) that are higher and the

estimates of sensitivity and specificity for TST and radiography that are lower than those based

on the expert opinion as given by Model 1 as well as those reported in [10].

The apparent difference between the results based on the expert opinion and those based

on Model 2 explains the ability of Model 2 to account for the overlooked dependence between

TST and radiography. Thus, Model 2 produces plausible estimates of prevalence and diagnos-

tic test sensitivity and specificity.

Vukuzazi data

This dataset comprised a total of 9914 participants. Of these participants, 4976 individuals

were tested using Xpert Ultra and culture. Of these microbiologically tested participants, 1818
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(36.5%) were males and 1496 (30.2%) were HIV+ (15 subjects missing HIV status). Based on

age distribution, 1158 (23.3%), 1295 (26.0%), 1728 (34.7%) and 794 (16.0%) were aged 15–29,

30–49, 50–69 and�70 years respectively (1 missing age). There were 849 (17.1%) individuals

with any TB symptom, 1693 (34.0%) with any chest X-ray abnormality, 177 (3.6%) with chest

X-ray abnormality suggestive of active TB, 1028 (20.7%) with CAD4TBv5�53, 898 (18.0%)

with CAD4TBv6�53, 48 (1.0%) Xpert Ultra (excluding trace) positive test results and 55

(1.1%) with culture positive test results. Bacteriologically confirmed cases (Xpert Ultra (exclud-

ing trace) positive or culture positive) were 75 (1.5%). After excluding the individuals with

missing data on age and HIV status, 4960 participants of which 74 were bacteriologically con-

firmed TB cases were available for analysis. We evaluated the diagnostic accuracy of any TB

symptom, any chest X-ray abnormality, CAD4TBv5�53, CAD4TBv6�53, Xpert Ultra

(excluding trace) and culture.

Using Bayesian LCA, we fit five different models on the subset tested using Xpert Ultra and

culture. Table 3 shows that the model under conditional independence assumption (Model 0)

leads to unrealistic estimates and incorrect inference. The model that considered conditional

Table 2. Posterior median and 95% credible intervals (95% CrI) of the prevalence and diagnostic test sensitivity and specificity of the CPTB dataset.

Model 0 Model 1 Model 2 Model 3 a Schumacher et al. [9] b Wang et al. [10]

Test Parameter Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI)

Prevalence 16.3 (13.6, 19.3) 21.6 (15.6, 28.6) 18.4 (14.7, 26.4) 18.9 (15.1, 27.0) 26.7 (20.8, 35.2) 22.7 (16.7, 31.6)

TST Sensitivity 69.2 (60.5, 76.9) 73.2 (61.8, 82.4) 68.3 (58.5, 79.9) 69.5 (59.4, 81.5) 75.2 (61.2, 83.8) 70.7 (59.9, 79.8)

Specificity 62.3 (58.4, 66.1) 65.2 (59.6, 71.8) 62.7 (58.5, 69.6) 63.1 (58.8, 70.4) 69.3 (63.2, 75.9) 65.9 (60.3, 72.6)

Rad. Sensitivity 66.0 (57.1, 74.1) 65.1 (56.1, 73.8) 64.5 (55.5, 73.3) 60.1 (42.5, 72.2) 64.2 (54.9, 72.8) 64.7 (55.9, 73.3)

Specificity 73.1 (69.5, 76.5) 74.8 (70.5, 79.2) 73.2 (69.4, 77.9) 72.2 (67.8, 76.5) 78.0 (73.4, 83.4) 76.0 (71.3, 81.5)

SMM Sensitivity 33.8 (25.5, 42.5) 24.3 (16.7, 34.8) 28.4 (18.7, 37.6) 28.4 (19.0, 37.2) 22.3 (15.6, 30.3) 26.7 (18.2, 37.6)

Specificity 99.9 (99.5, 100) 99.9 (99.5, 100) 99.9 (99.5, 100) 99.9 (99.5, 100) 99.7 (99.0, 100.0) 100 (99.5, 100)

Xpert Sensitivity 74.8 (66.3, 82.5) 59.1 (44.2, 75.7) 69.4 (47.8, 78.4) 70.3 (47.9, 79.5) 49.4 (37.7, 62.2) 57.2 (42.0, 73.1)

Specificity 98.2 (97.0, 99.3) 98.7 (97.1, 99.9) 98.7 (97.2, 99.9) 99.2 (97.5, 100) 98.6 (97.3, 99.5) 98.8 (97.3, 100)

Culture Sensitivity 99.9 (91.0, 100) 75.3 (56.9, 97.2) 88.0 (61.8, 98.4) 86.4 (60.3, 98.5) 60.0 (45.7, 75.5) 68.9 (50.7, 87.5)

Specificity 99.8 (99.0, 100) 99.8 (99.2, 100) 99.8 (99.2, 100) 99.8 (99.2, 100) 99.6 (98.7, 100.0) 99.7 (98.6, 100)

Deviance 183.7 104.7 102.1 101.7 - -

RMSE 42.4 38.0 12.0 9.1 8.4 27.5

Model 0 –Based on the assumption of conditional independence

Model 1 –Based on the expert opinion as detailed in [9]. The model accounts for conditional dependence between all the diagnostic tests except radiography among

children with CPTB and conditional independence between all the diagnostic tests among children without CPTB

Model 2 –The model accounts for conditional dependence between all the diagnostic tests except radiography among children with CPTB and conditional dependence

between TST and radiography among children without CPTB

Model 3 –Accounts for conditional dependence between all the diagnostic tests among children with CPTB and conditional dependence between TST and radiography

among children without CPTB

TST–Tuberculin skin test

Rad.–Radiography

SMM–Sputum smear microscopy

Xpert–Xpert MTB/RIF

RMSE–Root mean square error. This is calculated as the square root of the sum of squared differences between the observed frequencies and the predicted frequencies.

It shows how good the model is in explaining the variability in the data (smaller is better)
a Random effects model with a dependence structure based on expert opinion used in Model 1 (adjusted for age, HIV, malnutrition and household TB contact)
b Fixed effects model with a dependence structure based on expert opinion used in Model 1

CrI–Credible Intervals

Note: The estimates presented in the table are percentages

https://doi.org/10.1371/journal.pone.0282417.t002
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dependence between radiologist conclusion (any chest X-ray abnormality), CAD4TBv5�53

and CAD4TBv6�53, and between Xpert Ultra (excluding trace) and culture among the PTB

cases and continues to assume conditional independence between all the diagnostic tests

among non-PTB cases (Model 1) did not resolve the problem. However, allowing for condi-

tional dependence also between any TB symptom, radiologist conclusion, CAD4TBv5�53 and

CAD4TBv6�53 among non-PTB cases (Model 2) improved the fit and produced very differ-

ent, more realistic estimates.

The model that accounts for conditional dependence between all the diagnostic tests except

any TB symptom among the PTB cases and conditional dependence between any TB symp-

tom, radiologist conclusion, CAD4TBv5�53 and CAD4TBv6�53 among non-PTB cases

(Model 3) yielded plausible estimates with a deviance of 5013.5 and RMSE of 66.9. Further, the

model that accounts for conditional dependence between all the diagnostic tests among the

PTB cases and conditional dependence between any TB symptom, radiologist conclusion,

CAD4TBv5�53 and CAD4TBv6�53 among non-PTB cases (Model 4) produced similar find-

ings to Model 3 with a deviance of 5012.2 and RMSE of 66.6. Although Model 3 and Model 4

had lower deviance, the reduction in deviance does not outweigh the underlying complexity in

Table 3. Posterior median and 95% credible intervals (95% CrI) of the prevalence and diagnostic test sensitivity and specificity of Vukuzazi dataset.

Model 0 Model 1 Model 2 Model 3 Model 4

Test Parameter Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI)

Prevalence 18.6 (17.4, 19.8) 20.5 (18.9, 22.4) 1.1 (0.8, 1.5) 1.2 (0.8, 1.6) 1.2 (0.8, 1.6)

Any TB Sensitivity 20.5 (18.0, 23.3) 20.2 (17.7, 22.8) 27.5 (17.5, 39.7) 27.0 (17.1, 38.6) 27.8 (17.5, 40.1)

symptom Specificity 83.6 (82.5, 84.8) 83.6 (82.4, 84.8) 83.0 (81.9, 84.0) 83.0 (81.9, 84.0) 83.0 (81.9, 84.0)

Radiologist Sensitivity 90.4 (88.2, 92.5) 87.2 (82.5, 90.5) 83.1 (72.5, 90.9) 83.1 (72.1, 91.1) 83.7 (72.9, 91.5)

conclusion‡ Specificity 79.3 (78.0, 80.6) 80.1 (78.6, 81.6) 66.8 (65.4, 68.1) 66.8 (65.4, 68.1) 66.8 (65.4, 68.1)

CAD4TBv5�53 Sensitivity 84.6 (81.7, 87.3) 79.4 (74.0, 83.7) 79.1 (67.1, 88.4) 78.9 (67.0, 88.2) 79.4 (67.3, 88.8)

Specificity 94.4 (93.5, 95.2) 94.8 (93.9, 95.8) 80.1 (79.0, 81.2) 80.2 (79.0, 81.2) 80.2 (79.0, 81.2)

CAD4TBv6�53 Sensitivity 88.2 (85.1, 91.1) 83.0 (78.1, 87.1) 79.7 (68.0, 88.9) 79.9 (68.0, 89.1) 79.7 (67.2, 89.0)

Specificity 98.4 (97.8, 98.9) 98.9 (98.2, 100) 82.6 (81.4, 83.6) 82.6 (81.5, 83.6) 82.6 (81.5, 83.7)

Xpert Ultra† Sensitivity 11.7 (9.9, 13.7) 5.1 (3.8, 6.6) 60.0 (46.9, 72.6) 59.7 (45.5, 72.9) 60.1 (45.5, 73.9)

Specificity 100 (99.9, 100) 99.4 (99.2, 99.6) 99.3 (99.1, 99.5) 99.4 (99.1, 99.6) 99.4 (99.1, 99.6)

Culture Sensitivity 11.5 (9.7, 13.5) 5.6 (4.3, 7.2) 76.1 (61.4, 89.5) 72.7 (57.0, 88.9) 71.9 (54.6, 88.2)

Specificity 99.8 (99.6, 99.9) 99.9 (99.8, 99.9) 99.9 (99.8, 99.9) 99.9 (99.8, 99.9) 99.9 (99.8, 99.9)

Deviance 5205.7 5025.0 5017.3 5013.5 5012.2

RMSE 137.0 86.1 67.5 66.9 66.6

Model 0 –Based on the assumption of conditional independence

Model 1 –Accounts for conditional dependence between radiologist conclusion, CAD4TBv5�53 and CAD4TBv6�53 and between Xpert Ultra (excluding trace) and

culture among the PTB cases and allows conditional independence between all the diagnostic tests among non-PTB cases

Model 2 –Accounts for conditional dependence between radiologist conclusion, CAD4TBv5�53 and CAD4TBv6�53 and between Xpert Ultra (excluding trace) and

culture among the PTB cases and conditional dependence between any TB symptom, radiologist conclusion, CAD4TBv5�53 and CAD4TBv6�53 among non-PTB

cases

Model 3 –Accounts for conditional dependence between all the diagnostic tests except any TB symptom among the PTB cases and conditional dependence between any

TB symptom, radiologist conclusion, CAD4TBv5�53 and CAD4TBv6�53 among non-PTB cases

Model 4 –Accounts for conditional dependence between all the diagnostic tests among the PTB cases and conditional dependence between any TB symptom, radiologist

conclusion, CAD4TBv5�53 and CAD4TBv6�53 among non-PTB cases

RMSE–Root mean square error. This is calculated as the square root of the sum of squared differences between the observed frequencies and the predicted frequencies.

It shows how good the model is in explaining the variability in the data (smaller is better)

CrI–Credible Intervals, ‡ - Any chest X-ray abnormality, † - Excluding trace

Note: The estimates presented in the table are percentages

https://doi.org/10.1371/journal.pone.0282417.t003
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these models compared to Model 2. Model 2 is simpler and able to explain the data as good as

Model 3 and Model 4.

Based on Model 2, the overall PTB prevalence was 1.1% (95% CrI: 0.7, 1.5) and the overall

sensitivity of Xpert Ultra (excluding trace) and culture were 60.0% (95% CrI: 46.9, 72.6) and

76.1% (95% CrI: 61.4, 89.5) respectively. We extended Model 2 to account for the effects of

measured covariates (age, sex and HIV status) on PTB prevalence and diagnostic test accuracy.

The results are presented in Tables 4 & 5. The deviance from this model was 1656.8 demon-

strating that it explains the variability in the data much better than the model without covari-

ates. We repeated the analysis using the same priors for the unknown parameters but with any

chest X-ray abnormality replaced by chest X-ray abnormality suggestive of active TB (S10–S14

Tables in S1 File). The findings from the two analyses are similar. Nonetheless, the model with

any chest X-ray abnormality replaced by chest X-ray abnormality suggestive of active TB

explains the data much better with a deviance of 1358.5 (S15 Table in S1 File).

Table 4 presents the estimates of PTB prevalence and diagnostic test accuracy adjusted for

HIV status, sex and age. The overall estimates are standardized by age-, sex- and HIV-specific

proportions to the full study population. Compared to the unadjusted model, the age-, sex-

and HIV-standardized sensitivity of any TB symptom and culture dropped slightly but

increased for radiologist conclusion, CAD4TBv5�53, CAD4TBv6�53 and Xpert Ultra

(excluding trace). The estimates of specificity for all the diagnostic tests varied slightly. Conse-

quently, the age-, sex- and HIV-standardized PTB prevalence became 0.9 (95% CrI: 0.6, 1.3).

The HIV-stratified estimates are standardized by sex- and age-specific proportions. The

age- and sex-standardized PTB prevalence were higher among the HIV+. Compared to the

HIV-, the age- and sex-standardized sensitivity (specificity) of any TB symptom, radiologist

conclusion, CAD4TBv5�53 and CAD4TBv6�53 were higher (lower) among the HIV+. The

Table 4. Posterior median and 95% credible intervals (95% CrI) of PTB prevalence and diagnostic test sensitivity and specificity for Vukuzazi dataset adjusted for

HIV status, sex and age, by HIV status adjusted for age and sex and by sex, adjusted for HIV status and age.

Overall HIV+ HIV- Male Female

N 4960 (100%) 1496 (30.2%) 3464 (69.8%) 1813 (36.6%) 3147 (63.4%)

Test Parameter Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI)

Prevalence 0.9 (0.6, 1.3) 1.3 (0.8, 1.9) 0.8 (0.5, 1.2) 1.2 (0.8, 1.8) 0.8 (0.5, 1.2)

Any TB Sensitivity 26.7 (16.6, 38.6) 26.8 (14.2, 43.4) 26.4 (15.5 39.4) 25.3 (13.0, 40.3) 27.3 (15.6, 41.4)

symptom Specificity 83.0 (81.9, 84.0) 83.5 (81.5, 85.3) 82.7 (81.5, 84.0) 83.3 (81.5, 85.0) 82.8 (81.4, 84.1)

Radiologist Sensitivity 84.4 (74.0, 91.9) 88.6 (75.0, 96.1) 82.8 (70.9, 91.3) 87.1 (74.4, 95.1) 83.1 (70.7, 91.5)

conclusion‡ Specificity 66.7 (65.3, 68.0) 59.7 (57.2, 62.3) 69.7 (68.1, 71.2) 65.8 (63.6, 68.0) 67.1 (65.4, 68.8)

CAD4TBv5�53 Sensitivity 80.4 (68.4, 89.7) 83.3 (67.8, 93.6) 79.5 (65.7, 89.8) 84.7 (70.2, 94.0) 78.3 (64.6, 89.1)

Specificity 80.0 (78.9, 81.2) 78.9 (76.8, 80.9) 80.6 (79.2, 81.9) 73.3 (71.2, 75.3) 84.0 (82.7, 85.2)

CAD4TBv6�53 Sensitivity 81.1 (69.2, 90.1) 82.8 (67.0, 93.1) 80.7 (67.6, 90.4) 82.5 (67.2, 92.7) 80.7 (67.1, 90.5)

Specificity 82.5 (81.4, 83.6) 79.5 (77.4, 81.5) 83.8 (82.6, 85.0) 76.7 (74.7, 78.6) 85.9 (84.6, 87.0)

Xpert Ultra† Sensitivity 62.2 (48.7, 74.4) 59.9 (41.6, 76.9) 63.1 (48.1, 76.7) 70.1 (52.7, 84.1) 57.7 (42.4, 72.1)

Specificity 99.4 (99.1, 99.6) 99.4 (99.1, 99.6) 99.4 (99.1, 99.6) 99.4 (99.1, 99.6) 99.4 (99.1, 99.6)

Culture Sensitivity 75.9 (61.9, 89.2) 74.6 (54.6, 91.3) 76.6 (62.1, 89.6) 76.2 (58.0, 91.6) 76.0 (60.5, 89.6)

Specificity 99.8 (99.7, 99.9) 99.8 (99.7, 99.9) 99.8 (99.7, 99.9) 99.8 (99.7, 99.9) 99.8 (99.7, 99.9)

CrI–Credible Intervals

‡ - Any chest X-ray abnormality

† - Excluding trace

Note: The estimates presented in the table are percentages

https://doi.org/10.1371/journal.pone.0282417.t004
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age- and sex-standardized sensitivity for Xpert Ultra (excluding trace) and culture were higher

among the HIV-.

The sex-stratified estimates were standardized by age- and HIV-specific proportions. The

age- and HIV-standardized PTB prevalence was higher among males. The age- and HIV-stan-

dardized estimates of sensitivity (specificity) for radiologist conclusion, CAD4TBv5�53 and

CAD4TBv6�53 were higher (lower) among males. Compared to females, the estimates of sen-

sitivity for Xpert Ultra (excluding trace) and culture were higher among the males.

Table 5 presents the sex- and HIV-standardized estimates of PTB prevalence and diagnostic

test sensitivity and specificity by age groups. The sex- and HIV-standardized estimate of PTB

prevalence is higher among 30–69 year-old. The specificity of radiologist interpretation (any

chest X-ray abnormality), CAD4TBv5�53 and CAD4TBv6�53 decrease with increasing age.

CAD4TBv6�53 has a higher specificity compared to CAD4TBv5�53 across all the age groups.

Culture (Xpert Ultra (excluding trace)) has higher (lower) sensitivity among individuals aged

�70 years.

The estimates of PTB prevalence and diagnostic tests sensitivity and specificity stratified by

HIV, sex and age are presented in (S8, S9 Tables in S1 File).

With the same priors for the parameters in Model 2, the analysis of the set of six diagnostic

tests with the “trace” category included among the Xpert Ultra positives yielded an overall PTB

prevalence that was similar to that obtained with the analysis excluding the “trace” category.

Xpert Ultra (including trace) had a higher sensitivity estimate while culture had a lower sensi-

tivity estimate in the analysis of the set of six diagnostic tests with the “trace” category included

among the Xpert Ultra positives compared to the analysis that excluded the “trace” category

(S15 Table in S1 File). Based on deviance, the analysis of the set of six diagnostic tests with the

“trace” category excluded from the Xpert Ultra positive explains the variability in the data

much better than the analysis that includes the “trace” category.

Table 5. Age, sex and HIV adjusted posterior median and 95% credible intervals (95% CrI) of PTB prevalence and diagnostic test sensitivity and specificity for

Vukuzazi dataset presented by age groups.

15–29 years 30–49 years 50–69 years �70 years

N 1156 (23.3%) 1291 (26.0%) 1723 (34.7%) 790 (15.9%)

Test Parameter Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI)

Prevalence 0.8 (0.5, 1.2) 1.0 (0.6, 1.6) 1.0 (0.6, 1.6) 0.7 (0.4, 1.2)

Any TB Sensitivity 27.5 (16.0, 42.2) 22.7 (9.7, 41.5) 27.8 (13.7, 46.4) 26.5 (10.0, 48.7)

symptom Specificity 81.5 (79.1, 83.7) 83.7 (81.6, 85.7) 83.5 (81.7, 85.2) 82.9 (80.1, 85.4)

Radiologist Sensitivity 81.2 (68.0, 90.5) 84.1 (67.5, 94.0) 88.4 (73.7, 96.3) 83.7 (63.4, 95.1)

conclusion‡ Specificity 86.8 (84.8, 88.7) 65.2 (62.5, 67.8) 59.4 (57.1, 61.7) 55.5 (51.9, 59.0)

CAD4TBv5�53 Sensitivity 79.4 (65.2, 89.6) 82.2 (63.7, 94.0) 81.4 (63.3, 93.0) 79.8 (58.8, 93.6)

Specificity 93.7 (92.2, 95.0) 82.4 (80.2, 84.4) 76.6 (74.6, 78.6) 63.9 (60.6, 67.1)

CAD4TBv6�53 Sensitivity 79.7 (65.6, 90.1) 81.0 (61.7, 93.4) 83.5 (66.6, 93.8) 81.2 (60.0, 94.0)

Specificity 95.8 (94.5, 96.8) 83.7 (81.6, 85.7) 78.6 (76.6, 80.5) 69.7 (66.7, 72.7)

Xpert Ultra† Sensitivity 62.7 (46.7, 76.5) 63.7 (43.0, 82.0) 63.8 (44.1, 80.6) 56.5 (33.3, 78.2)

Specificity 99.4 (99.1, 99.6) 99.4 (99.1, 99.6) 99.4 (99.1, 99.6) 99.4 (99.1, 99.6)

Culture Sensitivity 77.8 (62.2, 90.4) 77.3 (54.4, 93.4) 72.0 (50.9, 90.5) 82.6 (61.4, 94.8)

Specificity 99.8 (99.7, 99.9) 99.8 (99.7, 99.9) 99.8 (99.7, 99.9) 99.8 (99.7, 99.9)

CrI–Credible Intervals

‡ - Any chest X-ray abnormality

† - Excluding trace

Note: The estimates presented in the table are percentages

https://doi.org/10.1371/journal.pone.0282417.t005
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Discussion and conclusion

We proposed an extension of the Bayesian latent class analysis (LCA) approach by Berkvens

et al (2006) modelling the probabilities of diagnostic test results conditional on unobserved

PTB status and ‘earlier’ test results in order, using probit regression methods for dependent

binary outcomes [15, 17]. Unknown parameters of the sequential regression models were

assigned Gaussian priors. Expert opinion was utilized to incorporate potential dependencies

and prior knowledge for some parameters. We extended the model to incorporate measured

covariate effects.

We applied our approach first to analyze childhood pulmonary TB (CPTB) data that has

previously been published [9, 10]. The findings from our proposed model incorporating the

expert opinion matched those reported in the previous analyses [10]. The findings from the

model that accounts for conditional dependence between all the diagnostic tests but radiogra-

phy among the children with CPTB and additionally accounts for conditional dependence

between TST and radiography among the children without CPTB explained the data much

better. The dependence between TST and radiography among children without CPTB may be

attributable to other respiratory diseases. The estimates of sensitivity for smear microscopy,

Xpert and culture are slightly higher for our proposed model. These findings demonstrate the

ability of Model 2 to incorporate all possible sources of variation and dependencies among the

diagnostic tests. Hence, weighting appropriately the information from these diagnostic tests

may yield better diagnoses. Based on RMSE, this model was able to do better prediction com-

pared to the results based on the expert opinion and those in [10]. Additionally, it performed

as good as the model that adjusted for covariates [9].

To the best of our knowledge, our secondary analysis of the Vukuzazi dataset is the first

application of Bayesian LCA on a community-based active TB case-finding and the first appli-

cation of probit regression methods for dependent binary data to address diagnostic test

dependencies. In our analysis, the model that considered conditional dependence between

radiologist conclusion (any chest X-ray abnormality), CAD4TBv5�53 and CAD4TBv6�53 as

well as between Xpert Ultra (excluding trace) and culture among the PTB cases and also condi-

tional dependence between any TB symptom, radiologist conclusion (any chest X-ray abnor-

mality), CAD4TBv5�53 and CAD4TBv6�53 among non-PTB cases explains well the

variability in the data, was simpler than the competing models and produced plausible esti-

mates. Upon adjusting for the measured covariate effects (age, sex and HIV status), the accu-

racy of the model improved. The age-, sex- and HIV-standardized estimate of overall PTB

prevalence was close to the overall population estimate of 0.8% reported in [22, 32, 33]. This

larger estimate of PTB prevalence from our model may be explained by the fact that this was a

high-risk group for PTB based on the selection to receive microbiological testing if they

reported any cardinal TB symptom and/or had an abnormal chest X-ray finding based on

CAD4TBv5 score above a predefined threshold. This estimate is nonetheless lower than 1.5%

based on a composite reference standard of Xpert Ultra (excluding trace) and culture. In keep-

ing with the findings reported in [32, 33], our analysis produced higher PTB prevalence

among males compared to females, among HIV+ compared to HIV-, and among 30–69 year-

old compared to 15–29 year-old and�70 year-old.

The overall estimate of sensitivity for any TB symptom was low in the community-based

multi-morbidity screening conducted in the rural district of uMkhanyakude in northern Kwa-

Zulu Natal, South Africa. This agrees with the findings by Govender et al. 2021 [22, 23] who

reported that 78% of culture-positive cases did not report symptoms. However, it is higher

than the 58% reported in the 2018 South Africa national TB prevalence survey [32, 33]. It has

been shown that 49.4% (Inter quartile range: 38.8%– 52.4%) of bacteriologically confirmed
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prevalent infectious TB cases are asymptomatic in Africa [11]. Data on this state of TB disease

is limited, but is estimated to last around 3–8 months (with three countries in Asia where it

lasted >1 year) and represents 27% - 63% of the time as prevalent cases [34]. Hence, this may

explain the high proportion of subclinical TB cases estimated in our study that has been shown

elsewhere to be as high as 80% [11]. Additionally, it has been argued elsewhere that TB is still

highly stigmatized in rural areas [35]. Consequently, symptomatic people who are well aware

of the consequences of being diagnosed with TB in the community might have chosen not to

report the presence of TB-compatible symptoms. The national survey incorporated the urban

and rural areas while the community-based multi-morbidity survey was conducted in a rural

district in northern Kwa-Zulu Natal. Another possible explanation for the high proportion of

subclinical TB in this study is linked to the use of a low triaging threshold (score of 25) for

CAD4TBv5 that triggered sputum testing from a majority of the participants leading to a

higher proportion of bacteriologically confirmed asymptomatic TB cases [12]. The specificity

of 83% for any TB symptom was low for a community-based TB survey. The high false positive

rate is potentially due to reported symptoms akin to other respiratory diseases.

The sensitivity estimate of any chest X-ray abnormality was consistent with what has been

reported based on an imperfect reference standard defined as a combination of microbiolog-

ical tests in TB prevalence surveys [11]. Our estimate was slightly higher than the 80.8%

reported in the analysis of the same data that defined the reference standard as a combination

of culture and Xpert Ultra (including trace) [12]. Analysis based on a composite reference

standard (CRS) defining a case as bacteriologically confirmed if culture positive or Xpert Ultra

(including trace) positive with chest X-ray abnormality suggestive of active TB and without

current or previous TB show that 98% of bacteriologically confirmed TB cases had any chest

X-ray abnormality [33]. The upward biased sensitivity estimate of any chest X-ray abnormality

reported in the South Africa national TB prevalence survey is attributed to the definition of the

reference standard (Xpert Ultra (including trace) positives were qualified if chest X-ray was

suggestive of active TB) and the fact that this imperfect reference standard was considered per-

fect. The specificity estimate of any chest X-ray abnormality was consistent with 66.9%

reported in [12]. The low specificity may be attributed to the effect of radiological changes in

the lungs due to other respiratory diseases e.g. bacterial pneumonia, chronic obstructive pul-

monary disease or past TB that results in a high false positive rate. In this analysis, LCA was

able to utilize information from all the diagnostic tests to estimate the likelihood of TB. This

allowed correct classification of individuals. Consequently, it corrected the underestimation of

sensitivity and overestimation of specificity. Thus mitigating the reference standard bias to

yield plausible estimates. Our analysis that replaced any chest X-ray abnormality with chest X-

ray abnormality suggestive of active TB yielded plausible estimates of sensitivity and specificity

for chest X-ray abnormality suggestive of active TB. The findings are consistent with the find-

ings reported by Qin et al. 2021 who reported sensitivity and specificity estimates of 38.9% and

88.9%, respectively, based on Xpert MTB/RIF as the reference standard [36].

CAD4TB versions 5 and 6 were both dichotomized at a threshold score of 53 based on

LCA. CAD4TBv5�53 and CAD4TBv6�53 had acceptable estimates of overall sensitivity and

specificity. We established that any chest X-ray abnormality, CAD4TBv5�53 and

CAD4TBv6�53 have better sensitivity and specificity among individuals aged<30 years.

Although considered more accurate, Xpert Ultra based on DNA of Mycobacterium tubercu-
losis has obvious limitations including the inability to distinguish between dead DNA resulting

from past TB infection and live DNA from an active TB. Additionally, the TB bacilli limit of

detection (LOD) of�15.6 CFU/ml for Xpert Ultra results in missed TB cases with a bacillary

load that is lower than the LOD. These limitations, among others, render Xpert Ultra imper-

fect in terms of its sensitivity and specificity [24]. The overall sensitivity of Xpert Ultra
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(excluding trace) in our analysis was lower than can be imagined for a perfect diagnostic test.

This agrees with the findings reported in [37] and in two community-based TB screening stud-

ies conducted in Zambia and South Africa [38] that used culture as the reference standard.

The specificity of Xpert Ultra (excluding trace) from our analysis was higher than the 96.6%

reported elsewhere with culture as the reference standard [24].

Though considered the most accurate with LOD� 1 to 50 CFU/ml, culture still suffers

from imperfect sensitivity that spans 73%– 95% [39]. Thus, the overall sensitivity estimate of

76.0% for culture in our analysis is consistent with this finding and confirms the concerns

among the clinical experts proposing a composite reference standard with other diagnostic

tests considered to be more accurate. Nonetheless, a CRS of imperfect diagnostic tests remains

imperfect. Hence alternative approaches such as LCA can be used to navigate these

limitations.

There was evidence of subgroup disparities in the estimates of sensitivity and specificity

and the subgroup estimates were highly unstable due to small subgroup sample sizes. With

careful use of informative priors, if available, the precision of the estimates can improve.

Knowledge of the performance of the most accurate tests can be used to elicit a prior distribu-

tion for some of the parameters in the model. Based on this approach and previously published

work, we proposed an informative prior for the parameters corresponding to the probability

that Xpert Ultra (excluding trace) is negative and for the probability that culture is negative

among the true non-PTB cases to be around 97% and 99.9%, respectively [24, 39]. We also pro-

posed a prior for the parameter corresponding to the probability that culture is positive among

Xpert negative true PTB cases to be 80% (S2-S5 Tables in S1 File).

In our proposed model we only included the main effects of the ‘earlier’ diagnostic tests

and the main effects of covariates in the regressive probit models. However, our model could

handle higher-order test dependence by incorporating higher-order interactions among the

diagnostic tests. Although the number of parameters required to be estimated grows exponen-

tially as the number of diagnostic tests increases, close consultation with experts can help miti-

gate the problem. In the CPTB study, the experts were able to provide useful information that

radiology was not dependent on the other diagnostic tests given TB status and that all the diag-

nostic tests were not dependent among children who did not have CPTB. This expert informa-

tion, obtained from the earlier publications, helped reduce the number of parameters to

estimate in the model. In the Vukuzazi study, the TB experts were able to additionally provide

insight into the potential causes of dependence among those without PTB. This helped adjust

for this dependence leading to plausible estimates of PTB prevalence and diagnostic test accu-

racies, particularly the sensitivity of Xpert Ultra (excluding trace) and culture. Therefore,

working closely with TB experts and incorporating their assumptions into the model can help

fix some of the practical limitations. Notwithstanding this, there is a need to assess the plausi-

bility of the model based on its ability to explain variability in the data. Our analysis revealed

that constraining all the tests to be independent among the children without CPTB yielded a

less accurate model. Thus, our approach was able to identify and incorporate the often over-

looked dependence among non-PTB cases. We were also able to establish that the other diag-

nostic tests were not dependent on any TB symptom among the true PTB cases in the

community-based TB survey that enrolled and microbiologically tested the participants who

reported any cardinal TB symptom and/or had abnormal chest X-ray findings. Dependence

induced by covariates was handled by including measured covariates in the model to reduce

residual dependence. This allows for varying diagnostic test accuracy and PTB prevalence

across the subpopulations defined by the covariates [19]. Despite the increasing number of

parameters to estimate, their inclusion help improve model identifiability. In our analysis of

Vukuzazi data, adjusting for HIV status, sex and age reduced further the residual dependence
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thus producing realistic estimates of PTB prevalence, and diagnostic test sensitivity and

specificity.

Our proposed model is flexible in allowing possible dependencies between the diagnostic

tests, flexible choice of priors for the unknown parameters and incorporation of covariates

known to affect diagnostic test accuracy and disease prevalence. It produced realistic estimates

of sensitivity, specificity and prevalence under interpretable and more plausible assumptions.

The model based on the unrealistic assumption of conditional independence and the model

that failed to account for dependence between the diagnostic tests among the true non-PTB

cases yielded unrealistic estimates. The model that incorporated sources of dependence among

the true PTB cases and true non-PTB cases produced plausible estimates. Therefore, all possi-

ble sources of diagnostic test dependencies need to be considered to avoid misleading infer-

ences. Additionally, expert opinion and model parsimony can be used to guide/steer the

model choice.
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