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A B S T R A C T   

The Covid-19 pandemic has pushed the Intensive Care Units (ICUs) into significant operational disruptions. The 
rapid evolution of this disease, the bed capacity constraints, the wide variety of patient profiles, and the im-
balances within health supply chains still represent a challenge for policymakers. This paper aims to use Artificial 
Intelligence (AI) and Discrete-Event Simulation (DES) to support ICU bed capacity management during Covid-19. 
The proposed approach was validated in a Spanish hospital chain where we initially identified the predictors of 
ICU admission in Covid-19 patients. Second, we applied Random Forest (RF) to predict ICU admission likelihood 
using patient data collected in the Emergency Department (ED). Finally, we included the RF outcomes in a DES 
model to assist decision-makers in evaluating new ICU bed configurations responding to the patient transfer 
expected from downstream services. The results evidenced that the median bed waiting time declined between 
32.42 and 48.03 min after intervention.   

1. Introduction 

In the last two years, hospitals worldwide had to quickly adapt their 
way to providing healthcare services to a suddenly increased number of 
patients who often required critical care in the ICU (Birkmeyer et al., 
2020). The novelty of the Covid-19 virus pushed organizations to 
explore new methods that could assist them to survive in an unprece-
dented time (Frid-Adar et al., 2021). 

Therefore, many studies have been conducted suggesting a variety of 
management tools and methods that can help in handling a situation 
characterized by emergency and urgency such as the Covid-19 pandemic 
(Upadhyay et al., 2022). Health organizations collected more data than 
ever before and adopted a range of techniques to support decision- 
making processes under uncertainties (Wang et al., 2022) such as data 
analytics or Artificial Intelligence (AI). Indeed, AI is starting to play a 
fundamental role in providing support to managers in health systems 

(Huang, Yang, et al., 2021; Piccialli et al., 2021; Thakur et al., 2012) and 
the use of data analytics and AI methods can help organisations to better 
deal in such circumstances (Behl et al., 2022). It is estimated that 90 % of 
US healthcare organisations are ready to implement AI strategies (Sage 
Growth Report, 2021), and also according to Forbes (2022), the use of AI 
represents an important innovation for hospitals. Therefore, world- 
leading healthcare organisations are adopting AI strategies (Marwaha 
et al., 2022) such as Harvard Medical School or the National Health 
Service in the UK where an innovation lab has been created with several 
projects concerning the application of AI to healthcare (NHS, 2022). 

The use of AI techniques has been boosted during the Covid-19 
pandemic when they were adopted to deal with a variety of aspects 
from the prediction of a Covid-19 diagnosis, especially during the first 
phase of the pandemic when testing was not readily available (Alballa & 
Al-Turaiki, 2021), to the development of treatments (Lalmuanawma 
et al., 2020), to the social behaviour of the population (Sheng et al., 
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2021). 
However, despite the increasing use of AI for supporting the 

decision-making process in the healthcare context, there is still a gap in 
developing data analytics and AI methods to better manage health 
supply chains (Donthu & Gustafsson, 2020). Those supply chains have 
been affected at an incredible speed during the pandemic (Raj et al., 
2022; Yusriza et al., 2022) and they can present several bottlenecks 
points and it is fundamental to take them into account when operating in 
rapidly changing environments (Muhammad et al., 2022). This is even 
truer for what concerns the inventory planning stage of health supply 
chains which has shown to have a major impact on the healthcare ser-
vice (Rahman et al., 2022). The scarcity of various medical devices and 
personal protective equipment at the frontline staff showed how critical 
and complex are health supply chains (Chakravorty et al., 2018) and 
how their disruption translates into the loss of lives (Iyengar et al., 
2020). 

Indeed, several health organisations require new procedures to es-
timate the number of patients admitted to the hospital, to improve their 
inventory planning, and it became essential for them to predict how the 
number of patients will evolve into more severe diseases over time (i.e. 
Verity et al., 2020). At the same time, hospitals still had to provide 
healthcare services for all the patients not affected by Covid-19, i.e., 
managing the capacity of the hospitals, and a challenging balance be-
tween the two necessities needed to be pursued (Yang et al., 2021). 

This paper presents a hybrid method that combines AI techniques, 
particularly a Random Forest method, with the Discrete Event Simula-
tion (DES) methods. We aim to predict the demand for intensive beds by 
modelling the flow of the patients affected by Covid-19 within ICU de-
partments and improving several intervention targets such as waiting 
time for a bed. First, we consider which predictors should be adopted to 
estimate the likelihood of ICU admission, adopting a statistical approach 
to test their significance. This is essential for ensuring that the frame-
work can get results as close as possible to reality (Vickers et al., 2011). 
Once the choice of the predictors has been confirmed and a dataset of 
data for patients has been coherently constructed thanks to an appro-
priate preprocessing phase, a Random Forest model, recognised as one 
of the most accurate AI techniques for predictions, allows estimating the 
probability of the patients to be admitted to the ICU. Those probability 
values are the input of the DES model that simulates the inflow of pa-
tients in the ICU and their potential of becoming critical (importance of 
doing that). Finally, statistical validation tests are conducted to verify 
the validity of the DES model proposed. 

The combination of those methods has the intention of reaching the 
following aims:  

• The accurate selection of the indicators and the test of their statistical 
significance allows to robustly base the framework and to overcome 
difficulties from missing data or analyzing indicators that are not 
relevant (Štěpánková et al., 2003). 

• The use of the RF method permits accurately predicting the likeli-
hood of developing severe disease and it has been selected for its 
beneficial aspects outperforming other AI techniques. The RF can 
deal with large databases and detect complex non-linear relation-
ships in addition to the interaction between the features (Simsekler 
et al., 2020). 

• The use of the DES model allows discerning between several poten-
tial interventions that can be carried out to improve the several 
targeting interventions considered. Its benefits are related to the 
possibility of modeling diverse scenarios, also under very uncertain 
conditions as during a pandemic of a new virus (Jun et al., 1999). 
Also, the combination of the DES with statistical testing for valida-
tion of the model permits us to verify the validity of the DES model 
implemented. 

We applied the framework to a case study in a Spanish hospital chain 
characterized by a huge number of ICU admissions and the need of 

improving their responsiveness to the pandemic. This implementation 
has been marked by a constant enrollment of different actors from the 
hospital sector which provides a full comprehension of the ICU context 
under the pandemic as well as the definition of realistic improvement 
scenarios considering the ICU transfer predictions derived from the RF 
model. 

To the best of our knowledge, this study depicts a novel data- 
analytics-and-AI approach underpinning the ICU’s effective capacity 
management, which has not been previously reported in the literature. 
The study illustrated the critical role that AI and DES may play in the 
design of in-time interventions diminishing the bed waiting times for 
incoming Covid-19 patients. The ICU expansion and the creation of 
satellite ICUs were pre-tested and analyzed for providing timely care to 
patients in critical condition and with urgent need of invasive me-
chanical ventilation, continuous hemodialysis, Extracorporeal Mem-
brane Oxygenation, and other treatments required to counteract the 
more complex virus effects. 

The paper certainly responds to the following research questions:  

• Can data-driven inventory planning methods cope with unexpected 
increases in demand for overcrowded health environments?  

• Can AI and DES techniques be merged to simulate the demand for 
intensive beds in health systems?  

• Can DES methods be employed to design improvement strategies 
upgrading the response of ICUs in terms of the bed waiting times 
experienced by Covid-19 patients? 

Therefore, the objectives of the paper can be stated as follows:  

• developing an AI and data-analytics-based framework to predict the 
likelihood of the patients requiring treatments in ICU departments 
even in a pandemic situation; 

• simulating the supply chain demand of health systems and its ca-
pacity management, i.e. the inflow of patients in the ICU department, 
their waiting time for a bed, and better management of the available 
resources;  

• designing and evaluating the effectiveness of various improvement 
strategies in reducing the ICU bed waiting time experienced by 
Covid-19 patients using DES. 

The rest of the paper is structured as follows. In Section 2, we review 
the literature on the application of AI and DES methods for Covid-19 
patients. In Section 3, we present the proposed methodology while in 
Section 4 we describe the case study results with a discussion on them 
introduced in Section 5. Finally, Section 6 concludes the paper. 

2. Literature review 

Our paper explores the use of AI techniques and in particular, RF 
merged with DES techniques to manage inventory planning for health 
supply chains and more in detail, to predict the outcomes of patients 
affected by Covid-19 once they are admitted to the hospital. In the 
following, we review the theories on which our paper is based focusing 
on the concepts of inventory planning and what are the techniques most 
adopted to handle it. Then, we concentrate on how DES and AI have 
been employed in this field. Finally, we focus on the more specific 
problem of predicting the outcome in patients affected by Covid-19, 
again highlighting the use of AI and DES in this context. 

2.1. Inventory planning management in health supply chains 

Inventory planning management in health supply chains has been 
recognised as one of the most demanding issues for health systems for a 
variety of reasons such as little information shared among organizations 
and unique characteristics in terms of resources needed (Privett & 
Gonsalvez, 2014). Several studies have been regularly conducted 
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throughout the years (for a review see e.g. Jack & Powers, 2009) for 
both concerning the demand management aspect i.e. predicting where, 
when, and how demand for healthcare services will happen (Klassen & 
Rohleder, 2001), and the capacity management aspects (as the one 
explored through the ICU bed capacity management decisions during 
the pandemic), i.e. making sure that health organisations can deal with 
the level of demand (Heineke, 1995). Despite the interest of the research 
community, a limited number of studies was developed before the 
pandemic concerning the management of the demand in very critical 
situations with only some examples concerning the SARS outbreak 
(Govindan et al., 2020) while in the past two years, the number of 
publications on this theme exponentially grew (Ortíz-Barrios et al., 
2021). In addition to guaranteeing the satisfaction of the demand, health 
supply chains should pursue sustainable objectives (Lotfi et al., 2022) 
and in this sense, digital supply chains (Sharma et al., 2022) that employ 
AI methods (Agrawal et al., 2021) or even Blockchain technologies can 
enhance sustainable performance (Jraisat et al., 2022) also in combi-
nation with human resource practices (Mukhuty et al., 2022). 

2.2. Methodologies for inventory planning management in health supply 
chains 

A plethora of methodologies have been proposed to study inventory 
planning in health supply chains. To predict the demand for healthcare 
services, forecasting methods have been adopted in different cases. For 
example, Kadri et al. (2014) employed time series analysis and autore-
gressive integrated moving average to predict the demand in the 
emergency department in a retrospective study of a French hospital. 
Similarly, Luo et al. (2017) adopted a combination of an exponential and 
a smoothing forecasting model to predict the number of outpatient daily 
basis visits for a hospital in China. Other stochastic methods, such as 
regression analysis, have been extensively studied, for instance in Kumar 
and Mo (2010), to stimulate the demand for bed occupancy in a hospital 
in Singapore. To stimulate the flow of patients in organisations, 
queueing theory has been employed in several studies (e.g. Gorunescu 
et al., 2002). Although very much used, forecasting methods and 
queuing theory approaches present some difficulties such as coping with 
variations of the demand that do not follow the selected distributions of 
the models or they can be inadequate to take into account the 
complexity of the analysed process (Zhu et al., 2012). 

To allocate resources (nurses and doctors but also beds and medi-
cine) within the organisation to effectively manage the demand, opti-
misation models from operations research (e.g. Sitepu et al., 2018) and 
resolution techniques such as the direct neighbourhood search approach 
have been used. A relevant section of studies also employs scheduling 
methods to allocate patients to beds and minimise their waiting time (e. 
g. Kortbeek et al., 2015; Abdalkareem et al., 2021). However, these 
methods present major drawbacks because of the deterministic charac-
teristics associated with this type of problem (Restrepo et al., 2020) that 
do not fully represent the reality in the hospitals. 

In addition to that, other simulation techniques can be adopted such 
as Markov simulation processes. However, it has been shown that in 
situations where there are supply shortages, the DES simulation out-
performs the Markov simulation process (Standfield et al., 2014). 

2.3. AI and DES for inventory planning management in health supply 
chains 

DES has been employed in a plethora of sectors (e.g. (Zhang, 2018; 
Ortíz-Barrios & Alfaro-Saíz, 2020a)) and consists in simulating a process 
in a series of steps that happen throughout time. It has been applied and 
used in a plethora of applications to obtain a robust result for the system 
that is being represented thanks to a series of experiments (Robinson, 
2002). Its extreme flexibility is particularly useful when an analytic 
method to handle a problem is missing and/or when the system is too 
complex to be handled (Sumari et al., 2013). The evolution of DES 

methods is generally connected with the evolution of computing (Rob-
inson, 2005) and one of their main uses is to model healthcare services 
(Zhang, 2018). 

They have been adopted several times for simulating the demand for 
services in healthcare organisations (Günal & Pidd, 2010). For example, 
Melman et al. (2021) adopted discrete event simulation methods to 
understand which strategy among a predefined set of potential strategies 
would perform better in terms of finding a trade-off between the ne-
cessity of taking care of Covid-19 patients and the need to cancel the 
surgery and other interventions normally delivered by the hospital. On a 
similar note, Le Lay et al. (2020) simulated the bed occupancy impact 
due to the influx of Covid-19 patients. 

DES methods have been extensively employed in the health supply 
chain because it allows overtaking the drawbacks of more traditional 
methods such as the ones introduced in the previous subsection and they 
also allowed the participation of the stakeholders in the process 
(Brennan et al., 2006). 

Artificial Intelligence is representing a game changer in how 
healthcare is delivered (Yu et al., 2018). Applications of AI techniques 
are flourishing and the pandemic has further boosted this trend (Seci-
naro et al., 2021). AI methods are nowadays employed by healthcare 
organisations in several ways and among them, we can mention the 
tracking of patients’ health and the support to administrative work 
(Bohr & Memarzadeh, 2020). Machine learning methods, the dominant 
approach in AI, represent a massive opportunity for healthcare organi-
sations to make sense of the big data collected in the various organisa-
tions and to support evidence-based decision-making optimising the 
performance of the organisation (Chen & Decary, 2020). Among the 
machine learning methods, RF has been used in several contexts for 
classification and regression and other tasks thanks to the construction 
of decision trees on different samples. It has been adopted in a variety of 
contexts (for a review see e.g. Belgiu & Drăguţ, 2016). In the healthcare 
contexts, it has been applied to predict the occurrence of disease (Kha-
lilia et al., 2011) and it is appreciated for the speed to handle such 
problems (Fawagreh & Gaber, 2020) and the possibility of dealing with 
incomplete databases (Khalilia et al., 2011) which are expected in a 
pandemic scenario. In the management of the supply chain context, RF 
has also been employed in several fields including forecasting products’ 
backorder (Islam & Amin, 2020). 

One of the fast-growing trends (Ordu et al., 2021) is represented by 
the possibility of combining hybrid models that integrate several tech-
niques such as AI and DES embedded in a proper framework. For 
instance, DES methods have also been integrated with other method-
ologies. For example, Tavakoli et al. (2022) integrated them with data 
envelopment analysis and a machine learning technique to identify 
critical points that can create a bottleneck in the flow of patients. Also, 
Kim et al. (2021) adopted a combination of machine learning algorithms 
together with a discrete event simulation method to better design the 
flow of patients to the hospital starting from the triage model. New 
challenges connected to the application of such methods such as lack of 
resources to dedicate to the implementation of the new systems can arise 
and supporting methods to understand the innovation route needs to be 
introduced (Chatterjee et al., 2021; Srivastava et al., 2022). 

2.4. Predicting intensive beds occupancy from patients affected by Covid- 
19 

Among the issues related to the definition of patients’ demand, we 
find the prediction of the patient’s outcome once they are admitted to 
the hospital. Indeed, identifying such patterns could help decision- 
makers to deal with the suddenly increased number of patients (Heldt 
et al., 2021). In some cases, the authors collected historical data on 
patients to analyse the most common characteristics that guide them to a 
critical illness or a lengthy stay in hospital. For example, Petrilli et al. 
(2020) identified the most common factors in a group of >5000 patients. 
In addition to that, studies were also focusing on the main characteristics 
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of the population affected and on their geographical location (Di Cas-
telnuovo et al., 2020). 

Within this aim, several machine learning techniques have been 
adopted and compared to predict which clinical factors, parameters, and 
characteristics of the patients can suggest a severe course for the patients 
(Alakus and Turkoglu, 2020). For example, Pourhomayoun and Shakibi 
(2021) developed several different types of machine learning methods 
including Support Vector Machine, Artificial Neural Networks, Random 
Forest, Decision Tree, Logistic Regression, and K-Nearest Neighbour to 
determine the health risk and predict the mortality risk of patients with 
COVID-19 with a quite consistent database of patients’ data collected 
worldwide. In this regard, the decision of which indicator to adopt is 
quite diversified. For instance, Sun et al. (2020) use the support machine 
vector method to analyse >200 potential indicators on >300 cases to 
identify 36 significant factors, while Mauer et al. (2021) defined clus-
tering techniques and regression analysis to predict the course of the 
illness adopting not only clinical characteristics but also measured pa-
rameters such as the level of oxygen monitored. In some cases, also the 
genome type of the patients and the phenotypic comorbidity of the pa-
tients were measured (Wang, Wang, et al., 2020), whereas (Patel et al., 
2021) provided a combination of socio-demographic data, clinical data, 
and blood panel profile data. On a different note, Banerjee et al. (2020) 
estimated the severity of the outcome only from the full blood count of 
the patients without analysing the patients’ previous medical history. 
Also, Gök and Olgun (2021) initiated their analysis from the blood 
samples of the patients, pointing out the essential role of a pre- 
processing phase of the data to make more consistent predictions. 
Among the machine learning methods, random forest algorithms were 
employed several times. For example, Casiraghi et al. (2020) employed 
the random forest for its ease of use and the possibility of easily inte-
grating the method into a computerised system that could help doctors 
in assessing the seriousness of the disease. The possibility of integrating 
multiple classifiers in the boosted version of the algorithm can even 
make the methods more robust (Iwendi et al., 2020). 

Considering the reported literature, it is evident the need for i) 
creating data analytics and AI methods underpinning decision-making 
processes in health supply chains influenced by rapidly changing con-
texts, ii) developing procedures predicting the expected demand for 
healthcare services presenting bottlenecks, and iii) constructing ap-
proaches articulating the demand for these services with resource and 
capacity management models focused on critical materials. More spe-
cifically, the evidence base also highlights the lack of a methodological 
approach that simultaneously assists healthcare decision-makers in: i) 
predicting the likelihood of ICU admission in Covid-19 patients based on 
emergency care data, ii) anticipatedly evaluating the response of ICUs 
against the expected Covid-19 admissions in terms of the bed waiting 
time, and iii) pretesting improvement scenarios that target ICU bed 
waiting time reduction. It additionally became clear that both the use of 
machine learning algorithms and the adoption of discrete event simu-
lation studies can help support decisions in the healthcare context dur-
ing challenging times. Therefore, our manuscript bridges the above- 
mentioned gaps by presenting a real case study fully exploiting the ad-
vantages of these methods in lessening the ICU bed waiting time expe-
rienced by Covid-19 patients. The contribution of this study is three- 
fold: i) an AI and data-analytics-based model to predict the likelihood 
of ICU admission for Covid-19 patients attended in EDs, ii) a simulation 
model evaluating the ICU bed waiting time taking into account the 
predicted inflow of Covid-19 patients, and iii) a framework for the 
anticipated design of capacity management strategies minimizing the 
ICU bed waiting time in future demand scenarios. 

3. Conceptual framework 

Conceptually, what is being recommended is that AI and DES may 
operate as the pillars underpinning a decision-making framework that 
allows ICUs to respond quickly and effectively against the expected 

volume of Covid-19 admissions from the downstream services. Fig. 1 
depicts the conceptual model suggested for this aim but with a special 
focus on bed inventory planning management. 

This framework starts with efficient database management where 
medical records, process variables, and demand data can be stored 
under high-quality standards, thereby supporting the informative nature 
of the hospital data administration systems. Extracting these data will 
propel the development of AI solutions capable of predicting the ex-
pected volume of ICU admissions within the next few hours after ED 
arrival. This forecast must be later absorbed by the DES model which can 
be used by the decision-makers to evaluate the balance between the 
current ICU bed capacity and the expected flow of patients. Simulta-
neously, the DES model must feed parameters and process data from the 
ED health records helping to shape a more realistic representation of the 
operational ICU context during the pandemic outbreak. In case of off- 
balance, the simulated may be employed by the administrators to 
design improvement interventions with anticipated and proven success. 
Otherwise, it will only confirm that the current intensive bed capacity is 
sufficient to address the expected demand. 

A key aspect in this framework is the role of the health supply chains 
in underpinning new intensive bed configurations. As these are net-
works of system entities, all actors (including transportation companies, 
suppliers, and retailers) must be coordinated and integrated to function 
as an operative scheme responding at lower lead times and costs. 
Reducing the Bullwhip effect will depend on the implementation plans 
derived from the DES model accompanied by an effective deployment 
strategy led by the hospital. Nonetheless, the bed inventory planning 
management cannot be only restricted to this critical resource but also 
directed towards coordinating the associated medical equipment supply 
chains and medical staff required to offer intensive care to Covid-19 
patients. The proposed scheme must also cope with the changing dy-
namics of the virus to build a suitable bed configuration responding to 

Fig. 1. The conceptual framework for supporting the bed inventory planning 
management during the Covid-19 outbreak. 
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the different demand scenarios. Incorporating the most recent opera-
tional variables and medical data into the AI and DES models will be 
pivotal to achieving this flexibility. The next section will outline how 
this conceptual framework can be implemented in a practical way 
practically at both tactical and operative levels of the ED-ICU interac-
tion. In addition, the advantages of the AI-DES approach will be coupled 
with the pandemic decision-making scenario to clarify how this meth-
odological proposal can deal with the bed waiting time problem faced by 
the ICUs. 

4. Proposed methodology 

The methodology described here integrates the RF and DES tech-
niques to provide policymakers, ICU managers, and healthcare author-
ities with a solid decision-making groundwork helping to improve ICU 
bed capacity management. It is also good to highlight that embedding 
RF results in a DES model is novel in the healthcare context. The result is 
a realistic model simulating the Covid-19 patient journey within the 
hospital with a particular focus on intensive care. Such a model parses 
out the ICU Length of Stay (ICU-LOS) behaviour in those patients with a 
high probability of ICU transferring. It is worth noting that these esti-
mations are derived when the patient is first admitted to the emergency 
department thereby facilitating the anticipated design of operational 
interventions tackling the disruptions caused by the unexpected 

behaviour of the Covid-19 pandemic. The general procedure is described 
below (Fig. 2): 

Step 1. Identification of potential ICU admission predictors in Covid-19 
patients: A list of features probably influencing the probability of ICU 
admission is established considering the pertinent scientific literature 
and doctors’ experience during the struggle against Covid-19. The sig-
nificant variables will be further used to predict the probability of ICU 
admission after a few hours of ED arrival. 

Step 2. Dataset construction: The dataset is built by extracting high- 
quality and appropriate patient data associated with the previously 
identified features. These data are usually reported and stored in in-
formation systems according to predefined data management protocols. 
Nevertheless, the healthcare database continues to evidence incomplete 
and missing records (Bihri et al., 2022; Nijman et al., 2022). In this case, 
the missing information for each feature will be addressed by employing 
median imputation across the treatments of the response variable in the 
cohort (Kabir et al., 2020). At this stage, it is therefore necessary to clean 
and link the resulting data, thereby increasing the final model’s accu-
racy and then producing better predictions. This entails a substantial 
amount of data pre-processing that will enable our data-driven model to 
learn interactions among the diverse types of features (single time point, 
discrete, and continuous). 

Step 3. Evaluating the significance of the variables: The potential pre-
dictors are further investigated by applying the ANOVA test. In this case, 
indicators such as the p-value and their coefficients are used to support 
the feature ranking and selection. Factors with p-value < 0.05 are 
considered as “predictors” while factors with p-value ≥ 0.05 are dis-
carded. On the other hand, the Mean Decrease in Gini Coefficient 
(MDGC) is also calculated for each variable. The higher the MDGC, the 
higher the relevance of the feature in predicting the response variable. 

Step 4. Creation of the Random Forest model: In this step, the data are 
initially verified for balance between the classes. Random under-
sampling techniques will be applied where necessary to deal with po-
tential imbalance problems if detected (Lin et al., 2021). After creating 
the final feature vector, RF will be used to derive the models predicting 
the probability of a patient in the emergency department ending up in 
the ICU. During modelling, the feature vector is split into independent 
training and testing sets. Also, k-fold cross-validation will be used for 
model verification (Gupta et al., 2021). 

Step 5. Model Evaluation: The predictive capacity of the model is 
evaluated using performance indicators including accuracy, sensitivity, 
specificity, positive, and negative predictive values. In this regard, the 
Receiver Operating Characteristic curve (ROC curve) assesses the model 
considering two parameters: true positive rate (sensitivity) and false 
positive rate (specificity). The Area Under Curve (AUC) is also a measure 
of discrimination and will indicate how well the model differentiates 
between patients who will need ICU support and those who will not. 
Larger values of all these metrics denote a better RF prediction model 
(over 90 % values denote excellent discrimination). 

Step 6. Design and validation of a Discrete-event simulation model: The 
predictive likelihood of ICU admission obtained with RF is later inserted 
into a DES model to specify whether the patient will be transferred to the 
ICU. Following this, the model is validated through statistical tests to 
determine if it is statistically comparable with the real-world system. 

Step 7. Evaluation of improvement interventions: The simulated system 
is now utilized to pretest potential interventions upgrading the intensive 
bed inventory management in response to the expected volume of 
Covid-19 patients forecasted by the RF model. The interventions are 
proposed by the hospital decision-makers, health authorities, and ICU 
managers considering the pandemic context and the associated health 
supply chains. Each intervention is later modelled, run, and assessed by 
statistical comparison techniques to determine if it is effective in terms 
of the bed waiting time. The strategy with the major bed waiting time 
reduction is then recommended for implementation in the wild and 
becomes a roadmap for downstream members who will be in charge of 
activating their logistics operational scheme in view of rapid 

Fig. 2. The proposed RF-DES integrated approach for upgrading the intensive 
bed inventory management in presence of the Covid-19 outbreak. 
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deployment. 
The next subsections will detail the RF and DES techniques to pro-

vide a clear understanding of their step-by-step application while 
evidencing their usability in supporting the bed inventory management 
activities within the ICUs. 

4.1. Random Forest 

The use of artificial intelligence (AI) tools is gaining attention in 
healthcare. Typically, the application of AI is focused on the analysis of 
the link between prevention, treatment, and patient outcomes. Although 
its use is in its early stages, AI approaches have been reported to be 
useful for improving the operational performance of different modern 
healthcare systems (Ellahham et al., 2020; Gopinath, 2021; Sun, 2021). 
One of the subsets of AI is Machine Learning (ML) which comprises the 
use of computational learning for making successful predictions based 
on past experiences. Its use in healthcare can be evidenced in predictions 
of COVID-19 mortality (Feng et al., 2021), detection and prediction of 
diseases (Jadhav et al., 2017), and it also promises to improve and 
accelerate medical processes (Oala et al., 2021). 

One of the main ML techniques is Random Forest (RF) which allows 
the construction of decision trees through the bagging technique (Brei-
man, 2001; Gumaei et al., 2022). In other words, RF creates multiple 
decision trees that are merged to obtain a more accurate prediction of 
outcome variables. The different decision trees establish models that are 
comparable to a real tree (Iwendi et al., 2020). The data are divided into 
smaller subsets originating from the branches of the tree. Subsequently, 
decision nodes containing two or more branches are originated. Each 
branch represents the features and leaf nodes containing the value of the 
result (Iwendi et al., 2020). The different decision trees generated from 
the above subsets or set of classifiers are represented as h1(x),h2(x),⋯,

hk(x), and the training data are represented as vectors < X,Y > (Brei-
man, 2001; Gumaei et al., 2022; Iwendi et al., 2020). 

The margin function (mg(X,Y) ) for each decision tree is expressed in 
Eq. (1): 

mg(X, Y) = avkI(hk(X) = Y ) − maxj∕=Y avkI(hk(X) = j) (1) 

The generalization error is given by Eq. (2): 

PE* = PX,Y (mg(X, Y) < 0) (2) 

It is known that the number of decision trees increases for all tree 
sequences considering that RF hk(X) = h(X,Θk). Therefore, followed by 
the strong law of large numbers and the tree structure, the prediction 
accuracy for each tree is given by Eq. (3) whose result explains why RF 
does not overfit as more trees are added (Breiman, 2001): 

P(X,Y)(Pθ(h(X − θ) = Y ) − maxj∕=Y Pθ(h(X − θ) = j )〈0) (3) 

RF has been proven to outperform other methods regarding predic-
tion accuracy while providing an autonomous representation of in-
teractions in large datasets (Patel et al., 2021; Simsekler et al., 2021). 
Besides, RF helps to rank the independent variables by considering their 
contribution to the outcome variable (Simsekler et al., 2021). On the 
other hand, RF allows detecting complex nonlinear relationships, 
handling big data, and identifying high-dimensional interactions be-
tween features (Chowdhury et al., 2021; Simsekler et al., 2020; Sujatha 
& Krishna, 2022). RF also evidences high resistance to overtraining as 
each tree is an independent random experiment even in presence of a 
considerable number of trees. No need to rescale, transform or change 
data is another RF benefit representing a potential time reduction in 
preprocessing activities. This is critical in pandemic times when rapid 
and effective solutions are required to alleviate the burden faced by the 
ICU units. Not less important is its capability to deal with both contin-
uous and discrete features as those expected to be gathered in ED set-
tings from the sociodemographic and clinical profile of Covid-19 
patients. 

The proposed RF model is developed based on the step-by-step 
approach described by Cheng, Joshi, et al. (2020), Vijiyakumar et al. 
(2019), and Breiman (2001) (Fig. 3):  

• Choose significant R predictors from a predefined set of m features 
(usually R≪m) after implementing the instructions within Step 3.  

• Select the node employing the best-split point considering R.  
• Divide the selected node into daughter nodes utilizing the best split.  
• Iterate the first step until l nodes have been derived.  
• Create a forest via iterating the previous steps for a times to finally 

produce n trees.  
• Generate the prediction for the target variable (in this case, the ICU 

admission likelihood for Covid-19 patients arriving at the ED). All 
these steps can be further operated through a software environment 
for statistical computing and graphics (e.g. R) 

4.2. Discrete-Event Simulation (DES) 

Now, we describe the step-by-step procedure of Discrete-Event 
Simulation (DES) according to the ISPOR-SMDM Task-Forces series 
which outlines a solid framework for healthcare modelling (Caro et al., 
2010; Gillespie et al., 2016): 

(i). Conceptualization of DES model: The simulation model is proposed 
as a tool that allows for achieving an equivalence to the real system 
(Ahmad et al., 2020; McGlothlin et al., 2018). In this case, DES is 
implemented to simulate the operations concerning the pathway be-
tween the ED and ICU. To do this, it is necessary to fully describe the 
stages of the Covid-19 patient pathway within the hospital paying 
particular attention to the intensive care services. Also, modelers are 
requested to identify the interactions with other healthcare services as 
well as the critical process variables to make the model comparable to 
the real-world system. In this respect, it is first advised to draw a flow 
diagram capable of representing the entire Covid-19 patient journey 
within the hospital with a special focus on emergency and intensive 
care. Such a graph is fed by the documented healthcare procedures, the 
associated protocols, and direct observation outputs. Ultimately, crit-
ical/secondary process variables and parameters are identified. 

(ii).Calculation of uncertainty in simulation parameters: Uncertainties 
exist according to the volatile context of a pandemic scenario mainly 
evidenced in significant variations of bed demand, LOS, and other 
measures derived from daily hospital operations (Lu et al., 2021). In this 
regard, Gillespie et al. (2016) and Garcia-Vicuña et al. (2021) state that 
it is important to incorporate the heterogeneity, and parameter uncer-
tainty into the DES model to ensure equivalence to the real-world ICUs. 
Therefore, part of the model uncertainty derived from this application 
will be intrinsically linked to the insights provided by the RF model 
(likelihood of ICU admission). Following this, input data analysis 
(randomness, homogeneity, and goodness-of-fit) will be performed on 
the process variables identified in the previous phase.  

o Randomness: Run tests (α = 0.01) will be carried out to verify 
whether the variable is independent. If the resulting p-value is higher 
than the significance level α, the variable is then concluded to be 
randomly distributed. Otherwise, it is identified to be dependent on 
other factors. The resulting p-value is based on K which is the com-
parison reference score helping to elucidate the observed number of 
auto-correlations.  

o Homogeneity: ANOVA tests (α = 0.01) will be executed to detect 
potential subgroups of data within the variable dataset. If the 
ensuing p-value is greater than the error level α, the variable is ho-
mogeneous and only one probability distribution is necessary to 
describe its behaviour. Otherwise, the variable is deemed heteroge-
neous and a probability expression is therefore required to represent 
each subgroup of data. The observed F score is a complementary 
metric confirming the decision achieved through the p-value. In 
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particular, if this indicator is higher than the theoretical F score, the 
homogeneity assumption is rejected; on the contrary, it is accepted.  

o Goodness-of-fit: Goodness-of-fit tests will be deployed to estimate the 
probability distributions of each variable including those evidencing 
subgroups of data. Kolmogorov-Smirnov tests (α = 0.01) will be used 
for this aim. The key metric is again the p-value which favors a 
particular distribution family if it is higher than the error level. In 
case of different probability expressions capable of describing the 
variable, the modelers should select the one with the major p-value. 

(iii). DES Development: In a healthcare context, the use of DES is 
appropriate for discovering a wide range of operational problems such 
as bottlenecks and inefficient use of resources (Casier et al., 2015; 
Vázquez-Serrano et al., 2021). Besides, it allows contrasting different 
scenarios without a real implementation (What-If analysis), therefore 
making it possible to explore their consequences in the real-world sys-
tem (Amantea et al., 2020; Barrios et al., 2015; Castanheira-Pinto et al., 
2021; Garcia-Vicuña et al., 2021). In this step, the design, development, 
and simulation of the DES model are carried out through a simulator (e. 
g. Arena Rockwell Software) which animates the Covid-19 patient 
journey within the hospital, thereby facilitating engagement with the 
different stakeholders and underpinning the model validation. The 
modelling process is possible thanks to the insertion of blocks denoting 
the different steps of the Covid-19 patient journey identified in phase (i). 
Likewise, the RF insights (Step 4) and probability distributions (Phase ii) 
are included in this model, thereby providing a robust and connected 
decision-support system. 

(iv). Transparency, validation, and pretesting: Validation and trans-
parency are important to demonstrate the degree to which the proposed 
model represents the real ICU (Melman et al., 2021). This is achieved 
through a statistical comparison between the proposed model and re-
ality using performance metrics as evidenced in different works (Doneda 
et al., 2021; Garcia-Vicuña et al., 2021; Melman et al., 2021). On the 
other hand, transparency must be achieved by clearly presenting the 
model structure, assumptions, and details according to the model vali-
dation, (Corro Ramos et al., 2020; Gillespie et al., 2016). The successful 
validation of the model also opens the door to the execution of simu-
lations with different parameters (improvement interventions) 

searching for those scenarios with satisfactory performance in the 
context framed by the predicted likelihood of ICU admission. This is also 
defined with the aid of comparative statistical analysis, such as the 1- 
sample sign test, which is performed on the metrics derived from a 
sample of runs. The number of iterations is based on the variations 
detected in a pre-sample of 10 runs as exemplified in Ortiz-Barrios and 
Alfaro-Saiz (2020b). In this case, three performance indicators will be 
employed to validate the model: Waiting time in ED for I-II triaged pa-
tients, Waiting time in ED for III-V triaged patients, and ICU bed waiting 
time. If the consequent p-value is major than α, the model is then 
concluded to be comparable with the real-world system; otherwise, the 
model must be reviewed and updated until achieving this condition. 
Once reached, the model can be used for performance diagnosis and 
simulation of improvement interventions. For the latter, Mann-Whitney 
tests (with H1 : ηps − ηnis < 0) will be applied to determine if the pro-
posed strategy (ps) would reduce the ICU bed waiting time compared to 
a non-intervention scenario (nis). In this case, if the p-value is found to 
be higher than α, the intervention is deemed to be non-effective in 
lessening the delays experienced by Covid-19 patients needing ICU beds. 
However, if this metric is lower than the error level, the intervention can 
be recommended for application in the wild. 

5. Results 

Inadequate management of ICU installed capacity may result in an 
increased risk of Covid-19 mortality and higher healthcare costs. Being 
aware of this, a Spanish hospital chain decided to advance the under-
standing of this virus by collecting suitable data supporting the design of 
AI models, epidemiological studies, and phase-type algorithms to lay the 
groundwork for healthcare decision-making in upstream services (sur-
gery, hospitalization, and intensive care). Moreover, this group has re-
ported >4400 Covid-19-related admissions in the emergency 
departments (EDs) and continues to combat this pandemic based on the 
existing protocols. However, the intricacy inherent to the ICU and the 
disaster context motivates the implementation of more robust method-
ological approaches augmenting the resilience, flexibility, and respon-
siveness of these units thereby reducing the waiting times for a bed and 
extended LOS experienced by the infected patients. The project 

Fig. 3. The RF procedure within the ICU bed inventory management project.  
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described here was approved by the showcased group of hospitals 
(Agreement number: 14–12-2021–004; Access request ID:39) which also 
provided full informed consent about the activities to be performed in 
this intervention. The following sub-sections will depict the results ob-
tained after executing the proposed framework while building an evi-
dence base underpinning the creation of strategies that anticipatedly 
prepare the ICUs against the expected demand peaks. 

5.1. Potential predictors of ICU admission in Covid-19 patients 

The likelihood of ICU admission in Covid-19 patients is the result of 
combining different predictors from the sociodemographic (Age, sex) 
and clinical domains (Diastolic blood pressure, Systolic blood pressure, 
Heart rate, Blood oxygen saturation, Temperature). Table 1 enlists a set 
of factors that may potentially contribute to this probability in a sig-
nificant manner considering previous findings from the reported liter-
ature and the opinion of different specialists involved in the healthcare 
sector. These features were measured by the Spanish hospital chain in 
each confirmed Covid-19 patient during the current outbreak. It is good 
to note that only features to be collected in the emergency departments 
were considered given the aim of predicting the probability of ICU 
transfer anticipatedly. 

5.2. Dataset construction 

5.2.1. Study cohort and data extraction 
The initial dataset, constructed under the “COVID DATA SAVE 

LIVES” project, contains the anonymized healthcare records of 4479 
patients between the ages of 1 and 106 years. The use of these data 
counts on the formal approval by the Ethical Research Committee of the 
Spanish hospital chain. Specifically, the individual patient data was 
gleaned from the electronic hospital health records and included infor-
mation on diagnosis, ICU admissions, lab results, treatments, vital signs, 
and type of discharge. These patients were admitted to the emergency 
departments of the hospital group between 5 February 2020 and 13 
February 2021. The Covid-19 diagnosis was reached considering the 
prior assessment by a specialist and/or clinical findings of a Reverse 
Transcription Polymerase Chain Reaction (RT-PCR) test. The data was 
extracted from Doctoris, the Health Information System employed by the 
showcased hospitals. 

5.2.2. Sampling and labeling 
The final sample selected for the prediction model was reduced to 

1049 patients since the presence of incongruent data in some of the 
features. In this case, missing information for each potential predictor 
was imputed by using the median value across the levels of the response 
variable in the cohort (Batista & Monard, 2003; Cheng, Joshi, et al., 
2020) In some features (Systolic blood pressure, Diastolic blood pres-
sure, Heart rate, Body temperature and Blood oxygen saturation), two 
measures were gathered at different instances to evidence the evolution 
of the patient along the time (time-series data). The primary outcome of 
this intervention was the likelihood of ICU transfer. In this case, the 
labeling was the following: indicate with “1′′ if the Covid-19 patient was 
transferred to the ICU; otherwise “0”. 

5.3. Factor analysis: Significance tests 

Table 2 and Fig. 4a–4m depict the characteristics of patients included 
in the study cohort and provide specific profiles of both Covid-19 pa-
tients in the ICU and those who did not necessitate this service. An 
advantage of this research is that the database contains patients from all 
age groups and it is therefore illustrative of the Covid-19 affectation 

Table 1 
List of potential predictors of ICU admission due to Covid-19.  

Potential 
predictor 

Predictor description Previous studies using the 
predictor 

Sex Sex of the Covid-19 
suspected/infected patient. 

Mesas et al. (2020), Figliozzi 
et al. (2020), Hu et al. (2020) 

Age Age of the Covid-19 
suspected/infected patient. 

Mesas et al. (2020), Figliozzi 
et al. (2020), Gallo Marin et al. 
(2021); Dergaa et al. (2022) 

Diastolic blood 
pressure 

Record of minimum blood 
pressure taken at the 
Emergency Department. 

Guo et al. (2020); Ikemura et al. 
(2021), Wang et al. (2021) 

Systolic blood 
pressure 

Record of maximum blood 
pressure taken at the 
Emergency Department. 

Guo et al. (2020); Caillon et al. 
(2021), Ikemura et al. (2021), 
Wang et al. (2021) 

Heart rate Heart rate record taken at the 
Emergency department. 

Guo et al. (2020); Mudatsir 
et al. (2021), Mehrabadi et al. 
(2021), 

Oxygen 
saturation 
level 

Record of oxygen saturation 
taken at the Emergency 
department. 

Akhavan et al. (2020), Assaf 
et al. (2020), Mejía et al. (2020) 

Temperature Temperature record taken at 
the Emergency department. 

Tharakan et al. (2020), Drewry 
et al. (2020), Leung (2020) 

D-Dimer level First D-dimer record 
calculated by the lab at the 
Emergency Department 

Soni et al. (2020), Cheng, Hu, 
et al. (2020), Zhang et al. 
(2020)  

Table 2 
Characteristics of patients transferred and not transferred to the ICUs in the 
showcased hospitals.  

Patient 
characteristics 

Transferred to ICU N 
(%) or Mean (SD) 

Not transferred to ICU 
N (%) or Mean (SD) 

P- 
value 

Total patients 398 (37.9 %) 651(62.1 %)  
Age (AGE)         

0.000 

Mean 64.95 (15.25) 66.29 (16.93) 
Median 67 67 
Interquartile range 60 to 75 54 to 80 
0 to 10 8 (2.0 %) 1(0.2 %) 
11 to 20 0 (0.0 %) 2 (0.3 %) 
21 to 30 6 (1.5 %) 15 (2.3 %) 
31 to 40 7 (1.8 %) 25 (3.8 %) 
41 to 50 29 (7.3 %) 77 (11.8 %) 
51 to 60 60 (15.1 %) 114 (17.5 %) 
61 to 70 130 (32.6 %) 135 (20.7 %) 
71 to 80 123 (30.9 %) 131 (20.1 %) 
81 to 90 33 (8.3 %) 117 (18.0 %) 
91 to 100 2 (0.5 %) 33 (5.1 %) 
100 onwards 0 (0.0 %) 1 (0.2 %) 
Sex (SEX) 
Male 292 (73.36 %) 378 (58.06 %) 0.000 
Female 106 (26.64 %) 273 (41.93 %) 
Temperature (ªC) 
First measure in EDs 

(TEMP_1) 
36.83 (0.72) 36.60 (0.67) 0.000 

Second measure in 
EDs (TEMP_2) 

36.84 (0.75) 36.62 (0.71) 0.000 

Diastolic blood pressure (mm Hg) 
First measure in EDs 

(DBP_1) 
76.19 (9.50) 76.14 (10.96) 0.000 

Second measure in 
EDs (DBP_2) 

76.45 (10.77) 76.17 (11.64) 0.000 

Systolic blood pressure (mm Hg) 
First measure in EDs 

(SBP_1) 
130.97 (14.81) 133.44 (17.07) 0.000 

Second measure in 
EDs (SBP_2) 

131.08 (16.45) 133.27 (17.60) 0.000 

Heart rate (Number of heartbeats) 
First measure in EDs 

(HR_1) 
91.48 (14.34) 87.87 (13.69) 0.000 

Second measure in 
EDs (HR_2) 

91.95 (14.80) 88.40 (14.52) 0.000 

Oxygen saturation level (%) 
First measure in EDs 

(OSL_1) 
90.22 (7.58) 93.75 (4.73) 0.000 

Second measure in 
EDs (OSL_2) 

89.66 (8.73) 93.62 (5.04) 0.000 

D-dimer level (µg/ 
ml) (D.DIMER) 

1944.72 (3512.83) 1017.38 (2658.99) 0.000  
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along the different human life phases. For instance, of the 398 patients 
transferred to the ICUs between 5 February 2020 and 13 February 2021, 
153 (63.5 %) were aged between 61 and 80. It is interesting to note that 
most of these patients between the ages of 81 to 102 years (151; 81.18 
%) were not transferred to ICU while the majority of transferred Covid- 
19 patients were male (292; 73.36 %). 

Regarding the clinical features, it is evident that both first and second 
body temperature measures were significantly higher in ICU patients 
(TEMP_1: 36.83; TEMP_2: 36.84; p-value = 0) compared to those who 
did not pass to these units (TEMP_1: 36.60; TEMP_2: 36.62; p-value = 0). 
Also, the diastolic blood pressures were concluded to be meaningfully 
larger in the ICU Covid-19 patients (DBP_1: 76.19; DBP_2: 76.45; p- 
value = 0) contrasted with those in emergency and hospitalization units 
(DBP_1: 76.14; DBP_2: 76.17; p-value = 0). Likewise, the heart rates 
(Mean difference for HR_1: 3.71 heartbeats; HR_2: 3.55 heartbeats) were 
statistically greater in the ICU patients (p-value = 0). It is also interesting 
to underscore that lower oxygen saturation levels were reported in 
transferred patients (Mean difference for OSL_1: − 3.53 %; OSL_2: − 3.96 
% p-value = 0) who also experience high D-dimer values in comparison 
with those having mild health condition (Mean difference for D.DIMER: 
927.34 µg/ml; p-value = 0). 

Following this, Analysis-of-Variance (ANOVA) tests were performed 
to validate whether the above-mentioned factors were contributing to 

the probability of ICU transfer for a Covid-19 patient considering an 
alpha level of 0.05. In this case, all the factors were found to be signif-
icant to this likelihood (p-value = 0) and can be therefore adopted by the 
RF model to predict this transitory state. Furthermore, 2-order and 3- 
order interactions were explored to upgrade the model performance in 
terms of accuracy, positive/negative predictive value, Area Under Curve 
(AUC), sensitivity, and specificity (see Table 3 and Fig. 5). Herein, “CR” 
and “SR” indicate cubic and square roots respectively whilst “LN” rep-
resents the natural logarithm. As a result, the 2-order interactions 
(“SR_OSL”, “SR_HR”, “SR_DBP”, “TEMP_1xTEMP_2”, “SR_SBP”, 
“HRxOSL”, “DBPxHR”, “D.DIMERxOSL” and “D.DIMERxAGE”) and 3- 
order interactions (“CR_OSL”, “CR_TEMP_2”, “CR_SBP”) were deter-
mined to be contributors to ICU stay based on the Mean Decrease in Gini 
Coefficient (MDGC). It is relevant to point out that the most important 
predictors are those related to the D-dimer level (MDGC = 106.110) and 
their interactions with age (MDGC = 32.721) and oxygen saturation 
level (MDGC = 84.610). 

5.4. The Random Forest model: Training, testing, and validation 

The cohort was randomly divided into training and test subsets ac-
cording to a 70/30 proportion. The ICU transfer ratio was 8.89 % which 
generated an imbalance between the positive class (patients who were 

Fig. 4. Histograms representing the significant features a) AGE, b) TEMP_1, c) TEMP_2, d) HR_1, e) HR_2, f) OSL_1, g) OSL_2, h) D.DIMER, i) DBP_1, j) DBP_2, k) 
SBP_1, l) SBP_2, and m) SEX in ICU-admission and Non-ICU-admission Covid-19 patients. 
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not transferred to the ICUs) and the negative label (patients who were 
moved to the ICU). We then undertook random undersampling on the 
training dataset to balance both classes and avoid bias in the prediction 
model (Hsu et al., 2015; More & Rana, 2017; Sawangarreerak & Tha-
nathamathee, 2020) (Fig. 6). We employed the Rstudio software version 
4.1.2 to apply RF and reach the prediction model. Following this, we 
carried out a 10-fold cross-validation to adjust the hyperparameters and 
employed these libraries: epiR (v.2.0.44), Caret (v.6.0–90) (Mercatelli 
et al., 2021), randomForest (v.4.7–1) (Fontaine et al. 2018), and ROCR 
(v.1.0–11). 

Moreover, seven performance metrics were used not only to specify 

their average score but also to define a 95 % confidence interval (95 % 
CI) for better variability representation and model robustness evalua-
tion: Sensitivity, Specificity, Accuracy, Positive predictive value, Nega-
tive predictive value, Area Under Curve (AUC), and McNemar’s test p- 
value. These indicators were estimated in the Rstudio environment (Xie 
et al., 2022) by implementing custom scripts and the aforementioned 
libraries. Table 4 reports the final values of the metrics. In this case, 
McNemar’s test p-value (0.153) was concluded to be higher than the 
error level (0.05) which supports the homogeneity assumption between 
the percentage of misclassified cases for the two class levels. On the 
other hand, most of the metrics are over 90 % which evidences good 

Fig. 4. (continued). 
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discrimination by the RF model when identifying patients with a need of 
intensive care ICU and those who do not necessitate this service. This is 
also confirmed by the Receiving Operator Characteristic (ROC) curve 
plot (Fig. 7) whose AUC (95.48 %, 95 %CI (89.73 %–100 %)) exhibits 
excellent discrimination between the Covid-19 patients with/without 
the need for ICU admission. Likewise, the specificity (93.50 %, 95 %CI 
(87.58 %–97.15 %)) denotes that out of 100 patients with no ICU 
admission need, the model will forecast between 87 and 97 correctly. In 
the meantime, the sensitivity (90.18 %, 95 %CI (84.54 %–94.28 %) 
points out that out of 100 Covid-19 patients needing transfer to ICU, the 
RF model will predict between 84 and 94 accurately. On the other hand, 
the positive predictive value (94.84 %, 95 %CI (90.08 %–97–74 %) 
evidences that between 90 and 97 of every 100 Covid-19 patients with 
ICU admission prediction, will be ultimately moved to this unit. Mean-
while, the negative predictive value (87.79 %, 95 %CI (80.92 %–92.85 

%) reveals that between 80 and 92 out of 100 Covid-19 patients with 
non-ICU transfer forecast, will not be certainly discharged to this stage. 

5.5. The DES model: Design and validation 

The predictions derived from the RF algorithm were then incorpo-
rated into a DES model whose aim is three-fold: i) Measure the waiting 
time for an ICU bed, ii) Determine if the number of available ICU beds is 
enough to meet the demand, and iii) Define how the ICUs can be 
reconfigured to minimize the waiting times considering the number of 
patients that are expected to be admitted in these units. The next sub- 
sections will describe how these objectives were addressed and what 
recommendations emanated from this implementation pursuing the 
effective capacity management of Intensive Care Units during the Covid- 
19 pandemic. 

5.5.1. Conceptualization of DES model 
To model the ED-ICU interaction correctly, it was necessary to count 

on the opinion of medical staff and the administrative personnel 
involved in the Quality Management and Logistics departments com-
plemented by the information derived from the related procedures, 
protocols, and fieldwork allowing us to identify the main process com-
ponents of the Covid-19 patient journey, the different patient states, the 
interactions among services, and the associated data. The result is a flow 
diagram detailing the Covid-19 healthcare from the EDs to the ICU 
(Fig. 8). 

5.5.2. Calculation of uncertainty in simulation parameters 
In this system, four process variables were considered within the 

modelling phase: Time between arrivals of Covid-19 patients, Triage 
consultation time, Diagnosis/Treatment time in the ED, and ICU-LOS. 
Run tests were first undertaken to verify the randomness of these vari-
ables (alpha level = 0.01). The resulting outcomes in terms of the K score 
and p-value are presented in Table 5. It is noted that “Time between 
arrivals of Covid-19 patients” was stratified into “day of the week” and 
“time slots” (P1: 00:00–08:00; P2: 08:00–16:00; P3: 16:00–00:00) 

Table 3 
Mean decrease in Gini coefficient for factors and their interactions.  

Factor/Interaction Mean decrease in Gini coefficient 

AGE  5.029 
SEX  0.707 
SBP_1  9.527 
DBP_1  5.984 
TEMP_1  4.230 
HR_1  3.520 
OSL_1  12.270 
SBP_2  4.925 
DBP_2  4.136 
TEMP_2  3.144 
HR_2  2.712 
OSL_2  6.931 
SR_OSL  9.229 
SR_HR  4.735 
SR_DBP  5.074 
CR_OSL  10.299 
CR_TEMP_2  2.046 
TEMP_1xTEMP_2  3.609 
SR_SBP  8.035 
HRxOSL  3.917 
CR_SBP  7.287 
DBPxHR  3.744 
LN_SBP  6.509 
D.DIMER  106.110 
D.DIMERxOSL  84.610 
D.DIMERxAGE  32.721  

Fig. 5. Mean decrease in Gini coefficients for factors and interactions.  

Fig. 6. The procedure for the derivation of training and test cohorts.  
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considering the p-values (0) derived from the initial run tests. This is 
consistent with Gul and Guneri (2012) and De Santis et al. (2021) where 
this pattern was also observed in the ED patient arrival process. For this 
case, the p-values and K scores provided sufficient evidence for accept-
ing the intra-variable independence of the process variables. Afterward, 
homogeneity tests were performed using the ANOVA method (alpha 
level = 0.05) (Table 6). The results supported the existence of different 
demand behaviours depending upon the day of the week and time slot 
(Fobs = 8.65; p-value = 0) as well as the identification of two types of 
ICU patients (intermediate, critical) considering the significant differ-
ences between the groups (Fobs = 5.92; p-value = 0.015). In these cases, 

a mathematical expression needs to be defined for each pipeline. In the 
remaining variables, the homogeneity assumption was accepted (p- 
value > 0.05) and one probability expression is therefore enough to 
describe their trends and patterns. Kolmogorov-Smirnov tests (α = 0.01) 
were then carried out to define the probability distribution that better 
fits each variable. The resulting mathematical expression with the p- 
values underpinning the goodness of fit was also inserted in Table 6. 

5.5.3. DES development and validation 
After completing the input-data analysis depicted in the previous 

sub-section, we proceeded with creating a virtual model of the health-
care system using Arena® 16.10.00 software. The Covid-19 patient 
journey described in Fig. 8 and the mathematical expressions obtained 
through the Goodness-of-fit tests were included in this representation. 
As all the healthcare units involved in this pathway operate constantly, 
the length of replication was defined to be 15 days with 24 h per 
simulated day. Also, a warm-up time length of 100 days was established 
considering an approximate blocking probability of 0 which denotes a 
stable state of the computational model. Following this, the simulated 
system was initially iterated 10 times to estimate the final number of 
replications that will be taken into account in the validation stage. The 
waiting times in EDs for I-II/III-V triage levels as well as the waiting time 
in ICU were measured in each iteration. In this case, 2,183 replications 
were deemed necessary to fully mimic the current variation of the real 
Covid-19 healthcare system. Lately, the equivalence hypothesis was 
assessed by a 1-sample sign test (α = 0.05) given the asymmetric dis-
tribution of the data in each indicator (p-value < 0.005; AD > 4.924): 
Waiting time in ED for I-II triaged patients (Ho: η = 240 min || Ha: η ∕=
240 min; p-value = 0.578), Waiting time in ED for III-V triaged patients 
(Ho: η = 270 min || Ha: η ∕= 270 min; p-value = 0.257), and ICU bed 
waiting time (Ho: η = 60 min || Ha: η ∕= 60 min; p-value = 0.7). The 
results evidenced that the simulated system is statistically comparable 
with the real Covid-19 patient journey and can therefore be used for 
performance diagnosis and further pre-testing of operational improve-
ment interventions as detailed in the next subsection. 

Table 4 
Performance metrics of the ICU likelihood predictive model based on RF (95 % confidence intervals).  

Sensitivity (%) Specificity (%) Accuracy (%) Positive predictive value 
(%) 

Negative predictive value 
(%) 

AUC – ROC (%) McNemar’s test p- 
value 

90.18 
(84.54–94.28) 

93.50 
(87.58–97.15) 

91.61 
(87.7–94.55) 

94.84 (90.08–97.74) 87.79 (80.92–92.85) 95.48 
(89.73–100)  

0.153  

Fig. 7. ROC curve for the test set in the RF prediction model.  

Fig. 8. Flow diagram: Covid-19 patient journey within the showcased hospitals.  
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5.6. Evaluating improvement interventions 

The Covid-19 virus has been noted for its rapid evolution in some 
patients who, in a few hours, need to be transferred from the ED to the 
ICU to decrease the risk of mortality and potential sequelae in their 
health (Whitworth, 2020). It is therefore fundamental to anticipate the 
likelihood of patients being admitted to the ICUs so that hospital ad-
ministrators and policymakers can ensure a high probability of having a 
bed when required. An over-90 %-accuracy RF model based on socio-
demographic and recent patient clinical data was illustrated in the past 
subsections to deal with this decision-making context. However, the 
question now is: How can this model be rolled out at a grassroots level to 
timely warn ICU managers about possible bed shortages in the future? 
The first step is to gather the input data required by the RF model; in this 
respect, an initial collection is undertaken during patient admission/ 
triage and the second set of data is then obtained while diagnosis and 
treatment in the ED (see Fig. 3). Once the collection process is complete, 
the RF can anticipatedly provide an overview of the number of patients 
that may be transferred to the ICU within the next seven days. The ICU 
administrator can then pre-test and parse out different alternative so-
lutions through DES so that the most effective (minimum median 
waiting time for ICU beds) can be timely identified and implemented in 
the real scenario before the patients’ arrival. A test set (n = 286 patients) 
was used as an example of this application. In this case, 45.81 % (n =
131) of the patients admitted to the ED were predicted with a high ICU 
transferring probability. In this regard, Fig. 4 reveals that not timely 
intervening in the ICU would represent a median waiting time (95 % CI) 
between 106.55 and 119.55 min for incoming Covid-19 patients. The 
predictions derived from the model were later included in the simulation 
model to evaluate the effectiveness of two potential interventions pro-
posed by the decision-makers: (i) enable an internal space, usually 
employed for administrative purposes, as a new ICU with a maximum 
installed capacity of 15 beds, and (ii) transfer patients to a satellite ICU 
when the internal ICU is fully occupied. The proposed strategies have 
been evaluated in terms of waiting time for an ICU bed and compared to 
a non-intervention scenario (Fig. 9). 

We also performed a Mann-Whitney test to verify if the suggested 

Table 5 
Results of randomness tests.  

Process variable K p-value 

Triage consultation time >0.09 >0.15 
Diagnosis/Treatment time in the ED 6.926 0.537 
ICU-LOS  

Intermediate 
Critical 

9.302 
17.280 

0.386 
0.326 

Time between arrivals of Covid-19 patients considering day and time slot 
Day of the week Time slot K p-value  

Monday 
P1 0.057 0.127 
P2 0.026 0.788 
P3 0.012 0.895  

Tuesday 
P1 0.072 0.139 
P2 0.022 0.826 
P3 0.012 0.618  

Wednesday 
P1 0.105 0.472 
P2 0.027 0.012 
P3 0.013 0.338  

Thursday 
P1 0.058 0.692 
P2 0.034 0.245 
P3 0.012 0.409  

Friday 
P1 0.064 0.111 
P2 0.026 0.854 
P3 0.013 0.290  

Saturday 
P1 0.042 0.701 
P2 0.036 0.283 
P3 0.016 0.043  

Sunday 
P1 0.047 0.020 
P2 0.029 0.558 
P3 0.015 0.079  

Table 6 
Homogeneity and goodness-of-fit tests.  

Process variable Homogeneity 
test 

Goodness-of-fit test 

F- 
score 

p- 
value 

Mathematical 
expression 

p-value        

Time 
between 
arrivals of 
Covid-19 
patients 

Monday – P1       

8.65       0.000 

LOGN(0.0632, 
0.156) d  

>0.15 

Monday – P2 − 0.001 + LOGN 
(0.0187, 
0.0399) d  

>0.15 

Monday – P3 − 0.001 + LOGN 
(0.0133, 
0.0203) d  

0.247 

Tuesday – P1 LOGN(0.087, 
0.215) d  

>0.15 

Tuesday – P2 − 0.001 + LOGN 
(0.0221, 
0.0422) d  

>0.15 

Tuesday – P3 − 0.001 + LOGN 
(0.0126, 
0.0184) d  

>0.15 

Wednesday – 
P1 

LOGN(0.136, 
0.727) d  

>0.15 

Wednesday – 
P2 

− 0.001 + LOGN 
(0.0252, 
0.0455) d  

>0.15 

Wednesday – 
P3 

− 0.001 + LOGN 
(0.0134, 0.018) 
d  

>0.15 

Thursday – 
P1 

EXPO(0.0582) d  >0.15 

Thursday – 
P2 

− 0.001 + LOGN 
(0.0297, 
0.0642) d  

>0.15 

Thursday – 
P3 

− 0.001 + LOGN 
(0.0129, 
0.0199) d  

>0.15 

Friday – P1 WEIB(0.0486, 
0.688) d  

>0.15 

Friday – P2 − 0.001 + LOGN 
(0.0242, 
0.0497) d  

>0.15 

Friday – P3 − 0.001 + LOGN 
(0.0137, 
0.0221) d  

0.074 

Saturday – 
P1 

− 0.001 + WEIB 
(0.041, 0.891) d  

>0.15 

Saturday – 
P2 

− 0.001 + LOGN 
(0.0284, 
0.0565) d  

>0.15 

Saturday – 
P3 

− 0.001 + LOGN 
(0.0165, 
0.0257) d  

>0.15 

Sunday – P1 − 0.001 + LOGN 
(0.0528, 0.175) 
d  

>0.15 

Sunday – P2 − 0.001 + LOGN 
(0.0253, 
0.0484) d  

>0.15 

Sunday – P3 − 0.001 + LOGN 
(0.0161, 
0.0235) d  

>0.15 

Triage consultation time 0.74 0.566 UNIF (10,15) 
min 

>0.15 

Diagnosis/ 
Treatment 
time in the 
ED 

Triage 1–2 3088.7 0.000 UNIF (20,30) 
min  

>0.15 

Triage 3–5 UNIF (20,40) 
min  

>0.15 

ICU-LOS Intermediate 5.92 0.015 GAM (15.3, 
0.609) h  

0.093 

Critical EXPO (17.3) h  0.146  
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scenarios would cause a significant lessening in the waiting times. The 
results revealed that, in case of implementation, Scenario (i) would 
represent a reduction between 32.42 and 48.03 min (95 % CI; p-value =
0; W = 127,439; Improvement percentage = − 64.41 %) in the median 
waiting time while Scenario (ii) would cause a decline ranging from 
21.69 and 29.52 min (95 % CI; p-value = 0; W = 1,491,546.5; 
Improvement percentage = − 77.35 %) for the same performance metric 
in contrast with a non-intervention context. 

6. Discussion 

6.1. Findings from the RF model 

The collection of clinical and demographic patient data is the starting 
point for achieving better control of the Covid-19 disease through pre-
diction. Data such as temperature (Tharakan et al., 2020), age (Albitar 
et al., 2020), sex (Sharma et al., 2020), heart rate (Wang, Gheblawi, 
et al., 2020), systolic and diastolic blood pressure (Jarrett et al., 2020), 
oxygen saturation (Jarrett et al., 2020), and D-dimer (Rostami & Man-
souritorghabeh, 2020) have helped decision-makers to predict the 
health evolution of Covid-19 patients in terms of survival and life 
quality. Our RF model has considered all these factors in both single and 
hybrid ways to predict the likelihood of ICU admission so that the pre-
paredness of these units can be significantly augmented during new 
Covid-19 peaks. Specifically, the results uncovered that SBP_1 (MDGC =
9.527) and DBP_1 (MDGC = 5.984) are significant predictors of ICU 
admission in Covid-19 patients. Similarly, second measures of these 
factors (MDGCSBP_2 = 4.925; MDGCDBP_2 = 4.136) within the emergency 
departments were found to provide a good prognosis of health wors-
ening due to Covid-19. Both systolic and diastolic blood pressures have 
been considered high predictors of mortality risk (Ikemura et al., 2021). 
Increased mortality has been associated with very low diastolic blood 
pressure (Moledina et al., 2020), while systolic blood pressure and hy-
pertension have been associated with high mortality and respiratory 
distress (Caillon et al., 2021). In addition, a combination between DBP 
and heart rate (MDGCDBPxHR = 4.136) was concluded to be contributing 
to an increase in this probability and can be therefore deemed as an 
intervention point by both medical and administrative staff of the hos-
pitals in the battle against the pandemic. A Covid-19 patient with these 
conditions has a high risk of cardiac arrest which may be avoided when 
transferred to the ICU. In these units, intravenous medications can be 
provided to these patients to increase cardiac output and improve blood 
circulation in all the tissues. 

On the other hand, the significance tests detected that OSL_1 (MDGC 
= 12.270), OSL_2 (MDGC = 6.931), SR_OSL (MDGC = 9.229), CR_OSL 
(MDGC = 10.229) meaningfully influence the ICU transfer likelihood of 
a Covid-19 patient. This is consistent with the findings of a study in Peru 

which identified below-90 % oxygen saturation as a predictor of hospital 
mortality (Mejía et al., 2020), and that a sudden decrease in saturation 
level may cause a serious clinical deterioration in the patient’s health 
(Jarrett et al., 2020). Also, a significant interaction was detected be-
tween this factor and HR (MDGCHRxOSL = 3.917) which may be 
explained by the need for intubation and invasive mechanical ventila-
tion to diminish the risk of respiratory paralysis. In addition, a combi-
nation with high D-dimer levels was proved to be one of the conditions 
that most augments the ICU transfer probability (MDGCD.DIMERxOSL =

84.610). A Covid-19 patient with this pattern may experience stroke and 
it is hence essential to give blood-thinning medicines and implement 
thrombolysis/thrombectomy to lessen the risk of cardiorespiratory ar-
rest while continuously monitoring the patient’s health due to the po-
tential risk of blood loss related to these treatments. 

Another interesting finding is associated with the predictive ability 
of body temperature in the likelihood of ICU admission: Temp_1 (MDGC 
= 4.230), Temp_2 (MDGC = 3.144), CR_Temp_2 (MDGC = 2.046), and 
Temp_1xTemp_2 (MDGC = 3.609). High temperatures have been also 
shown to be a predictor of Covid-19 mortality (Choron et al., 2021; 
Tharakan et al., 2020). In fact, some results of interventions conducted 
in New York hospitals concluded that hyperthermia is a predictor of 
mortality among critically ill Covid-19 patients who were admitted to 
ICUs (Choron et al., 2021). In fact, over-39.5 ◦C fevers were common in 
patients dying in the ICU (Choron et al., 2021; Tharakan et al., 2020). 
Likewise, increased age was confirmed as a high-risk factor for ICU 
admission among Covid-19 patients (MDGC = 5.029). This is consistent 
with Albitar et al. (2020), Aly et al. (2020), and Zhou et al. (2020) where 
this feature was also associated with death. It is good to note that most of 
the patients (not all) between the ages of 81–102 years (151; 81.18 %) 
were not transferred to ICU. In other words, 35 patients (19.82 %) 
categorized in this age group were certainly admitted to these units. The 
rationale behind these results is that the survival probability of some 
over-80 patients tends to be very low due to the limited family support 
that they count on and the fragility of their immune systems. In this 
sense, some hospital managers have calculated the Years of Life Poten-
tial Lost (YLPL) which, in these cases, are significantly minor compared 
to under-80 Covid-19 patients. Therefore, the latter are prioritized for 
ICU admission. The decision of transferring the 35 over-80 Covid-19 
patients pointed out in this study is underpinned by the presence of 
family carers committed to providing the attention required for avoiding 
72-hour readmission to the ED and death at home, which may be ex-
pected outcomes given the rapid evolution and initial consequences of 
the Covid-19 virus in these patients. It is also good to highlight that a 
merge of elevated D-dimer levels and aging conditions was defined as 
highly contributing to ICU admission in these patients (MDGC =
32.721). The elderly tend to be more fragile and therefore prone to 
develop more severe pulmonary and cardiac complications that added to 
non-normal D-dimer concentration may cause cardiac arrest. UCIs are 
then called to apply thrombolytic therapy or thrombectomy when 
considered to counteract the effects of the disease and then increase life 
expectancy. 

Our study additionally proved the significance of heart rates in a 
poor evolution of Covid-19 and an increased probability of ICU admis-
sion accordingly: HR_1 (MDGC = 3.520), HR_2 (MDGC = 2.712), and 
SR_HR (MDGC = 4.735). In this regard, Wang, Wang, et al. (2020) 
concluded that Covid-19 patients have relatively increased heart rates in 
sinus rhythm and a high risk of arrhythmias. Tachycardia has been the 
most reported complication followed by Atrial Fibrillation (AF) with 
elevated rates between 123 and 160 bpm. Furthermore, it was observed 
how Covid-19 infection could induce electrophysiological abnormalities 
in patients with no history of heart disease (Wang, Wang, et al., 2020). 
Concerning this, Long et al. (2021) found that Covid-19 may hurt the 
cardiovascular system and cause Electrocardiographic (ECG) abnor-
malities given the presence of cytokine storm, plaque rupture, coronary 
artery spasm, microthrombi, as well as direct endothelial or myocardial 
injury. 

Fig. 9. Median waiting times for an ICU bed in Scenarios i and ii compared to a 
non-intervention context. 
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Sex has been also identified as a risk factor for Covid-19-related ICU 
admission (MDGC = 0.707) which is consistent with Albitar et al. (2020) 
and Sharma et al. (2020). In this case, most transferred Covid-19 pa-
tients were male (292; 73.36 %; p-value = 0) which supports the fact 
that men are more susceptible to Covid-19 infection than women by 
evidence of higher viral load titers and accumulation of alveolar mac-
rophages and neutrophils in the lungs. In particular, Sharma et al. 
(2020) concluded that sex hormones including estrogens, progesterone, 
and androgens contribute to the differential regulation of immune re-
sponses (Sharma et al., 2020). Another explanation for this statistical 
significance is the number of angiotensin-converting enzyme (ACE2) 
receptors which are the main route of Covid-19 infection and therefore a 
driver for disease susceptibility and worse outcomes. ACE2 receptors 
have been found with density differences in the reproductive organs 
(Sharma et al., 2020) and also at high levels in the lungs, myocardium, 
kidneys, and gastrointestinal system (Wang, Guo, et al., 2020). 

Another predictor to be considered in Covid-19 patients is the 
elevated D-dimer which is highly associated with thrombotic status and 
denotes hypercoagulability due to serious inflammatory reaction 
(Griffin et al., 2020; Rostami & Mansouritorghabeh, 2020). Indeed, our 
study stipulates that this characteristic is a top predictor of ICU admis-
sion among Covid-19 patients (MDGC = 106.110) which is reasonable 
considering that thrombolytic therapies are usually administered in 
these departments. Furthermore, D-dimer levels have been employed as 
predictors of mechanical ventilation, a procedure that needs constant 
monitoring by the medical staff as the one provided at UCIs given the 
risks associated with this treatment (Naymagon et al., 2020; Rostami & 
Mansouritorghabeh, 2020). Definitively, controlling D-dimer levels is a 
key point in predicting the discharge to ICUs and it is therefore very 
useful for increasing the accuracy and other performance measures of 
machine learning models. 

Generating accuracy and timely predictions of the ICU transfer 
likelihood is easier when having a set of significant factors combined 
with the use of a powerful ensemble ML technique like RF. The outputs 
are accordingly satisfactory and competitive for the practical clinical 
scenario. In fact, a predictive model with an accuracy of 0.9161 (95 % CI 
0.877–0.9455) is a robust tool with the ability to provide reliable 
decision-making support for both administrative staff and frontline 
doctors. This is also supported by an AUC of 0.9548 (95 % CI 0.8973–1) 
which denotes outstanding discrimination as pointed out by Hosmer 
et al. (2013). Besides, it is important to stress the balance between the 
specificity (0.9350 95 % CI: 0.8758–0.9715) and sensitivity (0.9018 95 
% CI: 0.845 4–0.9428) values added to their high predictive capacity. 
Likewise, the positive predictive value (0.9484 95 % CI: 0.908–0.9774) 
and negative predictive values (0.8779 95 % CI: 0.8092–0.9285) evi-
dence that the model mostly predicts well which patient is (is not) 
transferred to ICU to all those who were (were not) transferred 
correspondingly. 

Several attempts have been made to predict ICU admission among 
Covid-19 patients since the onset of the pandemic (Aznar-Gimeno et al., 
2021; Famiglini et al., 2022; Fernandes et al., 2021; Heldt et al., 2021; 
Hou et al., 2021; Huang, Liu, et al., 2021; Li et al., 2020; Nazir & 
Ampadu, 2022; Patel et al., 2021; Pezoulas et al., 2022; Schwab et al., 

2020; Shanbehzadeh et al., 2022); however, our model outperforms 
these studies in several indicators (Table 7). It was also found to present 
a better sensitivity contrasted with the one achieved by Schwab et al. 
(2020) (0.600). In such a study, a recommendation for using symptoms 
data was made to upgrade the performance of the predictive model, 
which was fully addressed in this investigation. Notably, the AUC ob-
tained in this application was superior to the ones presented in Aznar- 
Gimeno et al. (2021) (0.821), Heldt et al. (2021) (0.840), Shanbehzadeh 
et al. (2022) (0.822), and Nazir and Ampadu (2022) (0.884). It is 
interesting to note that these results are based on a multi-center project, 
increasing the potential for replicability and generalization. Accord-
ingly, these outcomes lay the groundwork for the deployment of AI in 
the healthcare business and more specifically in ICUs where huge 
amounts of medical records have been gathered to support the response 
to the pandemic. 

Despite the satisfactory results, this work holds several limitations. 
First, the RF model may be restricted to the Spanish healthcare system 
given the considerable differences that may exist among the countries 
regarding their healthcare structure. Second, confounding factors 
depending on each patient profile were not explored and remain an open 
challenge to tackle in future studies. Furthermore, the effectiveness of 
treatments provided in ED wards and hospitalization units was not 
deemed. Also, it is good to mention that the database used in this study 
only contained lab test results, prescribed treatments, sociodemographic 
features, and vital signs measurements collected in the emergency 
department. In this regard, a limitation is the lack of data related to the 
past medical history of Covid-19 patients which may increase the per-
formance of the RF model. Finally, the RF algorithm did not study other 
blood indicators highlighted as good biomarkers of ICU admission due to 
a lack of high-quality data. 

6.2. Findings from the DES model 

All the works reporting the use of predictive models focused on 
measuring the ICU admission likelihood of Covid-19 patients represent a 
significant body of evidence that can be further employed by hospital 
administrators as a basis for the design of aggressive improvement in-
terventions in the healthcare system. This activity has been underpinned 
using DES models providing a widen overview of the healthcare system 
and more specifically, focusing on the interaction between the ED and 
ICU. Thereby, decision-makers can further evaluate the use of resources, 
waiting times, congestions, and other process inefficiencies during 
pandemic situations. In this respect, Currie et al. (2020) highlighted the 
critical role that DES may play to evaluate the capacity of hospital beds 
in critical care and diminish the impact of operational ICU shortcomings 
on patients’ health conditions. On the other hand, the DES models are 
based on real high-quality process and demand data collected from the 
hospital chain database which increases its equivalence with the real 
ICU. In particular, the availability of demand data was identified as a 
limitation in Wood et al. (2020) where the authors had to employ pro-
jections from the UK government for modeling the number of admissions 
and expected times between arrivals. Likewise, the lack of cleansed data 
in the DES model provoked some validation inconsistencies in Le Lay 
et al. (2020) when comparing their virtual representation with the real- 
world healthcare system. 

Although important DES-based efforts have been reported in 
different studies (Caro et al., 2021; Irvine et al., 2021; Melman et al., 
2021; Rees et al., 2020; Wood et al., 2020) referring to the response of 
ICUs against the Covid-19, various challenges restricting their applica-
bility in the real world remain. For example, Melman et al. (2021) 
presented an interesting DES implementation helping hospitals to 
appraise the resource allocation strategies during Covid-19; neverthe-
less, ICU LOS was modelled as a fixed variable which is not consistent 
with real-world behavior. Also, Caro et al. (2021) used the DES 
modelling framework for ICU service improvement during the pandemic 
times, but without considering the heterogeneity of hospital patient- 

Table 7 
Comparison of our proposed method with previous works in terms of AUC, 
sensitivity, and specificity.  

Study AUC Sensitivity Specificity 

Famiglini et al. (2022)  0.850  0.660  0.900 
Fernandes et al. (2021)  0.920  0.920  0.820 
Hou et al. (2021)  0.781  0.764  0.895 
Huang, Liu, et al. (2021)  0.940  0.880  0.930 
Li et al. (2020)  0.780  0.760  0.709 
Patel et al. (2021)  0.800  0.730  0.700 
Pezoulas et al. (2022)  0.910  0.830  0.830 
This paper  0.955  0.902  0.935  
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based journeys. In contrast to these interventions, multiple Covid-19 
patient pathways and stochastic variables were integrated into our 
proposed model to generate a better approximation of the real-world 
healthcare system. An interesting difference regarding the modelling 
procedure is the probability distributions used for representing the 
process variables. For instance, Garcia-Vicuna et al. (2020) used the 
Weibull distribution for denoting the ICU-LOS behaviour which is con-
trary to the ones utilized in this study (Gamma and Expo). In this regard, 
it would be beneficial to explore how the model validity may be affected 
if all these stochastic distributions are compared for a particular show-
cased ICU. This methodological approach is more effective compared to 
the use of predictive models which employ deterministic ICU-LOS for 
each patient and do not consider interrelations among services (Melman 
et al., 2021; Rees et al., 2020). The result of this process is a simulation 
model that is statistically equivalent to the real system as the p-value in 
each validation indicator (Waiting time in ED for I-II triaged patients 
and Waiting time in ICU) was found to be higher than 0.25. Our appli-
cation is more precise than the one proposed by Irvine et al. (2021) when 
predicting non-critical care, a critical variable helping decision-makers 
to avoid unnecessary bed assignments. 

Several works like the one exposed in Possik et al. (2022) and Sala 
and Quarto (2022) limited the use of DES techniques only for process 
diagnosis and operational measurement of healthcare systems during 
the Covid-19 outbreak. Nonetheless, an important further step in this 
intervention is the exploration of various strategies dealing with the ICU 
admissions pointed out by the RF model and the potential shortage of 
beds. Balancing scarce ICU beds with this demand is then critical for the 
rapid deployment of medical interventions trying to counteract the ef-
fects and sequels of Covid-19 as well as minimizing the risk of death. In 
this case, two proposals were proposed and pretested in reply to the off- 
balance observed between the ICU installed capacity and the predicted 
Covid-19 admissions: i) enable a new ICU with a maximum installed 
capacity of 15 beds, and (ii) transfer patients to a satellite ICU when the 
internal ICU is fully occupied. In summary, both scenarios were 
concluded to outperform a non-intervention context (p-value = 0) and 
are then effective for implementation in the real world. The use of 
outdoor spaces for intensive care was also explored as an alternative by 
Melman et al. (2021) who contemplated the opening of theaters when 
the ICU utilization was higher than 95 %. However, in this case, strategy 
(i) evidenced a superior performance in terms of ICU bed waiting time 
(p-value) vs strategy (ii); in other words, under strategy (i), a Covid-19 
patient would wait between 23.09 and 44.76 min contrasted with a time 
interval of 64.99 and 81.29 min expected with the application of strat-
egy (ii). This of course favors the adoption of strategy (i) since Covid-19 
patients transferred to ICUs need to be intervened quickly to diminish 
the risk of mortality and sequels downgrading the quality of life. This is 
consistent with the results uncovered by Wood et al. (2020) where 
increasing from 45 to 100 intensive beds may diminish the mortality 
rate by 75 % if complemented with minimizing LOS by 25 % and flat-
tening the admission curve to 26 admissions per day. 

In summary, the application of DES for evaluating new ICU bed 
configurations responding to the patient transfer expected from down-
stream services is an advantage of this study in contrast with similar 
works. Garcia-Vicuna et al. (2020), Wood et al. (2020), Le Lay et al. 
(2020), and Melman et al. (2021) did not consider the bed waiting time 
experienced by Covid-19 patients needing the intensive care service and 
were only limited to determine the number of required beds without 
incorporating conjoint health supply chain strategies like the one ana-
lysing the use of satellite ICUs as deeply examined in this research. This 
should be taken into account considering the importance of upstream 
and downstream members in overcoming the operational disruptions in 
healthcare (Kochan et al., 2018; Meijboom et al., 2011). Nonetheless, 
the simulation model presented in this paper holds two limitations. On 
the one hand, we only deemed ICU beds as the most prioritized con-
strained resource in the hospital chain; our application can be, however, 
extended to other resources including ventilators, medical staff, 

intravenous catheters, and high-flow cannulas. On the other hand, in-
teractions with clinical labs, surgery units, and imaging services were 
not explicitly included in the DES model; nonetheless, their effects are 
incorporated in the stochastic representation of the ICU LOS variable. 

7. Managerial and policy implications 

The unexpected occurrence of pandemics, epidemics, and seasonal 
respiratory diseases have increased the burden faced by the ICUs, 
thereby evidencing an aggravation of several well-known disruptions in 
healthcare operations including over-crowdedness, lengthy stays, and 
prolonged waiting times (Almeida & Vales, 2020; Davis et al., 2020; 
Ortíz-Barrios et al., 2021). It is then necessary to design and deploy 
robust methodological approaches to upgrading the response of ICUs so 
that the risk of mortality and long-term health sequels can be further 
minimized. The necessitated interventions go beyond a particular 
healthcare service and require to be extended to a health supply chain 
perspective since interactions among downstream and upstream actors 
will ultimately impact patients. This is even sharpening in presence of a 
rapidly evolving virus forcing the logistics operations to function more 
quickly, flexibly, coordinated, and integrated. 

AI-related applications have emerged as an alternative to tackle the 
above-mentioned inefficiencies by taking advantage of the large 
amounts of medical records stored in hospital databases. In this regard, 
data managers are expected to ensure the data’s high quality and 
completeness. For instance, in our case study, some features (diuresis 
and glucose) could not be examined and further utilized due to regis-
tration errors. Likewise, it has been perceived that sensitive patient data 
are not gathered constantly over time thereby impeding the proper 
monitoring of patient’s health and the creation of more accurate oper-
ational healthcare models. It is then advised to perform in-depth audits 
on the data management systems to early detect these drawbacks and 
develop action plans to increase the effectiveness of these platforms as 
support of decision-making processes. Furthermore, AI models need 
valuable and sufficient data for an efficacious training process. Other-
wise, these data-driven solutions will lack applicability and scalability in 
the real healthcare scenario. Also, the modelers are recommended to 
work closely with the medical and administrative staff from EDs and 
ICUs to produce a model representing the day-to-day routine of the 
Covid-19 patient pathway within the hospitals. 

The use of AI definitively automates and accelerates decision-making 
processes by providing healthcare managers with accurate predictions 
on the evolution of patients in short intervals. Such forecasting allows 
anticipatedly administering the capacity of upstream services thus 
facilitating the creation of operational scenarios responding to the de-
mand adequately. In this case, the AI model predicts how probable a 
Covid-19 patient is to be admitted to ICU during the next few hours. 
With this information, the ICU administrator can establish the expected 
transfers within a time frame and evaluate if the installed capacity is 
enough for providing in-time intensive care. The implementation of 
these data-driven applications should be user-friendly to diminish delays 
and interpretation failures. It is additionally important to consider fea-
tures that can be gleaned quickly to decrease resistance to change during 
the introduction process of the AI models. This is the case of our RF 
model which considers sociodemographic (Sex and Age) and clinical 
indicators (Heart rate, diastolic and systolic blood pressures, body 
temperature, oxygen saturation, and D-dimer concentration) that are 
commonly measured in the ED settings and can be imported in real-time 
from the databases. Moreover, these features are not restricted to a 
subjective evaluation which avoids the inclusion of bias in the model. 
Gathering significant predictors of poor Covid-19 evolution in down-
stream services is then critical to prepare ICUs and the associated health 
supply chains to address the demand as fastest as possible. This is, 
considering that patients who are transferred to ICUs have serious health 
conditions and process delays can be therefore deemed as a catalyst to 
irreversible outcomes or death. The data-analytics experts should 
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constantly monitor and update the RF model performance (if necessary) 
to guarantee pertinence with the medical and logistics framework by 
measuring its accuracy, sensitivity, specificity, AUC, and positive/ 
negative predictive values. 

Once hospital administrators receive the prediction results in terms 
of ICU admission likelihood for each patient, the next step is to define 
which strategies need to be rolled out to diminish waiting times for ICU 
beds (see Section 5.2) while in the latter, it is necessary to ensure the 
correct allocation of constrained resources (i.e. beds, ventilators, spe-
cialists). Therefore, the RF outcomes should be inserted in a DES model 
which provides decision-makers, ICU administrators, and healthcare 
authorities with a strong basis for the constant evaluation of this critical 
service under different pandemics. Moreover, it supports bed inventory 
management which was found one of the weakest pillars when coping 
with the demand peaks during the Covid-19 pandemic. Thereby, the 
decision-makers can evaluate different improvement scenarios before 
receiving the Covid-19 patients and know if they will be effective in 
terms of the bed waiting time. Hospital logistics managers can then 
elaborate health supply chain plans underpinning the deployment of the 
selected scenario at the right time and a reasonable investment. It is then 
evident that bed supply chains and the internal maintenance department 
must be coordinated with the head of the logistics staff to bring the 
scenario to reality. Moreover, the hospitals should set purchasing 
agreements with the intensive bed suppliers and the associated equip-
ment/materials with tight lead times to balance the admission rate with 
the capacity. In parallel, hospital managers are suggested to establish 
contingency procedures for the rapid adequation of administrative or 
outdoor spaces propelled by the RF outcomes. Therefore, it will be 
possible to anticipate possible ICU breakdowns as experienced in the 
first waves (Caro et al., 2021). Likewise, effective investment allocation 
can be better granted in time-sensitive and resource-constrained envi-
ronments like the ones experienced during the current outbreak. 

The above-mentioned interventions should be propelled by the 
health authorities who can take advantage of this AI-DES solution for 
ensuring a massive application within the healthcare business strategy. 
In this way, the ICUs would be able to increase their preparedness 
against this outbreak and similar scenarios like seasonal respiratory 
diseases. In addition, a dashboard with projected ICU capacity indicators 
derived from the AI-DES model may be implemented by the government 
during high-stress periods to make the decision-making process more 
flexible and adaptive to the changing environment expected in a 
pandemic. Finally, the health authorities must work on strengthening 
the partnership agreements between hospitals and geriatric homes so 
that required support can be provided for over-80 patients without 
committed family carers. Thereby, a combination of ICU admission and 
homecare intervention may be useful for increasing their life expectancy 
while guaranteeing their right to healthcare. 

8. Conclusions 

The rapid evolution of the Covid-19 pandemic has challenged the 
healthcare system worldwide by producing a large number of many 
admissions that, in some cases, overpasses the installed capacity of 
different services. While the healthcare authorities have been engaged in 
registering and informing the daily behaviour of the virus, robust 
modelling techniques are required to adapt these systems to the 
pandemic dynamics. In the meantime, this outbreak has triggered an 
increased need for ICU care given the severe health complications pro-
duced by the virus which may threaten the patient’s life if effective 
treatment is not timely provided. However, some operational problems 
including prolonged bed waiting times, shortage of medical equipment, 
and extended length of stay have been reported, thereby evidencing the 
internal off-balance within the health supply chains, the low prepared-
ness of ICUs, and the lack of real-time decision-making systems sup-
porting process improvement interventions. The major concern is that 
these disruptions may threaten human lives and generate irreversible 

outcomes in Covid-19 who ultimately perceive the Bullwhip effect. 
Being aware of these difficulties, our paper has provided hospital 

administrators with a robust decision-making approach underpinning 
effective ICU bed capacity management during the Covid-19 pandemic. 
A merger between AI and DES was concluded to be necessary for eval-
uating interventions to reduce the bed waiting times experienced by 
patients with an immediate need for care. In this regard, the predictions 
derived from an RF model were considered to estimate the expected 
number of patients with a high probability of being transferred from the 
ED to critical care in a short time interval. Thereby, it is feasible to 
design an anticipated response granting enough ICU beds supported by a 
flexible supply chain committed to delivering the needed medication, 
medical equipment, and accessories when required. 

The application illustrated in this paper has evidenced that designing 
new configurations of healthcare services must consider stochastic 
process variables and interactions among units to generate a good rep-
resentation of the multiple pathways and outcomes that Covid-19 pa-
tients undertake. In this respect, it is essential to count on high-quality 
and detailed data supporting the correct implementation of DES and RF 
techniques. Likewise, modelers are called to work closely with health 
professionals and administrative staff to ensure that the resulting AI-DES 
models are realistic and applicable in the practical scenario. In partic-
ular, the inclusion of AI techniques in the healthcare business allows for 
increasing the decision-making speed thereby empowering policy-
makers with the adequate basis for designing rapid bed capacity adap-
tations. As a result, it will be possible to roll out pre-tested actions 
balancing the number of beds with the expected demand while propel-
ling the efficient use of scarce medical resources and the consequent 
financial sustainability of hospitals as pillars ramping up their pre-
paredness against new waves and variants. This research then moves 
beyond the existing modus operandi characterized by the application of 
time-consuming inventory planning models (i.e., bed capacity man-
agement models) restricting the flexibility of ICUs against the context 
derived from the pandemic. 

The results emanating from this study uncovered the robustness of 
the RF model in predicting the likelihood of ICU admission based on 
sociodemographic and clinical patient data (Accuracy: 0.9161 (95 % CI 
0.877–0.9455) || AUC: 0.9548 (95 % CI 0.8973–1)) despite the diffi-
culties in considering confounding factors in clinical practice. Moreover, 
it is important to highlight the balance between the specificity (0.9350 
95 % CI: 0.8758–0.9715) and sensitivity (0.9018 95 % CI: 
0.8454–0.9428). Likewise, the positive predictive value (0.9484 95 % 
CI: 0.908–0.9774) and negative predictive value (0.8779 95 % CI: 
0.8092–0.9285) denote that the model mostly predicts well which pa-
tient is (is not) transferred to ICU to all those who were (were not) 
transferred respectively. On a different tack, DES was proven to be a 
very useful technique assisting decision-makers to simulate and pretest 
interventions on ICU capacity before implementation. More specifically, 
the scenarios considering separately an expansion of the current 
installed capacity and the creation of a satellite ICU were proved to 
obtain significant reductions in the median bed waiting times (scenario 
i: 32.42–48.03 min || scenario ii: 21.69 and 29.52 min) thereby accel-
erating the ICU interventions required to tackle the unfavorable progress 
of the virus. Being aware of these results, it is concluded that adopting 
on-time efficient improvement strategies is critical to enhance opera-
tional excellence during pandemic contexts; in this case, implementing a 
better intensive bed configuration may diminish the risk of mortality 
and the appearance of sequels in Covid-19 patients. 

An interesting direction to investigate as future work entails the in-
clusion of interactions among ICU, clinical labs, and imaging services to 
explore more integrated interventions. It is also expected to employ the 
AI-DES approach to support health supply chain operations including 
logistics planning (Mehmood et al., 2017), coordination and integration 
(Ivanov et al., 2019), supplier selection (Choi et al., 2018), and demand 
forecasting for respiratory seasonal diseases (Roßmann et al., 2018). 
Likewise, it is advised to employ a holistic multi-criteria-decision- 
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making approach to evaluate the preparedness of ICUs against pan-
demics considering bed waiting time as one of the performance criteria. 
On the other hand, evaluating other machine learning algorithms and 
factors is recommended to upgrade the ICU admission predictions and 
perform comparative analysis. Another promising pathway is the in-
clusion of features related to the past medical history of Covid-19 
including the presence of cardiovascular disease, diabetes, chronic res-
piratory disease, and cancer, which may upgrade the performance of the 
proposed AI model. Lately, we plan to pretest new improvement sce-
narios not only considering the availability of beds but also mechanical 
ventilators, high-flow cannulas, intravenous medication, and health 
professionals that are necessary for effective ICU provision. 
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