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Wuhan, China, 2Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan
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The morbidity and mortality of lung cancer are increasing, seriously threatening

human health and life. Non-small cell lung cancer (NSCLC) has an insidious onset

and is not easy to be diagnosed in its early stage. Distant metastasis often occurs

and the prognosis is poor. Radiotherapy (RT) combined with immunotherapy,

especially with immune checkpoint inhibitors (ICIs), has become the focus of

research in NSCLC. The efficacy of immunoradiotherapy (iRT) is promising, but

further optimization is necessary. DNAmethylation has been involved in immune

escape and radioresistance, and becomes a game changer in iRT. In this review,

we focused on the regulation of DNA methylation on ICIs treatment resistance

and radioresistance in NSCLC and elucidated the potential synergistic effects of

DNA methyltransferases inhibitors (DNMTis) with iRT. Taken together, we

outlined evidence suggesting that a combination of DNMTis, RT, and

immunotherapy could be a promising treatment strategy to improve

NSCLC outcomes.

KEYWORDS
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1 Introduction

As the most common cause of cancer-associated death mortalities, NSCLC accounts

for 80-85% of lung cancers (1). There has been continuous progress in the treatment of

NSCLC in recent years, but the 5-year overall survival rate (OS) is about 25%, calling for

further improvement (2). In recent years, immunotherapy, most notably ICIs, has made
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remarkable breakthroughs in the field of NSCLC, bringing long-

term survival benefits to a proportion of NSCLC patients.

Nevertheless, most patients do not achieve satisfactory treatment

efficacy due to primary or acquired treatment resistance (3). The

treatment of NSCLC relies heavily on RT. In the past decades, with

the emergence of intensity-modulated radiotherapy (IMRT),

stereotactic body radiotherapy (SBRT), image-guided

radiotherapy (IGRT) and other modes, the precision of RT has

become increasingly high. Thus, the local control rate is much

higher with better spare of adjacent normal tissue and organs.

Although there have been a few cases of patients experiencing an

abscopal effect with RT, the efficacy of RT in controlling systemic

lesions remains limited (4, 5).

Given the respective limitations of ICIs and RT, promising

results from the combination of these therapies in NSCLC have

been reported in a growing number of studies, with synergistic effect

by combined ICIs and RT significantly improving patients’

outcome. ICIs blocked inhibitory immune checkpoints such as

PD-1, PD-L1, and CTLA-4 to reboot the cancer-immunity cycle

(CIC) and prevent tumor immune evasion, thus restoring and

maintaining anti-tumor immunity. RT plays a vital role in anti-

tumor immunity together with ICIs during CIC. The mechanisms

by which RT enhances the anti-tumor immune response are

versatile. Firstly, RT can promote the release of neoantigens and

the expression of MHC-I molecules, thereby activating antigen-

presenting cells such as dendritic cells (DCs) (6, 7). Secondly, RT

can regulate the TME, effectively promote the infiltration of CD8+

T lymphocytes by increasing the levels of chemokines CXCL10 and

CXCL16 in TME, and reducing immune-related suppressor cells in

the tumor stroma, shifting the TME transition from cold tumor to

the hot tumor (8, 9). Thirdly, RT can enhance anti-tumor immunity

through activating cGAS/STING and IFN-I pathways, the

activation of which is supposed to significantly rely on RT dose

and fractionation (2, 10). Lastly, RT increases the expression of PD-

L1 on cancer cells, thus enhancing the therapeutic effect of PD-L1

antibodies (11, 12). On the other hand, ICIs can not only activate

killer T cells, but also normalize tumor vessels, reduce hypoxia, and

increase tumor sensitivity to RT (13, 14).

The synergistic mechanism of RT and ICIs has laid a solid

foundation for their combined application in clinical practice.

Currently, numerous phase 3 clinical trials are being launched or

have been completed for various stages of NSCLC, as summarized

in Table 1. The landmark PACIFIC phase 3 trial demonstrated that

the addition of a PD-L1 inhibitor following concurrent

chemoradiotherapy (cCRT) brought about clinical effects in

patients with locally advanced NSCLC (15). In patients with

early-stage operable NSCLC, a recent phase 2 randomized trial of

SBRT in combination with durvalumab versus durvalumab alone

showed statistically significant major pathological response rates of

53.3% (95% confidence interval 34.3% - 71.7%) and 6.7% (95%

confidence interval 0.8% - 22.1%), respectively (16). A pooled

analysis combining PEMBRO-RT and MDACC trials in

metastatic NSCLC revealed that compared with pembrolizumab

alone, pembrolizumab plus RT significantly improves median
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progression-free survival (mPFS) and median overall survival

(mOS) (17). Although existing clinical trials have shown

promising therapeutic effects from early to advanced stages of

NSCLC, current mode of immunoradiotherapy (iRT) still has

obvious limitations. Less than 50% of patients diagnosed with

locally advanced NSCLC survive long-term (18). The objective

response rate (ORR) of the PEMBRO-RT trial did not meet the

study’s pre-defined endpoint criteria for meaningful clinical benefit

in advanced NSCLC patients receiving Pembrolizumab after SBRT

(19). Although current studies on the synergistic mechanism of

combination of immunotherapy and RT have accumulated certain

evidence, the activation of RT on tumor immunity still exists only

by chance. Several patients have RT resistance and ICIs resistance,

resulting in poor response to iRT or short duration of

immunotherapy maintenance after RT. The efficiency of iRT

remains to be improved. Besides, the optimal drugs combination

with RT, the sequence of RT and immunotherapy, and the RT dose

pattern remain unclear. To date, there is no optimal biomarker to

guide clinicians in selecting advantaged populations. In addition,

the incidence of abscopal effect of RT is very low in clinical

application, and the mechanism research needs to be further

in-depth.

DNA methylation is the most common and best studied

epigenetic modification that has been involved in immune

evasion and radioresistance in numerous studies. Emerging

evidence suggested that targeting DNA methylation could be a

promising strategy to substantially enhance the effect of iRT. In this

review, we focus on the regulation of DNA methylation on ICIs

resistance and radioresistance in NSCLC and elucidate the potential

synergistic effects of DNA methylase inhibitors (DNMTis) in

patients treated with iRT. The combination of DNMTis, RT, and

immunotherapy is worthy of further study to improve

NSCLC outcomes.
2 DNA methylation

Epigenetics is the study of heritable changes in gene expression

without affecting a gene’s primary nucleotide sequence. The term

now refers to inherited changes in gene expression that do not result

from altered DNA sequences. It includes DNA methylation, histone

modification, chromosome remodeling, and RNA regulation.

Abnormal DNA methylation is the most studied form of epigenetic

modification (20, 21). The main forms of DNA methylation are 5-

methylcytosine (5-mC); 5-hydroxymethylcytosine (5-hmC); n6-

methyladenine (N6-mA); n4-methylcytosine (4mC); 7-

methylguanine (7-mG). In eukaryotes, methylation mainly occurs

in cytosine. Under the action of DNA methyltransferases (DNMT),

methyl is added to the fifth carbon position of cytosine to produce 5-

methylcytosine (22, 23). When methylated, gene shows stronger

inertia in vitro. For example, sodium bisulfite can convert

unmethylated cytosine into uracil, but cannot change cytosine

within methylated cytosine guanine (CpG) islands. the living state

showed a decrease in gene expression activity. Through this
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modification, DNA conformation, DNA stability, DNA-protein

interaction, and chromatin structure will change, thereby

controlling gene expression (24). DNA methylation reaction is

divided into two types. De novo methylation occurs in both DNA

strands, whereas maintenance methylation takes place in one DNA

strands and leave the other strand unmethylated. DNAmethylation is

mainly catalyzed by specific enzymes named DNA methyl

transferases (DNMTs). There are four main DNMTs: DNMT1,

DNMT3A, DNMT3B, and DNMT3L. After DNA replication is

completed, DNMT1 is the most important enzyme in the

methylation reaction that catalyzes the transfer of methyl groups to

newly synthesized DNA strands, a phenomenon known as

maintenance methylation. DNMT3A and DNMT3B are responsible

for catalyzing the reaction of new methylation sites on the nucleic

acid chain, called de novo methylation. DNMT3L is a regulatory

enzyme in the DNA methyltransferase family without

methyltransferase activity, and its main role is to regulate the

activity of other methyltransferases (25). In addition, DNA

methylation status at each CpG site is dynamically regulated by the

local activity of DNA demethylation enzymes (e.g., TET enzymes)
Frontiers in Immunology 03
and DNA replication rate (26). The biological process of DNA

methylation is shown in Figure 1.
3 DNA methylation and NSCLC

In the 5’untranslated region (5’UTR) of the promoter region

and the first exon region of the gene, the CpG sequence density is

high, more than 5 times the average levels. These regions are

characterized by repeated guanine and cytosine-rich fragments

called CpG islands and have typical lengths of 200 bp ~ 1 kb. As

an important epigenetic event in the occurrence and development

of cancer, methylation of CpG islands plays a key role in gene

silencing (27). Because the local hypermethylation of CpG islands

occurs earlier than the malignant transformation and proliferation

of cells, methylation can be used for cancer screen, prevention, and

early diagnosis. It is common for CpG islands to be unmethylated in

normal cells. However, in tumor cells, DNA methylation occurs in

key regulatory regions associated with tumor related genes, which is

supposed to be a major contributor to tumor transformation (28).
TABLE 1 Summary of ongoing or completed phase 3 trials of immunotherapy combined with RT for NSCLC.

NCT
number

Study name No. of
patients

Inventions Setting Status

Early-stage NSCLC

NCT03924869 MK-3475-867/
KEYNOTE-867

530 Pembolizumab vs Placebo Consolidation treatment after SBRT Recruiting

NCT03833154 PACIFIC-4 733 Durvalumab vs Placebo Consolidation treatment after SBRT Recruiting

NCT04214262 480 Atezolizumab vs Placebo Induction/Consolidation treatment
combined with SBRT

Recruiting

Locally-advanced NSCLC

NCT03519971 PACIFIC-2 328 Durvalumab vs Placebo Consolidation treatment after concurrent
chemoradiotherapy

Completed

NCT04597671 NVALT28 170 Durvalumab+PCI vs Durvalumab
+observation

Consolidation treatment plus PCI after
CRT

Recruiting

NCT04092283 660 Concurrent CRT and Durvalumab vs CRT Concurrent immunotherapy Recruiting

NCT04380636 MK-7339-012/
KEYLYNK-012

870 Pembrolizumab+Olaparib vs Pembolizumab
+Placebo

Consolidation treatment after CRT Recruiting

NCT04026412 CheckMate73L 888 Nivolumab+Ipilimumab vs Durvalumab Consolidation treatment after CRT Active, not
recruiting

NCT04513925 SKYSCRAPER-03 800 Atezolizumab+Tiragolumab vs Durvalumab Consolidation treatment after CRT Recruiting

NCT03728556 GEMSTONE-301 381 Sugemalimab vs Placebo Consolidation treatment after CRT Completed

Advanced NSCLC

NCT03774732 NIRVANA-LUNG 460 Pembrolizumab+ChT+3D-CRT/SABR vs
Pembrolizumab+ChT

First-line treatment Recruiting

NCT03391869 LONESTAR 360 Nivolumab+Ipilimumab+LCT vs
Nivolumab+Ipilimumab

First-line treatment Recruiting

NCT03867175 112 Pembrolizumab+SBRT vs Pembrolizumab Consolidation treatment after First-line
systemic treatment

Recruiting
NSCLC, non-small cell lung cancer; RT, radiotherapy; CRT, chemoradiotherapy; SBRT, stereotactic body radiotherapy; PCI, prophylactic cranial irradiation; ChT, chemotherapy; SABR,
stereotactic ablative radiotherapy; 3D-CRT, three dimensional conformal radiotherapy; LCT, local consolidation therapy.
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3.1 Connection of DNA methylation and
the progression of NSCLC

DNA methylation plays a vital role in the progression of

NSCLC. During the development of cancer, numerous genes are

silenced or activated through epigenetic modification (29). Many

tumors exhibit abnormal DNA hypomethylation at the whole

genome and hypermethylation at specific promoter sites, even at

early stages of the disease (30). The genome-wide DNA

hypomethylation leads to activation of oncogenes and

retrotransposon elements and makes the genome instable.

Daskalos and his colleagues revealed that the increase of

hypomethylation of retrotransposon elements (LINE-1 and Alu)

caused enhancement of transcription, closely related to increased

genomic instability observed in NSCLC (31). Consistent with this,

enhanced genome-wide hypomethylation is also relevant to higher

mutation, copy number variation, allele imbalance burden and

Treg/CD8 ratio in the progression of lung cancer (32). However,

hypermethylation of local promoter region mainly causes the

inactivation of tumor suppressor genes (TSGs). Despite

differences in detection methods and samples, a large number of

studies consistently reported CpG islands (CGIs) hypermethylation
Frontiers in Immunology 04
of various TSGs in NSCLC (33). These TSGs play an important role

in DNA repair, apoptosis as well as cell cycle regulation, which are

significantly associated with tumor progression. In preclinical study,

these genes were shown to be reactivated by DNMTis, further

confirming that they were silenced by DNA hypermethylation (34).

Perhaps paradoxically, DNA hypermethylation has also been shown

to induce the act ivat ion of tumor-promoting genes .

Hypermethylation of telomerase reverse transcriptase (TERT) gene

promoters has been shown to enhance TERT expression in most

tumor types (35). However, the mechanism of hypermethylation

leading to increased gene expression remains unclear. In summary,

the inactivation of TSGs, activation of oncogenes, and genomic

instability caused by DNA methylation dysregulation result in

tumorigenesis, proliferation, invasion, metastasis, as well as

immune escape (Figure 2).
3.2 DNA methylation and early diagnosis
of NSCLC

Widschwendter et al. highlighted the importance of DNA

methylation detection for tumor risk screening, providing new
A

B C

FIGURE 1

Biological process of DNA methylation. (A) Cytosine is catalyzed by DNMTs to form 5 ‘methyl-cytosine, with SAM as the methyl donor. (B) DNA
methylation is dynamically regulated by DNMTs and TETs. Figure 1-B adapted from Jeltsch (26). (C) Hypermethylation of target gene promoter causes
gene silencing. DNMTs, DNA methyltransferases; SAM, S-adenosyl methionine; CpG, cytosine-guanine; TETs, ten-eleven translocation enzymes.
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opportunities for cancer patients (36). Studies have shown that

DNA methylation was an early event in the occurrence and

development of lung cancer (37). In lung cancer, genes with

methylated specific CpG islands included CDKN2A, RASSF1A,

RARbeta, MGMT, GSTP1, CDH13, APC, DAPK, TIMP3, etc (38,

39). Shivapurkar et al. proposed the use of methylation detection for

early diagnosis and screening of lung cancer after finding abnormal

methylation status of APC, CDKN2A/p16, HS3ST2, and RASSF1A

genes in the sputum of lung cancer patients (40). Hypermethylated

status of promoters was detected in the blood, bronchial lavage,

induced sputum, and even pleural effusion of primary NSCLC

patients (41–43). Burbee et al. explored the hypothesis that

RASSF1 encoded a tumor suppressor gene in lung and breast

cancer, and found that RASSF1A was a potential tumor

suppressor gene in lung and breast cancer. Epigenetic inactivation

occurs through hypermethylation of its promoter region, resulting

in a worse prognosis (44). Another study showed that 3 of the 5

subjects with RASSF1A gene methylation were diagnosed with lung

cancer about 1 year after sampling (45). At present, in NSCLC, the

gene with more methylation variation is CDKN2A. Belinsky and

colleagues explored the methylation level of the CDKN2A gene or

MGMT gene promoter in the body fluids of patients 3 years before

clinical diagnosis of NSCLC (37). Another study showed that

among the 8 subjects with CDKN2A gene methylation, 3 subjects

were diagnosed with lung cancer about 1 year after sampling (46).

Other studies have demonstrated that abnormal methylation status

of the SHOX2 gene helps to distinguish lung tumor tissues from

normal tissues (46–48). Testing for DNA methylation status could

help effectively screen patients in the early stages of lung cancer.
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3.3 DNA methylation and prognosis and
metastasis of NSCLC

Based on TCGA cancer multi-omics data analysis, Liu and

colleagues found that transcription factor and DNA methylation

site coupling can regulate gene expression dynamics, thus affecting

the prognosis of patients (49). Marsit et al. found that FANCF

promoter methylation was an important predictor of poor survival

in lung adenocarcinoma (LUAD), and that FANCFmethylation was

related to the age of smoking and drinking (50). The study by Liu

et al. found that TMEM196 hypermethylation effectively

distinguishes lung cancer patients from normal subjects, and

those with TMEM196 hypermethylation had a worse prognosis

(51). Wrage et al. found that adenocarcinoma patients with HERC5

promoter hypermethylation in NSCLC had worse survival, and

HERC5 promoter hypermethylation was significantly associated

with brain metastasis (52). According to Yu et al., LUAD patients

with hypomethylated FAM83A had a poorer prognosis with high

levels of FAM83A expression (53). Previous researchers have found

that in patients with NSCLC, the higher the methylation level of

EPHB6,HS3ST2, DAL-1, and TMEM88 genes, the greater the risk of

metastasis, while the lower methylation of the ELMO3 gene, the

greater the risk of NSCLCmetastasis. These studies have shown that

the status of methylation of certain genes may be related to cancer

metastasis (54–58).

The prognosis of brain metastasis in patients with NSCLC is

very poor. Xu et al. detected differences in methylation sites in

different groups, and for the first time demonstrated that it may be

possible to predict the risk of lung cancer brain metastasis based on
FIGURE 2

Connection of DNA methylation and the progression of NSCLC. NSCLC progression is caused by inactivation of TSGs, oncogenes activation, and
genomic instability due to dysregulation of DNA methylation. NSCLC, non-small cell lung cancer; TSGs, tumor suppressor genes.
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DNAmethylation (59). Bacha et al. found that patients with NSCLC

whose MGMT promoter region was methylated after brain surgery

had a poorer survival time than patients whose MGMT was not

methylated (60). These two studies provide a new idea for

predicting the risk of brain metastasis of NSCLC. In conclusion,

detection of methylation level may provide a new approach to

predicting a patient’s prognosis based on a specific gene. We

summarize the connection between some common DNA

methylation genes and the prognosis and metastasis of

NSCLC (Table 2).
4 DNA methylation leads to
immunotherapy resistance in NSCLC

DNA methylation dysregulation may alter cell phenotypes,

reshape TME, as well as influence the status of certain signaling

pathways and antigen presentation. These factors allow tumor cells

to evade immune surveillance, leading to immunotherapy

resistance. DNMTis are expected to reverse these conditions,

which could further enhance the effect of immunotherapy.
4.1 Mechanisms of immunotherapy
resistance

Anticancer immunotherapy, especially ICIs, is changing the

treatment paradigm in numerous cancer types, and has been widely

used in clinical practice with remarkable clinical benefits (62–64).

Although a few patients have achieved significantly longer survival,

most patients would have treatment failure due to primary or

acquired treatment resistance (65, 66). From tumor-specific

antigens recognition to cross-presentation, from T cell activation

to recruitment, ICIs treatment resistance occurs at every step of the

tumor immune cycle (67). The causes of ICIs treatment resistance

include tumor-intrinsic and tumor-extrinsic mechanisms.
Frontiers in Immunology 06
4.1.1 Tumor-intrinsic mechanism
The tumor-intrinsic mechanism mainly refers to low tumor

mutation burden (TMB) and expression of PD-L1, loss of

neoantigen expression, deficiency of antigen presentation,

activation of driver genes, and dysfunction of specific pathways in

tumor cells. These changes in tumor cells can lead to the

development of immune resistance.

4.1.1.1 TMB

TMB is a critical biomarker, which can serve as a predictor of

the efficacy of ICIs. Yarchoan et al. demonstrated that a significant

positive correlation could be observed between TMB and objective

response rate (ORR) with ICIs in 27 tumor types (68). Based on the

follow-up study of KEYNOTE-158, patients with high TMB had

better ORR compared to those with low TMB who received

pembrolizumab (29% vs 6%, p<0.05) (69). Compared with high

TMB cancer types (e.g. NSCLC and melanoma), and low TMB

cancer types such as pancreatic cancer and prostate cancer show

poorer response to the treatment effect of ICIs (70). Mechanistically,

increased TMB might boost the expression of tumor antigens and

improve the efficacy of immunotherapy (71).

4.1.1.2 PD-L1

In addition to TMB, PD-L1 is another valid predictor, which is

widely utilized in clinical practice. Although numerous studies have

demonstrated that high expression of PD-L1 in tumor cells can

mediate immune escape, current clinical trials have proved that high

expression of PD-L1 can make tumor cells more sensitive to ICIs (72–

75). A derivative study of KEYNOTE-001 demonstrated that

advanced NSCLC patients with high PD-L1 expression (>= 50% of

tumor cells) had better ORR than those with low PD-L1 (< 50% of

tumor cells) expression who received pembrolizumab (75).

Compared to platinum-based chemotherapy group, pembrolizumab

group prolongs PFS and OS for stage IV NSCLC patients with higher

PD-L1 expression (>=50% of tumor cells) (74). Similar to low TMB,

low PD-L1 expression does not indicate an absolutely poor
TABLE 2 Association of DNA methylation genes with prognosis and metastasis in non-small cell lung cancer.

Gene DNA methylation level Result Reference

EPHB6 Increased more prone to metastasis (54)

FANCF Increased Poorer prognosis (50)

HS3ST2 Increased More prone to metastasis (55)

TMEM88 Increased More prone to metastasis (57)

DAL-1 Increased More prone to metastasis (56)

TMEM196 Increased Poorer prognosis (51)

HERC5 Increased Poorer prognosis (52)

ELMO3 Decreased More prone to metastasis (58)

RASSF1A Increased Poorer prognosis (61)

FAM83A Decreased Poorer prognosis (53)

MGMT Increased More prone to metastasis (60)
f
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immunotherapy response, and different functions of PD-L1may exist

rather than absolute inhibition or promotion (72, 73, 76–78). The low

TMB and expression of PD-L1 prior to ICIs initiation are associated

with the primary resistance of tumor. The dynamic changes of PD-L1

expression status and TMB during treatment may be related to the

acquired resistance of tumor. Despite that high TMB and PD-L1

expression play a critical part in predicting treatment efficacy to ICIs,

the forecast of ICIs treatment efficacy is far more than TMB and PD-

L1 evaluation.

4.1.1.3 Tumor neoantigens

In the process of tumorigenesis, cancer cells will undergo

genetic alterations to promote the production of neoantigens.

Neoantigens are recognized by both innate immune cells and

primed adaptive immune cells that cooperate to destroy newly

formed cancer cells (79). Loss of neoantigens is considered to be one

of the causes of ICIs resistance which may interfere with the

recognition and presentation of antigens by immune cells. George

and colleagues analyzed the genomic distinctions between the

primary tumor and metastasis of a case of metastatic uterine

leiomyosarcoma after ICIs resistance. They found that, in

genomics, the uniquely harbored biallelic PTEN gene of

metastasis resistant to treatment was lost, and the expression of

two neoantigens was reduced. These two neoantigens showed

strong immune reactivity to the patient’s T cells in vitro,

indicating a lasting immune memory (80). A large cohort study

by Anagnostou and colleagues found that 7 to 18 neoantigens in

whole-exome sequencing of tumors disappeared after patients with

NSCLC developed ICIs resistance (81). Anaplastic lymphoma

kinase (ALK) fusion can be detected in 3%-8% of patients with

NSCLC. Patients with ALK fusion had decreased expression of

neoantigens and increased amounts of immunosuppressive cells

through PI3K-AKT and MEK-ERK pathways, causing poor effects

of single-agent immunotherapy (82–84). Tumor cells mainly

regulate the loss of neoantigens by reducing the expression of

neoantigens-related genes and the loss of mutant alleles (85).

4.1.1.4 Antigen presentation

Besides the deprivation of neoantigens, the decline of antigen

presentation ability can also lead to ICIs resistance. Major

histocompatibility complex class I (MHC I) is a vital member in

the immune process, involving in antigen processing and

presentation. The engagement of MHC I molecule on the surface

of cancer cells and the T cell receptor (TCR) on the surface of CD8

+T cells promotes the activation of CD8+T cells (86). Beta-2

microglobulin (B2M) is one of the vital components that makes

up the heavy chain of MHC I, playing a role in stabilizing MHC I

(87). An American study confirmed that in NSCLC, B2M gene

mutation could cause the deletion of MHC I molecule on the cancer

cell surface, further lead to the recognition obstacle of CD8+ T cells,

and induce immune resistance (88). NSCLC patients with

epidermal growth factor receptor (EGFR) gene mutation have

poor responses to ICIs (82). When the EGFR pathway is

activated, the signal transducer and activator of the transcription

3 (STAT3) is upregulated, as a downstream molecule of the EGFR
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pathway, which leads to the decrease of MCH I expression (89). In

addition, immune cell dysfunction and gene loss associated with

antigen presentation may also contribute to ICIs resistance (90–92).

4.1.1.5 Other signal pathway

The abnormality of the special signal pathway can also cause

immunotherapy resistance. The absence of an IFNg signal protects
tumor cells from recognition and attack by immune cells. IFNg is
produced by tumor-specific T cells and performs an effective anti-

tumor immune response by recognizing corresponding receptors

on cancer cells or antigen-presenting cells. Moreover, IFNg has the
ability to boost tumor antigen presentation by increasing MHC I

expression. At the same time, it can directly repress the proliferation

of cancer cells, promote apoptosis, and recruit immune cells to

cause anti-tumor effects (91, 93). Thus, mutations and deletions of

IFNg pathway-related proteins on tumor cells, such as IFNg
receptors and receptor chains, resulting in resistance to

immunotherapy, which is a key factor of primary and acquired

immune resistance (94–96). Continuous activation of Wnt

(Wingless-type MMTV integration site family)/b-catenin
signaling pathway by stabilizing b-catenin eliminates T cells from

the TME, causing a “non-T-cell inflamed” TME resistant to ICIs

(97). Besides, Wnt/b-catenin signaling could directly suppress the

activation of T cells (98).

4.1.2 Tumor-extrinsic mechanism
The tumor-extrinsic mechanism is mainly caused by the change

in the host immune microenvironment, which refers to the

reduction of cellular components and cytokines related to

immune activation in TME and the increase of cellular

components and cytokines related to immune suppression in

TME. TME is not only the internal environment for tumor cells

to survive and develop but also the “main battlefield” for immune

cells to kill tumor cells. As a result of low infiltration levels and

exhaustion of immune effector cells, immune suppression occurs,

thereby mediating immune escape (99). According to the

distribution frequency of CD8+T cells, the immune phenotype is

divided into three types: the inflamed phenotype, the immune-

desert phenotype, and the immune–excluded phenotype. In

contrast with the inflamed phenotype, the latter two phenotypes

seldom have a response to ICIs, leading to primary resistance (100).

T cell exhaustion is considered to be a dysfunctional status caused

by immunosuppressive TME and chronic/persistent presence of

tumor antigens (101). Continuous antigens stimulation brings

about T cell exhaustion, and CD8+T cell exhaustion is supposed

to be a vital reason for tumor immune resistance (102). Other

inhibitory immune checkpoints can also enhance the immune

suppression function by promoting T cell exhaustion (103). In

addition, Immunosuppressive cells such as myeloid-derived

suppressor cells (MDSCs) and tumor-associated macrophages

(TAMs) have the ability to promote tumor immune escape (104,

105). The regulatory T cells (Tregs) can directly contact or secrete

immunosuppressive cytokines such as IL-10, IL-35, and TGF-b to

inhibit the function of effector T cells (106). Increasing the secretion

of cytokines such as indole-2, and 3-dioxygenase (IDO) can inhibit
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immune response (107). Metabolic changes in the TME can also

lower immune effects by releasing product of metabolism to repress

immune cell infiltration (108). Once the delicate balance between

the “gas pedal” and the “brake” in the TME is broken and develop

along the direction of negative regulation, it will lead to immune

resistance. Similarly, we can utilize these mechanisms to enhance

antitumor immunity by promoting positive regulation.
4.2 DNMTis promote anti-tumor immunity

The concept of immunotherapy has brought new progress in

the treatment of cancer. However, cancer cells and host immune

cells are prone to immune tolerance after the interaction. In the

context of cancer, epigenetics can reshape the TME, promote tumor

growth, and escape the immune system. For example, aberrant

DNA methylation can provide survival benefits to tumor cells by

silencing genes necessary for antitumor activity. DNMTis can

reduce DNA hypermethylation in CG-rich regions (CpG islands)

of tumor suppressor gene promoters and restore transcriptional

activity at these sites, thereby altering the immune response (109,

110). Zhang et al. analyzed the expression level of PD-L1 in patients

with NSCLC after chemotherapy, immunotherapy, and EGFR-TKI

treatment. This study demonstrated that immunotherapy inhibited

the expression of PD-L1 through promoter hypermethylation, while

PD-L1 increased in the other two treatments. A xenograft NSCLC

model was used to clarify the relationship between anti-PD-1

treatment and PD-L1 promoter. The study found that the

methylation level of PD-L1 was significantly decreased in AZA-

treated tumor cells, and the PD-L1 mRNA level was enhanced

(111). To their delight, tumor volume was significantly decreased in

patients treated with methylation inhibitors combined with

immunotherapy. Therefore, this combination may be a promising

way to eliminate ICIs resistance.

By summarizing previous studies, we believe that epigenetic

therapy affects tumor immune resistance through the following

factors. First, DNMTis enhance antigen presentation by increasing

the expression level of MHC I molecule and tumor antigens such as

tumor-testis antigens (CTAs) and endogenous retroviruses (ERVs)

(112, 113). After ERVs promoter demethylation, it can induce viral

mimicry or activate inhibited retroviruses to express double-

stranded RNA, thereby recruiting more cytotoxic T lymphocytes

into the TME and changing the production of cytokines, thereby

eliminating tumor cells (114–117). Second, DNMTis can activate

TLR3 and MDA5 after up-regulating dsRNA, thereby activating the

classic type I interferon signaling pathways (117). After activation of

the type I interferon signaling pathway, the composition of the TME

and the expression of MHC I molecule on the cell surface can be

regulated by increasing the percentage of CD8+T cells and natural

killer (NK) cells in the TME and reducing the percentage of

macrophages and bone marrow-derived suppressor cells (118,

119). Third, epigenetic silencing of T helper factor 1 (TH1)

chemokines is a new mechanism of tumor immune escape. Peng

et al. showed that DNMT1 and EZH2 inhibitors can re-activate the

production of TH1 chemokines, boost the infiltration of effector T
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cells, inhibit tumor progression, and enhance the efficacy of ICIs

(120). Fourth, effector cells in TME during such a long-term

stimulation will lead to cell effector function gradually being

suppressed, in such a situation, T cells are prone to exhaust. The ‘

tired ‘ state of immune cells often leads to an integral part of

immune tolerance and evasion (121, 122). Ghoneim et al. found

that de novo DNA methylation acquired after CD8 + T cell

exhaustion can lead to further exhaustion of T cells, while

DNMTis can reduce CD8 + T cell exhaustion by inhibiting

DNMT3a-mediated de novo DNA methylation (123). The

activation and differentiation of CD8 + T cells are the results of

stimulation by professional antigen-presenting cells after antigen

presentation. Epigenetic mechanisms play an key part in

determining the fate of T cells (124). For example, epigenetic

therapy can inhibit MYC activity to enhance type I interferon

signaling and induce CCL5 production, and then CCL5 can bind

to CCR5 to recruit more CD8 + T cells (119). Further, DNMTis can

remarkably increase IFN-g-induced Cxcr3 chemokine (Cxcl9/10/

11) expression, promoted Th1 polarization, and helped CD8 + T

cells enhance cytotoxic activity and enhance anti-PD-1 antibody

response (125, 126). Finally, DNA demethylating agents can not

only change the immune response through a variety of ways but

also reprogram cancer cells (127, 128), making tumors more

sensitive to checkpoint inhibition (117). These suggest that

DNMTis play a vital role in anti-tumor immunity.
4.3 Clinical application of DNMTis

DNMTis have the ability to inhibit methylation formation in

the CpG region (129). The use of low doses can reverse gene

silencing, while high doses can exert cytotoxicity in killing tumor

cells (130). DNMTis have been proved to have good curative effect

in the field of hematologic tumors and are widely used in clinical

practice. In solid tumors, a growing number of single-agent and

combination therapy studies have been completed or are ongoing,

promising to provide helpful insights into antitumor therapy.
4.3.1 Currently available DNMTis
The landmark drugs of clinically approved epigenetic therapy

are azacitidine (AZA) and 5-2′-deoxycytidine (decitabine), two

nucleoside classes of DNMTis that were discovered by researchers

in the 1960s (131). After several decades of development, these two

drugs can be used to treat a variety of hematologic tumors,

including myelodysplastic syndrome (MDS), acute myeloid

leukemia (AML), and become the new standard of non-intensive

first-line treatment (132–134). Despite their significant efficacy in

hematological tumors, the toxicity, low response rate, and poor

chemical stability limit their use in the treatment of solid tumors

(135, 136).

In the past few decades, some novel nucleoside DNMT

inhibitors and non-nucleoside DNMT inhibitors have been

identified and used as antitumor drugs. We summarize the

commonly used DNMTis in Table 3.
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Recently, a phase 1 clinical trial showed that CC-486 (an oral

azacitidine) as monotherapy has a good therapeutic effect on

advanced nasopharyngeal carcinoma. 37.5% of patients had

partial response (PR), and 50% of patients achieved stable disease

(SD) (137). CC-486 combined with immunotherapy deserves

further study. Guadecitabine (SGI-110) is a second generation of

DNMTis, which solves the disadvantage that the first-generation

DNMTis are easy to be deaminated by cytidine deaminase (CDA),

and improves the chemical stability (138). Zebularine is another

nucleoside analog. Unlike azacitidine and decitabine, zebularine is

very stable in neutral aqueous solutions and less toxic (139).

Psammaplins are a class of phenolic compounds isolated from

marine sponges, which can inhibit DNMT and histone deacetylase

(HDAC) (140). Arce et al. proposed that hydralazine may act

directly on DNMT by embedding the three-dimensional catalytic

group pocket of DNMT, and the mechanism of its demethylation

needs further study (141). MG98 is a non-nucleoside analogues

directly acting on the 3 ‘ end of DNMT1 mRNA. In phase 1 clinical

trial, 33 patients with advanced solid malignancies received MG98

treatment. One patient achieved PR and another remained stable.

Inhibition of DNMT1 expression was observed in 26 patients (142).
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4.3.2 DNMTis monotherapy in NSCLC
At present, the commonly used DNMTis are azacitidine (5

‘-azacytidine) and decitabine (5-aza-2 ‘ -deoxycytidine), which are

cytidine analogs. DNMTis have a wide range of cellular effects,

through phosphorylation and DNA binding, inducing DNA

hypomethylation, apoptosis, or activation of specific genes, such

as tumor suppressor genes, to exert anti-tumor effects (143).

Momparler et al. conducted a clinical study on the toxicity and

clinical efficacy of decitabine in patients with advanced NSCLC. The

study included 15 patients with NSCLC, and one patient survived

more than 81 months (144). The delayed mode of action of

decitabine was proposed by Montparell et al., which provides a

new strategy for treating NSCLC. A phase 2 study to assess the

efficacy and safety of 5-fluoro-2 ‘ -deoxycytidine in combination

with tetrahydrouridine was initiated by the National Cancer

Institute in 2009. This study included 95 patients with NSCLC,

breast cancer and other cancers (https://clinicaltrials.gov/ct2/show/

NCT00978250). The PFS of 25 NSCLC patients was 2.3 months.

Severe AEs occurred in 38 of the 93 patients, the most common of

which was gastrointestinal reactions. Schiffmann et al. included 10

patients with refractory advanced NSCLC in a phase 1/2 trial to
TABLE 3 Summary of DNA methyltransferase inhibitors.

Substance Group Drug Name Target

Nucleoside analogs Decitabine (5-aza-2’-deoxycytidine, Dacogen R, DAC) DNMT1 and DNMT3A

Azacitidine (5-azacytidine, Vidaza R) DNMT

5-Fluoro-2′-deoxycytidine (FdCyd) DNMT1

CC-486 DNMT

Guadecitabine (SGI-110) DNMT

4′-thio-2′-deoxycytidine (TdCyd) DNMT1

Sinefungin DNMT

Zebularine DNMT1, CDA

Non-nucleoside analogs Nanaomycin A DNMT3B

MG98 DNMT1

1-Hydrazinophthalazine DNMT

CBC12 DNMT

Epigallocatechin gallate (EGCG) DNMT

Procainamide DNMT1

Psammaplin A DNMT, HDAC

RG 108 DNMT1

SGI-1027 DNMT1, 3A and 3B

Thioguanine DNMT

MC3343 DNMT1

MC3353 DNMT1

BIX-01294 DNMT3A, DNMT1 and G9a
DNMT, DNA methyltransferase; CDA, cytidine deaminase; HDAC, histone deacetylase.
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evaluate the tolerance of azacitidine combined with atenolol. The

treatment was well tolerated and an objective response was

observed. The median survival time was 6.4 months (145).

4.3.3 DNMTis combined with immunotherapy
in NSCLC

In previous studies, when NSCLC patients only received single-

agent methylation inhibitors, such as DNMTi azacytidine, only 4%

of patients showed an objective response, and the effect was not

ideal (145). Wrangle showed that DNA hypomethylation agent

azacytidine (AZA) could increase the level of PD-L1 expression in

cell lines (146). In addition, Chiappinelli et al. proposed several

possible signal transduction mechanisms for how epigenetic

therapy can boost the efficacy of immunotherapy, which provides

evidence for clinical trials of NSCLC (147). Therefore, we believe

that the combination of epigenetic therapy and immunotherapy

may produce a synergistic anti-tumor efficacy. Here we list some

clinical trials of DNMTis combined with immunotherapy in

patients with NSCLC (Table 4).

In a follow-up study of combined epigenetic therapy for

advanced treatment-refractory NSCLC, six patients received ICIs,

three of whom achieved PR and two achieved SD, all of which lasted

more than 8 months (146). The good results obtained in this study

demonstrated the potential of DNMTis combined with

immunotherapy and opened the prelude to a series of subsequent

clinical trials. In a case report, Han et al. reported the unexpectedly

good results of 3 patients with advanced NSCLC carrying adverse

ICI biomarkers, such as low TMB. Surprisingly, all three patients

responded well to low-dose DAC combined with camelizumab,

with slight AEs, indicating that low-dose DAC can sensitize ICIs

(148). A dose-escalation study was conducted on guadecitabine, a

second-generation DNA methylation inhibitor, to determine its
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effect on solid cancers. Among the 12 assessable NSCLC patients, 10

patients had previously received ICIs, of which 5 (42%) had been in

disease control for more than 2 years (149). In a phase 2 trial, 100

patients who had previously received platinum-based therapy were

given either pembrolizumab plus oral AZA or a placebo, but PFS

was not improved (150). A large phase 2 study was initiated in 2013,

which included 101 patients with advanced NSCLC who were

treated with azacitidine and antidote in combination with

nivolumab or nivolumab alone. The results of this clinical trial

have not been released (https://clinicaltrials.gov/ct2/show/

NCT01928576). In 2016, 13 NSCLC evaluation studies were

recruited to evaluate whether the drug tetrahydrouridine-

decitabine (THU-Dec) combined with nivolumab is more

effective than nivolumab alone in the treatment of NSCLC

patients (https://clinicaltrials.gov/ct2/show/NCT02664181).

Among them, 8 were in an experimental group and 5 were in the

control group. The latest results in August 2022 showed that 4 of the

8 patients in the experimental group developed progression, 2 were

SD, and 2 were PR; among the 5 patients in the control group, 1

progressed, 3 were stable, and 1 was partially relieved. The PFS was

69 and 227 days, respectively. As of the latest results, the OS for the

experimental and control groups was 389.5 days and 844 days,

respectively. In the same year, a 1/2 phase study (https://

clinicaltrials.gov/ct2/show/NCT02959437) was conducted in USA,

UK, and Spain to evaluate the safety and tolerance of azacitidine

combined with pembrolizumab and epalrestat. The study included

70 subjects with advanced solid tumors and previous stage IIIB or

IV NSCLC and stage IV microsatellite-stabilized colorectal cancer.

The study was permanently discontinued in February 2019 and

there were no patients in treatment groups B and C. Treatment

group A was divided into two groups according to different doses,

62 patients with 100 mg INC B24360 and 8 patients with 300 mg
TABLE 4 Clinical trials of DNMTis combined with immunotherapy in NSCLC.

Inhibitor target Inhibitor (name) Study type Status Clinical trial
number

DNMT + PD-1 + CDA Decitabine + Nivolumab +THU Phase 2 Completed NCT02664181

DNMT + HDAC + PD-1/PD-
L1

Azacitidine + Entinostat + ICIs Subsequent study of a phase 2
trial

Completed (146)

DNMT + PD-1 CC-486 + Pembrolizumab Phase 2 Active, not
recruiting

NCT02546986

DNMT + PD-1 Guadecitabine + Pembrolizumab Phase 1 Active, not
recruiting

NCT02998567

DNMT + HDAC + PD-1 Azacitidine + Entinostat + Nivolumab Phase 2 Active, not
recruiting

NCT01928576

DNMT + HDAC + PD-1 Guadecitabine + Pembrolizumab +
Mocetinostat

Phase 1 Active, not
recruiting

NCT03220477

DNMT + PD-1 + CDA Decitabine + Pembrolizumab + THU Phase1/2 Recruiting NCT03233724

DNMT + CTLA-4 + PD-1 Guadecitabine + Ipilimumab + Nivolumab Phase 2 Not recruiting NCT04250246

DNMT + PD-1 Decitabine + Camrelizumab Case report Completed (148)

DNMT + IDO-1 + PD-1 Azacitidine + Epacadostat + Pembrolizumab Phase1/2 Completed NCT02959437
DNMT, DNA methyltransferases; CDA, cytidine deaminase; THU, tetrahydrouridine; ICIs, immune checkpoint inhibitors; IDO-1, indoleamine 2,3-dioxygenase; HDAC, histone deacetylase;
CTLA-4, cytotoxic T lymphocyte-associated antigen.
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INC B24360. These results demonstrated that the all-cause

mortality rate of the 100 mg INCB24360 group was 66.13%, and

the risk of serious adverse events was 45.16%. The all-cause

mortality of patients with 300 mg INCB24360 was 50%. The risk

of serious AEs (adverse events) was 37.5%. In 2017, 34 castration-

resistant prostatic cancer and NSCLC were included to evaluate the

safety and toxicity of decitabine (SGI-110) combined with

pembrolizumab (MK3475) in patients with refractory solid

tumors (https://clinicaltrials.gov/ct2/show/NCT02998567). In the

same year, 28 NSCLC patients were included to assess the safety and

dose selection of a 1/1b phase study (https://clinicaltrials.gov/ct2/

show/NCT03220477) in the treatment of patients with advanced

NSCLC with bortezomib combined with guadicitabine and

moxitinib. The clinical trial was first published in 2017 and is

expected to be completed in July 2023. The trial results have not yet

been released. Overall, it is safe to use DNMTis. Epigenetic therapy

does not directly affect cell cycle progression or apoptosis, but rather

regulate some genes to cause global changes in cellular

transcriptional programs, and therefore do not have an

immediate cytotoxic effect. But there is much more to learn in

how to make better use of DNMTis in clinical settings, such as a

more detailed understanding of drug resistance mechanisms and

more clinical trials.
5 DNA methylation leads to
radioresistance in NSCLC

RT is a vital treatment for NSCLC, however, radioresistance is

considered to be the main cause of the poor effect of RT for NSCLC.

The underlying mechanism of radioresistance remains to be

clarified. To improve the radiosensitization, investigators

concentrate mainly on ameliorating the hypoxia state, increasing

DNA damage, and affecting the cell cycle. At present, the commonly

used radiosensitizers in clinical practice are 5-fluorouracil,

platinum, and gemcitabine (151–153). Nevertheless, these drugs

not only have limited radiosensitizing effects but also increase the
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toxicity of RT (154). Now, accumulating evidence has shown that

aberrant epigenetic alterations are related to the radioresistance of

NSCLC. Abnormal DNA methylation of radiosensitivity related

genes in promoter region leads to radioresistance. DNA

methylation has attracted the most interest among epigenetic

modifications in radioresistance. Drugs regulating methylation-

related genes have great clinical potential for improving the

radiosensitivity of NSCLC.
5.1 DNA methylation regulates
radiosensitivity in NSCLC

5.1.1 Mechanism of DNA methylation
regulating radiosensitivity

DNA methylation is combined with histone modification,

resulting in RNA polymerase binding to this region, causing the

silence of related genes, especially tumor-suppressive genes (155,

156). It is believed that DNA methylation is linked to a variety of

cellular events, such as apoptosis, the progression of the cell cycle,

the regulation of mitotic checkpoints, and repairing DNA damage.

These cellular regulatory actions can affect radiosensitivity (157,

158). The clinical radiobiological effect is based on five

radiobiological factors, including DNA repair, repopulation, re-

oxygenation, redistribution, and radiosensitivity, which determine

the rate of tumor response to radiotherapy. The first four of these

factors are regarded as 4 ‘R’, which are regulated by DNA

methylation-related genes and influence radiosensitivity (154,

159). Here, we summarize genes involved in radiosensitivity

regulated by DNA methylation (Table 5).

5.1.2 DNA methylation and re-oxygenation
related genes

One of the important reasons for tumor resistance to RT is the

lack of oxygen in the tumor due to abnormal or dysfunctional blood

vessels. This hypoxic state results in less DNA damage for the same

dose of radiation (160). Furthermore, hypoxia drives resistance to
TABLE 5 Radiosensitivity related genes regulated by DNA methylation in NSCLC.

Gene Methylation
site

NSCLC Cell line Methylation
status

Response to RT Gene function

PTEN Promoter H1299 Hypermethylation Resistant Suppressing DNA damage repair, re-
oxygenation

MicroRNA-9
gene

Promoter A549 Hypermethylation Resistant Suppressing DNA damage repair

OTUD4 Promoter A549, H460 Hypomethylation Sensitive Suppressing DNA damage repair

SERPINB5 Promoter H1299 Hypermethylation Resistant Suppressing tumor cells proliferation

TM4SF4 Promoter + 5′-UTR A549, Calu-3 Hypomethylation Resistant Promoting tumor cells proliferation

IGFBP-3 Promoter Sample from
patients

Hypomethylation Resistant Promoting tumor cells proliferation

S100A6 Promoter H1299 Hypermethylation Resistant Modulating cell cycle

Dab2 Promoter LK2 Hypermethylation Sensitive Inhibition of Wnt pathway
NSCLC, non-small cell lung cancer; RT, radiotherapy; 5′-UTR, 5’ untranslated region.
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RT through the accumulation and stabilization of HIF-1 a (161).

HIF-1 a is one of the re-oxygenation-related genes, and its high

expression is significantly related to radioresistance. The hypoxic

state of cells will reduce radiosensitivity (162). Wang et al. found

that overexpression of miR-320a caused an increase in the

radiosensitivity of NSCLC cells by facilitating methylation of

PTEN via HIF-1a/KDM5B axis inhibition (163). Therefore, we

speculate that hypermethylation status may affect NSCLC

radiosensitivity through to silence of re-oxygenation-related genes.

PTEN, a robust tumor suppressor gene, which is often

inactivated in numerous various types of cancer cells. PTEN can

lose its function through DNA methylation in NSCLC (164). Meyn

and colleagues found that transferring the wild-type PTEN gene

into an H1299 NSCLC cell line with a known methylated PTEN

promoter would enhance its sensitivity to irradiation. The repair of

DSBs induced by irradiation was suppressed in H1299 cells

pretreated with adenoviral-mediated PTEN (165).

5.1.3 DNA methylation and DNA
repair-related genes

Unlike re-oxygenation-related genes, for DNA repair inhibitor

genes, demethylation can improve the radiosensitivity of tumor cells.

A preclinical study revealed that DNMTis, such as 5-aza-2’-

deoxycytidine, and zebularine are promising drugs to enhance

radiosensitivity in NSCLC, most possibly via regulating the damage

of the DNA repair process (158). Among the radiation-responsive

genes, activating nuclear factor-kappa B1 (NFkB1) promotes DNA

damage repair and cell survival. According to the report, microRNA-

9 can sensitize H1299 cells to ionizing radiation by inhibition of NF-

kB1 (166). Jin and colleagues found that microRNA-9 increased

radiosensitivity in NSCLC and this effect is remarkably affected via its

promoter methylation status. This study revealed that over-

expression of DNMT1 significantly decreased the expression of

microRNA-9 by up-regulating the methylation level of its

promoter. Furthermore, the promoter methylation level of

microRNA-9 was significantly enhanced in response to irradiation

(167). Thus, we believe that DNMT1 inhibitors can enhance

microRNA-9 expression by down-regulating its promoter

methylation level, resulting in increasing the radiosensitivity of

NSCLC. OTUD4 has been supposed to participate in DNA damage

repair pathways containing GG-NER and the alkylation damage

repair pathway (168, 169). Mi and colleagues showed that OTUD4

is inactivated in promoter methylation status and its down-regulation

is related to inferior prognosis in NSCLC. Overexpression of OTUD4

impairs DNA double-strand breaks (DSBs) homologous

recombination (HR) repair, augments cell cycle arrest, and

increases cell death induced by ionizing radiation (IR). OTUD4

could be a potential target for radiosensitizing NSCLC.

Furthermore, a study indicates that OTUD4 radiosensitizes NSCLC

via ATM/CHK2/P53 signaling and suppresses homology-directed

repair of DNA DSBs induced by IR (170).

5.1.4 DNA methylation and cell proliferation-
related genes

DNA methylation level of cell proliferation-related genes

correlates with the radiosensitivity in NSCLC. The SERPINB5
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gene is a tumor suppressor gene, which plays an important part

in suppressing the ability of cancer cell proliferation, metastasis, and

invasion (171). A study by Kim et al. found that the SERPINB5 gene

was hypermethylated in radioresistant H1299 cells. PCR

(polymerase chain reaction) revealed higher expression of

SERPINB5 in radiosensitive lung cancer cells than radioresistant

cells (172). The transmembrane 4L six family member 4 (TM4SF4)

protein is a cell surface glycoprotein that has the function of

modulating cell proliferation (173). A study in South Korea

demonstrates that TM4SF4 overexpression in lung cancer cells

leads to radioresistance via IGF1-induced IGF1R activation. The

detection of the CpG island methylation level of the TM4SF4 gene

revealed that lung cancer cells with hypo-methylated status resulted

in the overexpression of TM4SF4 (174). Insulin-like growth factor-

binding protein-3 (IGFBP-3) serves as a vital role in cell

proliferation, growth and survival by mediating the PI3 kinase

(PI3K)/Akt pathway (175). A study in Spain showed that the

hypomethylated IGFBP-3 promoter correlates with radioresistance

in NSCLC. The study revealed that patients with promoter

hypomethylation status did not benefit from adjuvant RT after R0

surgery (176).

5.1.5 DNA methylation and cell cycles regulation
related genes

The radiosensitivity of cancer cells in different cell cycles is

different. Compared with cells in the M phase and G2 phase, cells

in the S phase are generally less sensitive to RT. Tumor cells in the M

phase and G2 phase are selectively killed, which leads to the

phenomenon of redistribution (177). Some studies have proved

that genes driving cell cycles to G2/M with hypermethylation status

could lead radioresistance in different tumor cell lines (154). The

S100A6 gene functions as modulating cell cycle. In radioresistant cell

lines of NSCLC, the promoter of this gene is hypermethylated, while

in radiosensitive cell lines, the promoter is hypomethylated (172).

5.1.6 DNA methylation and CSCs related genes
There is increasing evidence showing that some radioresistant

cancer cells have the characteristics of stem cells, which are known

as cancer stem cells (CSCs) (178–180). A study has shown that

CSCs markers can be modulated by methylation. DNA methylation

is related to the Wnt pathway involved in the activation of CSCs

(181, 182). Classic Wnt signaling pathway is crucial in NSCLC. In

resected samples and cell lines of NSCLC, hypermethylation

decreases Wnt inhibitor level, which correlates with a poor

prognosis. Wnt signaling may also enhance radioresistance, and

the inhibitors of Wnt may restore radiosensitivity (183). Wang et al.

compared the hypermethylated lung cancer with the

hypomethylated lung cancer of the Dab2 gene promoter, they

found radiation remarkably suppresses proliferation and invasion

of NSCLC with hypermethylated promoter but is less efficient in

NSCLC with hypomethylated promoter. This study demonstrates

that the methylation level of the Dab2 gene promoter might have

the promise to predict the radiosensitivity of NSCLC. Moreover,

these results indicate that ionizing radiation could induce

demethylation of lung cancer cells with hypermethylation of the

Dab2 gene promoter via down-regulating DNMTs and MeCP2,
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then increasing the Dab2 expression, which may enhance

radiosensitivity. The process may inhibit the Wnt pathway (184)..
5.2 DNMTis combined with radiotherapy

Although numerous preclinical studies have demonstrated the

significant radiosensitization effect of DNMTis, there are no result

related to DNMTis combined with radiotherapy for NSCLC. The

clinical trials such as NCT03445858, NCT01707004, and

NCT04174196, that are currently being recruited or have been

completed, focusing on lymphoma and hematological neoplasms,

have shown the promise of DNMTis combined with RT. Therefore,

increasing clinical trials are needed to undertake to explore the

potential benefit of DNMTis combined with RT.
6 Feasibility of immunoradiotherapy
combined with DNMTis

RT has a good local control effect on the tumor, but its systemic

anti-tumor effect is relatively limited, while immunotherapy is the

contrary. RT can promote anti-tumor immunity by increasing

neoantigen release and changing TME and other mechanisms.
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The combination of DNMTis and the former two can not only

enhance the sensitivity of RT to increase the ability of tumor local

control but also promote the further release of tumor antigens and

improve immunogenicity. At the same time, DNMTis can also

increase the production of neoantigens and the expression of MHC

I molecule, and improve the antigen presentation ability of immune

cells. In addition, DNMTis can activate cytotoxic T lymphocytes,

inhibit the function of immunosuppressive cells, up-regulate the

positive cytokines of immune regulation, create a TME conducive to

immunotherapy, and improve the systemic effect of

immunotherapy. The three complement each other and play a

better and more powerful anti-tumor effect (Figure 3).

However, the toxicity of DNMTis is a problem that cannot be

underestimated. Some DNMTis have been extensively used in

clinical practice with controllable AEs, but the AEs of treatment

in combination with ICIs have not been widely studied, especially in

long-term outcome. With the advent of new DNMTis, the toxicity

aspect of the drug is acceptable. In addition, clinical studies

associated with low-dose DNMTis and RT as induction before

ICIs are also worthy of future exploration. For different stages of

NSCLC, in combination with different ICIs, more in-depth

exploration of the dose, frequency, time, and sequence of RT, as

well as better control of the side effects, can make patients more

benefit from combination therapy.
FIGURE 3

Synergistic effects of RT, immunotherapy and DNMTis. RT acts on cancer cells to produce double-stranded DNA, release cancer-specific peptides, and
activate the cGAS-STING-IFN-I pathway to promote anti-tumor immunity. DNMTis remove methylation from endogenous retroviruses and activates
type I interferon signal via TLR3 and MDA3 sensors, while releasing cancer testis antigens, which are involved in antigen processing and presentation,
and anti-tumor immunity. RT and DMNTis can also promote the expression of PD-L1 in cancer cells and improve the efficacy of immunotherapy. In
addition, they can also affect the TME, which is conducive to the formation of anti-tumor immune microenvironment. DNMTis make cancer cells more
sensitive to RT and immunotherapy, which work in concert with each other to achieve long-lasting and effective anti-tumor effects. RT, radiotherapy;
CSPs, cancer-specific peptides; ERVs, endogenous retroviruses; CTAs, cancer testis antigens; DNMTis, DNA methyltransferase inhibitors; MDSC,
myeloid-derived suppressor cell; TAM, tumor-associated macrophage; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon genes; MHC-I,
major histocompatibility antigen-I; IFN-I, interferon I; IFNGR1, interferon gamma receptor 1; TCR, T cell receptor.
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7 Challenges and perspectives

DNA methylation is a very stable sign that can be detected in

various types of biological samples, including tumor tissue and body

fluids (185). At present, more and more studies believe that DNA

methylation can be used as a biomarker for early diagnosis of lung

cancer, and can be used to assist the pathological classification of

lung cancer (186–188). Moreover, DNA methylation is associated

with TMB in NSCLC and has potential as a biomarker for

immunotherapy, which can also be used to predict the efficacy of

chemotherapy and molecular targeted drugs (33, 61, 189). Despite

all this, the current studies on DNA methylation mainly focus on

single genes or some special gene groups. For patients receiving

DNMTis treatment, there is no clear research indicating which

specific groups can benefit, which requires more research to find

more effective biomarkers. Current advances in gene sequencing

technology promise to select specific populations for epigenetic

drugs to achieve long-lasting therapeutic effects and tolerable AEs.

At present, chemoradiotherapy combined with immunotherapy has

achieved good results in NSCLC, but it still has limitations. On this

basis, adding DNMTis will hopefully bring more benefits to the

survival of patients with NSCLC. DNMTis combined with iRT, a

“chemotherapy-free” treatment mode, is expected to achieve better

efficacy and lower toxicity than concurrent chemoradiotherapy,

which is well worth our exploration and challenge.
8 Conclusion

The advent of iRT has been a boon for patients with NSCLC

and has proven to be a fruitful research field for NSCLC. Future

research will focus more on improving existing iRT. DNMTis are

promising therapeutic agents for reversing radiation resistance as

well as immune resistance due to their ability to sensitize tumors to

radiation and significantly activate tumor immune responses. We

eagerly look forward to the emergence of clinical studies of iRT

combined with DNMTis, using epigenetic therapy to reverse tumor
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treatment resistance and sensitize to iRT, benefiting a broader

group of patients than currently exists.
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Pembrolizumab versus chemotherapy for pd-L1-Positive non-Small-Cell lung cancer.
New Engl J Med (2016) 375(19):1823–33. doi: 10.1056/NEJMoa1606774

75. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al.
Pembrolizumab for the treatment of non-Small-Cell lung cancer. New Engl J Med
(2015) 372(21):2018–28. doi: 10.1056/NEJMoa1501824

76. Henon C, Blay JY, Massard C, Mir O, Bahleda R, Dumont S, et al. Long lasting
major response to pembrolizumab in a thoracic malignant rhabdoid-like Smarca4-
deficient tumor. Ann oncol: Off J Eur Soc Med Oncol (2019) 30(8):1401–3. doi: 10.1093/
annonc/mdz160

77. Boyiadzis MM, Kirkwood JM, Marshall JL, Pritchard CC, Azad NS, Gulley JL.
Significance and implications of fda approval of pembrolizumab for biomarker-defined
disease. J Immunother Cancer (2018) 6(1):35. doi: 10.1186/s40425-018-0342-x

78. Kaufman HL, Russell JS, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al.
Updated efficacy of avelumab in patients with previously treated metastatic merkel cell
carcinoma after ≥1 year of follow-up: Javelin merkel 200, a phase 2 clinical trial. J
Immunother Cancer (2018) 6(1):7. doi: 10.1186/s40425-017-0310-x

79. Yarchoan M, Johnson BA3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting
neoantigens to augment antitumour immunity. Nat Rev Cancer (2017) 17(4):209–22.
doi: 10.1038/nrc.2016.154

80. George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, et al. Loss of
pten is associated with resistance to anti-Pd-1 checkpoint blockade therapy in
metastatic uterine leiomyosarcoma. Immunity (2017) 46(2):197–204. doi: 10.1016/
j.immuni.2017.02.001

81. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al.
Evolution of neoantigen landscape during immune checkpoint blockade in non-small
cell lung cancer. Cancer Discov (2017) 7(3):264–76. doi: 10.1158/2159-8290.Cd-16-
0828

82. Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, et al. Egfr
mutations and alk rearrangements are associated with low response rates to pd-1
pathway blockade in non-small cell lung cancer: A retrospective analysis. Clin Cancer
Research: An Off J Am Assoc Cancer Res (2016) 22(18):4585–93. doi: 10.1158/1078-
0432.Ccr-15-3101

83. Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J, et al. Induction of
pd-L1 expression by the Eml4-alk oncoprotein and downstream signaling pathways in
non-small cell lung cancer. Clin Cancer Research: An Off J Am Assoc Cancer Res (2015)
21(17):4014–21. doi: 10.1158/1078-0432.Ccr-15-0016
Frontiers in Immunology 16
84. Sankar K, Nagrath S, Ramnath N. Immunotherapy for alk-rearranged non-small
cell lung cancer: Challenges inform promising approaches. Cancers (2021) 13(6):1476–
89. doi: 10.3390/cancers13061476

85. Verdegaal EM, de Miranda NF, Visser M, Harryvan T, van Buuren MM,
Andersen RS, et al. Neoantigen landscape dynamics during human melanoma-T cell
interactions. Nature (2016) 536(7614):91–5. doi: 10.1038/nature18945

86. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev
Immunol (2013) 31:443–73. doi: 10.1146/annurev-immunol-032712-095910
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