
Curation of BIDS (CuBIDS): A workflow and software package
for streamlining reproducible curation of large BIDS datasets

Sydney Covitza,b,c, Tinashe M. Taperaa,b,c, Azeez Adebimpea,b,c, Aaron F. Alexander-
Blochb,c,d, Maxwell A. Bertoleroa,b,c, Eric Feczkoh, Alexandre R. Francoe,f,g, Raquel E.
Gurb,c, Ruben C. Gurb,c, Timothy Hendricksonh,i, Audrey Houghtonh, Kahini Mehtaa,b,c,
Kristin Murthaa,b,c, Anders J. Perroneh, Tim Robert-Fitzgeraldj,k, Jenna M. Schabdachb,c,d,
Russell T Shinoharaj,k, Jacob W. Vogela,b,c, Chenying Zhaoa,b,l, Damien A. Fairh, Michael P.
Milhame, Matthew Cieslaka,b,c,1, Theodore D. Satterthwaitea,b,c,j,1,*

aLifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

bPenn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of
Philadelphia Research Institute, Philadelphia, PA 19104, USA

cDepartment of Psychiatry, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA 19104, USA

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author at: Richards Medical Labs, A504, 3700 Hamilton Walk, Philadelphia, PA 19104.
sattertt@pennmedicine.upenn.edu (T.D. Satterthwaite).
1Contributed equally as senior authors

APPENDIX A. SUPPLEMENTARY MATERIAL
Supplementary Data 1 (for toy dataset in Results)
Supplementary Data files 1A-O are zipped into Supplementary_Data_1.zip (submitted as supplementary material)

Declaration of Competing Interest
The authors of Curation of BIDS (CuBIDS) declare that they have no competing or conflicting interests.

Credit authorship contribution statement
Sydney Covitz: Software, Writing – original draft, Writing – review & editing, Conceptualization. Tinashe M. Tapera: Writing –
review & editing. Azeez Adebimpe: Writing – review & editing. Aaron F. Alexander-Bloch: Writing – review & editing. Maxwell
A. Bertolero: Writing – review & editing. Eric Feczko: Writing – review & editing. Alexandre R. Franco: Writing – review
& editing, Data curation. Raquel E. Gur: Writing – review & editing. Ruben C. Gur: Writing – review & editing. Timothy
Hendrickson: Software, Writing – review & editing, Data curation. Audrey Houghton: Writing – review & editing. Kahini Mehta:
Writing – review & editing, Data curation. Kristin Murtha: Writing – review & editing. Anders J. Perrone: Software, Writing –
review & editing. Tim Robert-Fitzgerald: Writing – review & editing. Jenna M. Schabdach: Writing – review & editing. Russell
T Shinohara: Writing – review & editing. Jacob W. Vogel: Writing – review & editing. Chenying Zhao: Writing – review &
editing. Damien A. Fair: Software, Writing – review & editing, Data curation. Michael P. Milham: Writing – review & editing,
Data curation. Matthew Cieslak: Software, Writing – original draft, Writing – review & editing, Conceptualization, Supervision.
Theodore D. Satterthwaite: Software, Writing – original draft, Writing – review & editing, Data curation, Conceptualization,
Supervision.

Data and code availability statement
A copy of the small, example dataset whose curation we walk through in the Results section is compressed into a ZipFile and available
for download here. Additionally, the Philadelphia Neurodevelopmental Cohort (PNC), the dataset whose curation we summarize in the
second portion of the Results, is publicly available in the Database of Genotypes and Phenotypes (dbGaP accession phs000607.v3.p2).
The source code for CuBIDS is publicly available at https://github.com/PennLINC/CuBIDS, the documentation for our software is
available at https://cubids.readthedocs.io/en/latest/, and our package is available for download on the Python Package Manager (pypi)
https://pypi.org/project/cubids/.

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.neuroimage.2022.119609.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2023 May 07.

Published in final edited form as:
Neuroimage. 2022 November ; 263: 119609. doi:10.1016/j.neuroimage.2022.119609.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/PennLINC/CuBIDS
https://cubids.readthedocs.io/en/latest/
https://pypi.org/project/cubids/

dChildren’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United
States

eChild Mind Institute, 101 E 56th St, New York, NY 10022

fCenter for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric
Research, Orangeburg, NY 10962, USA

gDepartment of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA

hMasonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United
States

iUniversity of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, United
States

jCenter for Biomedical Image Computation and Analytics, University of Pennsylvania,
Philadelphia, PA 19104, USA

kPenn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology
and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA

lDepartment of Bioengineering, School of Engineering and Applied Science, University of
Pennsylvania, Philadelphia, PA 19104, USA

Abstract

The Brain Imaging Data Structure (BIDS) is a specification accompanied by a software ecosystem

that was designed to create reproducible and automated workflows for processing neuroimaging

data. BIDS Apps flexibly build workflows based on the metadata detected in a dataset. However,

even BIDS valid metadata can include incorrect values or omissions that result in inconsistent

processing across sessions. Additionally, in large-scale, heterogeneous neuroimaging datasets,

hidden variability in metadata is difficult to detect and classify. To address these challenges, we

created a Python-based software package titled “Curation of BIDS” (CuBIDS), which provides

an intuitive workflow that helps users validate and manage the curation of their neuroimaging

datasets. CuBIDS includes a robust implementation of BIDS validation that scales to large

samples and incorporates DataLad—a version control software package for data—as an optional

dependency to ensure reproducibility and provenance tracking throughout the entire curation

process. CuBIDS provides tools to help users perform quality control on their images’ metadata

and identify unique combinations of imaging parameters. Users can then execute BIDS Apps on

a subset of participants that represent the full range of acquisition parameters that are present,

accelerating pipeline testing on large datasets.

Keywords

BIDS; MRI; Brain; Neuroimaging; Software; Curation; Validation; Metadata; Version control;
Heterogeneity

Covitz et al. Page 2

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1. Introduction

The Brain Imaging Data Structure (BIDS) specification provides a standardized format

for organizing and describing neuroimaging data (Gorgolewski et al., 2016). BIDS

relies on specific nested directory structures and filename conventions and requires that

each MR image file (e.g. Neuroimaging Informatics Technology Initiative or NIfTI) be

accompanied by a JavaScript Object Notation (JSON) sidecar—a data dictionary detailing

its corresponding image’s metadata. BIDS is especially helpful when dealing with large,

multimodal studies; as the number of subjects and runs increases, generalizable structures

and standards become not only beneficial but essential. Pipelines that ingest BIDS datasets

—commonly referred to in the BIDS software ecosystem as “BIDS Apps ” (Gorgolewski et

al., 2017)—such as fMRIPrep and QSIPrep—rely heavily on correct specification of BIDS,

as they build workflows based on the metadata encountered (Esteban et al., 2019; Cieslak

et al., 2021). While generally an important and useful feature, this workflow construction

structure can also be a vulnerability: if the BIDS metadata is inaccurate, a BIDS app may

build an inappropriate (but technically “correct”) preprocessing pipeline. For example, a

fieldmap with no IntendedFor field specified in its JSON sidecar is not technically incorrect

but rather incomplete. When a participant containing a fieldmap missing an IntendedFor

field is run through a MRI image type processing pipeline such as fMRIPrep and QSIPrep,

the pipeline will execute with neither errors nor warnings but will skip distortion correction.

Curating the dataset with CuBIDS before running it through such pipelines will allow users

to easily identify all instances of fieldmaps missing IntendedFor references—CuBIDS places

those scans in separate groups. Users must understand and verify that the metadata present

in BIDS is correct. This usually requires meticulous curation—the process of checking and

fixing filename or metadata issues present in a dataset. In the context of the lifecycle of a

neuroimaging dataset, the CuBIDS curation workflow begins directly after the data has been

organized into a BIDS directory structure with BIDS-like filenames.

While large, multi-modal neuroimaging datasets constitute extremely valuable data

resources, they also frequently possess substantial heterogeneity in their image acquisition

parameters. BIDS provides an ideal structure for organizing neuroimaging data, but the

size and complexity of large-scale datasets can render curation both tedious and difficult.

Data curation can be an ad-hoc process that involves substantial manual intervention; such

manual curation is usually neither well tracked nor reproducible. Thus, curation constitutes

a major vulnerability in the field-wide effort to create reproducible, analytic workflows

for neuroimaging data. Finally, many current BIDS tools, including the BIDS Validator,

MatlabBIDS, and PyBIDS (Yarkoni et al., 2019), that parse and interact with BIDS datasets

were optimized for small fMRI studies and may behave erratically when given large

quantities of heterogeneous data.

With these challenges in mind, we developed “Curation of BIDS” (CuBIDS): a software

package that provides easy-to-use workflows that help users curate large BIDS datasets.

CuBIDS provides users with customizable features to visualize heterogeneity in complex

BIDS datasets and includes a robust, scalable implementation of BIDS validation that can

be applied to arbitrarily-sized datasets. Critically, CuBIDS renders curation reproducible

via an easy-to-use, wrapped implementation of DataLad (Halchenko et al., 2021) as an

Covitz et al. Page 3

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

optional feature the user can access at will. Finally, CuBIDS provides tools to identify

unique combinations of imaging parameters in a dataset so that users can test BIDS Apps on

a subset of participants that represents the parameter space of the entire dataset. This option

dramatically speeds up pipeline testing, as users can be assured that they have tested a BIDS

App on the full range of acquisition parameters present in a dataset. As described below,

CuBIDS facilitates an understanding of what is present in an MRI BIDS dataset, allows for

reproducible BIDS curation, and accelerates successful data processing at scale.

2. Materials and methods

The standard lifecycle of a neuroimaging study begins with acquisition and ends with image

analysis and hypothesis testing. CuBIDS’ role in this process begins directly after the data

has been organized into a BIDS directory structure with BIDS-like filenames. The CuBIDS

workflow ends with curated data in a repository, allowing for further exploration, pooling,

meta-analysis, and runs of preprocessing pipelines. As curation occurs quite early in this

timeline of preparing neuroimaging data for analysis, decisions made during curation will

affect every subsequent stage.

2.1. Data and code availability statement

A copy of the small, example dataset whose curation we walk through in the Results

section is compressed into a ZipFile and submitted with this paper under “Supplementary

Material.” Additionally, the Philadelphia Neurodevelopmental Cohort (PNC), the dataset

whose curation we summarize in the second portion of the Results, is publicly available

in the Database of Genotypes and Phenotypes (dbGaP accession phs000607.v3.p2). The

source code for CuBIDS is publicly available at https://github.com/PennLINC/CuBIDS,

the documentation for our software is available at https://cubids.readthedocs.io/en/latest/,

and our package is available for download on the Python Package Manager (pypi) https://

pypi.org/project/cubids/.

2.2. Ethics statement

No new data was collected specifically for this paper. The Philadelphia Neurodevelopmental

Cohort (PNC) (Satterthwaite et al., 2014) was approved by IRBs of The University of

Pennsylvania and Children’s Hospital of Philadelphia. All adult participants in the PNC

provided informed consent to participate; minors provided assent alongside the informed

consent of their parents or guardian.

2.3. Overview

CuBIDS provides a workflow that aids users in curating large, heterogeneous BIDS datasets.

CuBIDS summarizes a dataset’s metadata, enabling users to visualize and understand the

variability in critical scanning parameters and fix errors when they are present. To do

this, CuBIDS features several command line interface (CLI) programs (Table 1). Notably,

all CuBIDS CLI programs wrap DataLad as an optional dependency so that the user can

implement reproducible tracking at any stage of curation or revert to a prior state of their

data. If the user wants to apply DataLad version control while using CuBIDS, they can run

the CLI programs with the ---use-datalad optional flag set.

Covitz et al. Page 4

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/PennLINC/CuBIDS
https://cubids.readthedocs.io/en/latest/
https://pypi.org/project/cubids/
https://pypi.org/project/cubids/

2.4. Software development practices

We applied test-driven development while building CuBIDS, prioritizing writing tests for

each new feature concurrent with its construction. We integrated CircleCI—a web-based

continuous integration testing platform—into our GitHub repository so that each new

commit is run through the full suite of tests. We apply a standardized approach to fixing

bugs and adding features: first creating an issue on our GitHub page and then creating a new

branch of our code base named specifically for fixing that issue. Once the issue is fixed on

the new branch, a pull request merges the new branch into the main branch with the issue

tagged. If all continuous integration tests pass and the merge is successful, the issue gets

automatically closed. Centering our development process around both tests and issues has

ensured the integrity of the code and facilitated both organization and documentation.

2.5. Installation, setup, and version control

We recommend users install CuBIDS inside an Anaconda-based Python environment. Users

can install Anaconda/Miniconda/Miniforge, create and activate an environment, and then

obtain CuBIDS locally by either installing from the Python Package Manager (Pypi) using

pip or cloning directly from the CuBIDS GitHub repository. Documentation regarding use of

CuBIDS is publicly available on our Read the Docs page. Notably, CuBIDS commands

incorporate version control using DataLad as an optional dependency. Checking their

BIDS dataset into DataLad and operationalizing command line programs with the ---use-

datalad flag set allows users to access several extra version-control based functionalities.

These include tracking changes they make to their dataset, reverting their dataset back to

earlier versions, and automatically saving changes CuBIDS makes to the data with detailed

commit messages. If users would like to access this functionality, they must separately

install both DataLad and Git Annex (a dependency of Data-Lad). Although users can run

CuBIDS programs without DataLad, opting to leverage the version control capabilities is

recommended, as it renders the CuBIDS workflow portion of curation fully reproducible.

2.6. Definitions

The CuBIDS workflow relies upon five main concepts, all delineating different ways to

categorize and catalog data: Key, Parameter, Acquisition, Dominant, and Variant Groups.

The first is a “Key Group” -- the set of runs whose filenames share all BIDS filename

key-value pairs, except for subject and session. For example, CuBIDS would place

a T1w NIfTI file named sub-X_ses-A_acq-refaced_T1w.nii.gz, which contains

the BIDS key-value pair “acq-refaced”—in the following Key Group: acquisition-

refaced_datatype-anat_suffix-T1w. Notably, Key Groups only consider the scan’s

BIDS filename; they do not account for the variance in metadata fields that might be present

in the JSON sidecars.

For this reason, within each Key Group, we define a “Parameter Group” as the set of

runs with identical metadata parameters contained in their sidecars. Parameter Groups

exist within Key Groups and are denoted numerically—each Key Group will have n
Parameter Groups, where n is the number of unique sets of scanning parameters present

in that Key Group. For example, a T1w can belong to Key Group acquisition-

Covitz et al. Page 5

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

refaced_datatype-anat_suffix-T1w and Parameter Group 1. CuBIDS defines

Parameter Groups within Key Groups because differences in parameters can affect how

BIDS Apps will configure their pipelines (e.g. Fieldmap availability, multiband factor, etc.).

Next, we define a “Dominant Group” as the Parameter Group that contains the most runs

in its Key Group. Analogously, we define a “Variant Group” as any Parameter Group that

is non-dominant. This is an important term because (as described below) CuBIDS can

optionally rename all Variant Groups in an automated and reproducible fashion.

Finally, we define an “Acquisition Group” as a collection of sessions across participants

that contain the exact same set of Key and Parameter Groups. Since Key Groups are based

on the BIDS filenames—and therefore both MRI image type and acquisition specific—each

BIDS session directory contains images that belong to a set of Parameter Groups. CuBIDS

assigns each session—or set of Parameter Groups—to an Acquisition Group such that all

sessions in an Acquisition Group possesses an identical set of acquisitions and metadata

parameters across all MRI image types present in the dataset. We find Acquisition Groups

to be a particularly useful categorization of BIDS data, as they identify homogeneous sets

of sessions (not individual scans) in a large dataset. They are also useful for expediting

the testing of pipelines; if a BIDS App runs successfully on a single subject from each

Acquisition Group, one can be confident that it will handle all combinations of scanning

parameters in the entire dataset. These various sets of methods by which one can group a

BIDS dataset are critical to the CuBIDS workflow (see Fig. 1).

2.7. Accounting for NIfTI header information

Information from NIfTI headers—including number of volumes, voxel size, image

dimensions, and image obliquity—is often important but is usually absent from JSON

sidecars. We created a program, cubids-add-nifti-info, that reads information from

the NIfTI header and adds it to the JSON sidecar. For example, knowing the number of

volumes in a run may be particularly useful when performing an initial quality assessment—

i.e., identifying and removing runs with unexpectedly short durations (i.e., 20 vol in an fMRI

timeseries). Similarly, runs with vastly different voxel sizes or fields of view may be easily

identified and removed if desired.

2.8. BIDS validation

An essential first stage of curation is validation: finding the errors present in a BIDS

dataset. This step is usually accomplished using the BIDS Validator. However, while

BIDS validation is essential to the curation process, the standalone BIDS Validator can

exhibit unstable file I/O behavior when validating large datasets (n>100). As a result, it

sometimes fails unpredictably. To combat this issue, cubids-validate checks the BIDS

layout using a wrapped, stable, scalable version of the standard BIDS Validator. To ensure

scalability, cubids-validate parallelizes validation across participants, validating each

subject directory on its own and deferring the detection of parameters that may vary

across subjects. Thereafter, cubids-validate aggregates all validation errors found across

participants in an easy-to-read TSV (see Fig. 2), which is accompanied by a data dictionary

Covitz et al. Page 6

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

JSON sidecar. This table includes one row for each file that contains a BIDS validation error

and displays that filename along with a description of the error (see Fig. 2)).

In designing cubids-validate, we also intended to separate metadata heterogeneity

detection from BIDS error detection. By default, the validator does both—providing large

amounts of unactionable information concerning the metadata variance in the terminal

output. For example, if a sample includes participants with different sets of scans,

the standalone BIDS Validator will print warnings alerting the user to the presence of

incongruencies across subjects, often producing copious output that can obscure critical

issues. If there are errors or forms of inconsistency users would prefer excluded from the

CuBIDS validation TSV, they can run cubids-validate with optional BIDS Validator

flags such as ---ignore_nifti_headers, which disregards NIfTI header content during

validation and --ignore_subject_consistency, which we set as the default and skips

checking that any given file for one subject is present for all other subjects. Furthermore, we

implemented --sequential, which parallelizes validation by running the BIDS Validator

sequentially on each subject (i.e. treating each participant as a standalone BIDS dataset

and performing validation inside a temporary filesystem directory) (see Fig. 2B), and

---sequential-subjects, which filters the sequential run to only include the listed

subjects, e.g. --sequential-subjects sub-01 sub-05 sub-09. These flags allow

users to focus the validation process exclusively on the issues and subjects they would like

to evaluate, and the sequential option, which parallelizes validation, addresses the standalone

BIDS Validator’s scalability issue.

2.9. Grouping: heterogeneity detection and classification

While cubids-validate will find and display BIDS validation errors present in a dataset,

it does not identify metadata parameters that might be inconsistent or omitted. For this

reason, we developed cubids-group: a grouping function that classifies the heterogeneity

present in a BIDS dataset and displays it in readable TSVs. Each grouping output is

accompanied by a data dictionary JSON sidecar. The input to cubids-group is the path

to the root of a BIDS Dataset, and the program produces four outputs, each of which gives

a different view of the underlying data. The first (and most important) is summary.tsv,

which contains one row per Parameter Group, and one column per metadata parameter

present in the dataset. To understand the relative prevalence of each group, the program

also counts, and includes in summary.tsv, the number of files in each Key and Parameter

Group; this documentation is very useful for visualizing metadata heterogeneity across the

entire dataset.

The next output of cubids-group is files.tsv, which contains one row per NIfTI file in

the BIDS directory. This table keeps track of every scan’s assignment to Key and Parameter

Groups and includes a field that allows users to easily identify the Key and Parameter

Groups to which each image belongs. The next two grouping outputs organize the dataset

by Acquisition Group. AcqGrouping.tsv organizes the dataset by session and tags each

one with its Acquisition Group number. Finally, AcqGroupInfo.txt lists all Key Groups

that belong to a given Acquisition Group along with the number of sessions each group

possesses.

Covitz et al. Page 7

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

When applied to large datasets, cubids-group will often reveal issues within a BIDS

dataset, some of which validation alone does not always catch. Such issues include missing

metadata parameters and runs with low numbers of volumes or unusual image and voxel

dimensions. For this reason, cubids-group can aid users in performing first pass quality

assurance on their BIDS dataset. Since summary.tsv breaks down the dataset by Parameter

Group with one column per scanning parameter, users can then search that TSV by desired

parameters. Next, users can set a threshold or requirement for a certain parameter (e.g.

number of volumes or dimension/voxel size) and use cubids-purge to remove runs that do

not possess the desired values for those parameters. For example, a user may want to remove

all fMRI runs with a low number of volumes before data processing with a BIDS App such

as fMRIPrep.

2.10. Applying changes

The cubids-apply program provides an easy way for users to manipulate their datasets.

Specifically, cubids-apply can rename files according to the users’ specification in a

tracked and organized way. Here, the summary.tsv functions as an interface modifications;

users can mark Parameter Groups they want to rename (or delete) in a dedicated column of

the summary.tsv and pass that edited TSV as an argument to cubids-apply.

Additionally, cubids-apply can automatically rename files in Variant Groups based on

their scanning parameters that vary from those in their Key Groups’ Dominant Parameter

Groups. Renaming is automatically suggested when the summary.tsv is generated from a

cubids-group run, with the suggested new name listed in the TSV’s “Rename Key Group”

column. CuBIDS populates this column for all Variant Groups—e.g., every Parameter Group

except the Dominant one. Specifically, CuBIDS will suggest renaming all Non-Dominant

Parameter Groups to include VARIANT* in their acquisition field where * is the reason

the Parameter Group varies from the Dominant Group. For example, when CuBIDS

encounters a Parameter Group with a repetition time that varies from the one present in

the Dominant Group, it will automatically suggest renaming all runs in that Variant Group to

include acquisition-VARIANTRepetitionTime in their filenames. When the user runs

cubids-apply, filenames will get renamed according to the auto-generated names in the

“Rename Key Group” column in the summary.tsv (see Fig. 3)).

2.11. Customizable configuration

CuBIDS also features an optional, customizable, MRI image type-specific configuration file.

This file can be passed as an argument to cubids-group and cubids-apply using the

---config flag and allows users to customize grouping settings based on image type and

parameter. Each Key Group is associated with one (and only one) MRI image type, as BIDS

filenames include MRI image type-specific values as their suffixes. This easy-to-modify

configuration file provides several benefits to curation. First, it allows users to add and

remove metadata parameters from the set that determines groupings. This can be very useful

if a user deems a specific metadata parameter irrelevant and wishes to collapse variation

based on that parameter into a single Parameter Group. Second, the configuration file

allows users to apply tolerances for parameters with numerical values. This functionality

Covitz et al. Page 8

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

allows users to avoid very small differences in scanning parameters (i.e., a TR of 3.0 s vs

3.0001 s) being split into different Parameter Groups. Third, the configuration file allows

users to determine which scanning parameters are listed in the acquisition field when

auto-renaming is applied to Variant Groups.

2.12. Exemplar testing

In addition to facilitating curation of large, heterogeneous BIDS datasets, CuBIDS also

prepares datasets for testing BIDS Apps. This portion of the CuBIDS workflow relies on

the concept of the Acquisition Group: a set of sessions that have identical scan types and

metadata across all MRI image types present in the session set. Specifically, cubids-copy-

exemplars copies one subject from each Acquisition Group into a separate directory,

which we call an Exemplar Dataset. Since the Exemplar Dataset contains one randomly

selected subject from each unique Acquisition Group in the dataset, it will be a valid BIDS

dataset that spans the entire metadata parameter space of the full study. If users run copy-

exemplars with the ---use-datalad flag, the program will ensure that the Exemplar

Dataset is tracked and saved in DataLad. If the user chooses to forgo this flag, the Exemplar

Dataset will be a standard directory located on the filesystem. Once the Exemplar Dataset

has been created, a user can test it with a BIDS App (e.g., fMRIPrep or QSIPrep) to ensure

that each unique set of scanning parameters will pass through the pipelines successfully.

Because BIDS Apps auto-configure workflows based on the metadata encountered, they will

process all runs in each Acquisition Group in the same way. By first verifying that BIDS

Apps perform as intended on the small sub-sample of participants present in the Exemplar

Dataset (that spans the full variation of the metadata), users can confidently move forward

processing the data of the complete BIDS dataset.

3. Results

The CuBIDS workflow is currently being used in neuroimaging labs at a number

of institutions including the University of Pennsylvania, the Children’s Hospital of

Philadelphia, the Child Mind Institute, and the University of Minnesota’s Masonic Institute

for the Developing Brain. To demonstrate the utility of CuBIDS, here we apply the software

to two datasets. First, we curate a small example dataset that is included in the software’s

GitHub repository and can be downloaded here. Second, we apply CuBIDS to the large-

scale data of the Philadelphia Neurodevelopmental Cohort.

3.1. The CuBIDS workflow for curating a BIDS dataset (example dataset)

The following walkthrough displays the process of curating a dataset using CuBIDS on a

Linux machine. This example walkthrough is also documented on the CuBIDS Read the

Docs page. To do so, we use an example dataset that is bundled with the software. For

this demonstration, we install CuBIDS inside a conda environment. Note that if you are

using an Apple M1 chip machine, you will need to install Miniforge instead of Miniconda.

Once we have conda installed we create and activate a new environment using the following

commands:

Covitz et al. Page 9

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

conda create -n test-env python=3.8

conda activate test-env

To obtain CuBIDS locally, we can use pip to download our software from the Python

Package Manager (Pypi) using the following command:

pip install CuBIDS

Alternatively, we can clone from the CuBIDS GitHub repository using the following

command:

git clone https://github.com/PennLINC/CuBIDS.git

Now that we have a copy of the source code, we can install it by running

cd CuBIDS

pip install -e.

We will now need to install some dependencies of CuBIDS. To do this, we first must install

nodejs. We can accomplish this using the following command:

conda install nodejs

Now that we have npm installed, we can install the bids-validator using the following

command:

npm install -g bids-validator@1.7.2

In this example, we use the bids-validator v1.7.2. using a different version of the validator

may result in slightly different validation TSV printouts, but CuBIDS is compatible with all

versions of the validator at or above v1.6.2. Throughout this example walkthrough, we use

DataLad for version control, so we will also need to install both DataLad and git-annex,

the large file storage software DataLad runs under the hood. Installation instructions for

DataLad and git-annex can be found here.

Now that we have installed CuBIDS and all necessary dependencies, we are ready to

begin the curation process on our example dataset. We create a CuBIDS_Test directory to

function as the working directory and navigate to it as follows:

Covitz et al. Page 10

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/PennLINC/CuBIDS.git

mkdir $PWD/CuBIDS_Test

cd CuBIDS_Test

Throughout this walkthrough, we will run all commands from the CuBIDS_Test directory.

Next, we download BIDS_Dataset.zip (a ZipFile containing the example dataset) and

unzip as follows:

curl -sSLO https://github.com/PennLINC/CuBIDS/raw/main/cubids/testdata/

BIDS_Dataset.zip

unzip BIDS_Dataset.zip

rm BIDS_Dataset.zip

As a first step, we use CuBIDS to identify the metadata fields present in the dataset. This is

accomplished with the following command:

cubids-print-metadata-fields BIDS_Dataset

This command returns a total of 66 fields, including acquisition parameters and other

metadata fields present in the dataset’s JSON sidecars. Some of these fields contain

simulated protected health information (PHI) such as PatientName that we wish to

remove. Completing this step prior to checking the BIDS dataset into DataLad is critical, as

we must ensure PHI is not tracked as part of version control. To remove the PatientName

field from the sidecars, we can use the command:

 cubids-remove-metadata-fields BIDS_Dataset

--fields PatientName

If we were to run cubids-print-metadata-fields once more, we would see that

PatientName is no longer present in the dataset. Now that all PHI has been removed

from the metadata, we are ready to check our dataset into DataLad. To do this, we run the

following command:

datalad create -c text2git BIDS_Dataset_DataLad

The creation of our DataLad dataset will be accordingly reflected in the dataset’s version

control history, or “git log” (see example in Fig. 4A). At any point in the CuBIDS

workflow, we can view a summary of our dataset’s version history by running the following

commands:

cd BIDS_Dataset_DataLad

Covitz et al. Page 11

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/PennLINC/CuBIDS/raw/main/cubids/testdata/BIDS_Dataset.zip
https://github.com/PennLINC/CuBIDS/raw/main/cubids/testdata/BIDS_Dataset.zip

git log --oneline

cd ..

Next, we copy the contents of our BIDS dataset into the newly created and currently empty

DataLad dataset:

cp -r BIDS_Dataset/* BIDS_Dataset_DataLad

In addition to being able to access the version history of our data, any point in this workflow,

we can also check the status of untracked (not yet saved) changes using the datalad status

command, as seen below:

datalad status -d BIDS_Dataset_DataLad

This command produces a description of the changes we have made to the data since the last

commit (see Fig. 4B). The command above shows all files untracked, as we have copied the

BIDS data into BIDS_Dataset_DataLad but have not yet saved those changes. Our next

step is to run save. It is best practice to provide a detailed commit message, for example:

 datalad save -d BIDS_Dataset_DataLad -m

"checked dataset into datalad"

This commit is reflected in our git log (see Fig. 4C). Now that the dataset is checked into

DataLad, at any point in the workflow going forward, we can run the following command to

revert the dataset back to the previous commit:

cubids-undo BIDS_Datast_DataLad

At this stage, we also recommend removing the BIDS_Dataset directory — its contents are

safely copied into and tracked in BIDS_Dataset_DataLad.

Next, we seek to add new fields regarding our image parameters that are only reflected in

the NIfTI header to our metadata; these include important details such as image dimensions,

number of volumes, image obliquity, and voxel sizes. To do this, we run:

 cubids-add-nifti-info BIDS_Dataset_DataLad

--use-datalad

This command adds the NIfTI header information to the JSON sidecars and saves those

changes. In order to ensure that this command has been executed properly, we can

run cubids-print-metadata-fields once more, which reveals that NIfTI header

Covitz et al. Page 12

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

information has been successfully included in the metadata. Since we ran add-nifti-info

with the --use-datalad flag set, CuBIDS will automatically save the changes made to the

dataset to the git log (see Fig. 4D)).

The above panels display the version history of the small, example DataLad dataset we

curated to display the effectiveness of the CuBIDS workflow. These panels are screenshots

of the git history of the dataset taken after each change was made to the data. A shasum

(yellow string of letters and numbers to the left of each commit message) is assigned to each

commit, and each commit is recorded with a message (white text describing the changes

made to the data). If users would like more information about each commit, they can

run the git log command without the oneline flag to get a detailed summary of each

commit. This summary will include files that were changed, exact changes that were made

to each file, date and time of the commit, and information about the git user who made the

changes. At any point in the workflow after checking the dataset into DataLad, we can use

cubids-undo to revert the dataset back to the previous commit.

The next step in the CuBIDS workflow is to understand what BIDS validation errors may

be present (using cubids-validate) as well as the structure, heterogeneity, and metadata

errors present in the dataset (using cubids-group). Notably, neither of these two programs

requires write access to the data, as each simply reads in the contents of the data and creates

TSVs that parse the metadata and validation errors present. Validation can be accomplished

by running the following command:

 cubids-validate BIDS_Dataset_DataLad v0

--sequential

The use of the sequential flag forces the validator to treat each participant as its own BIDS

dataset. This command produces v0_validation.tsv (see Supplementary Data 1A).

This initial validation run reveals that Phase Encoding Direction (PED) is not specified for

one of the BOLD task-rest scans. We can clearly see that we either need to find the PED

for this run elsewhere and edit that sidecar to include it or remove that run from the dataset,

as this missing scanning parameter will render field map correction impossible. For the

purpose of this demonstration, we elect to remove the scan. To do this, we run the following

command:

 cubids-purge BIDS_Dataset_DataLad no_ped.txt

--use-datalad

Here, no_ped.txt (see Supplementary Data 1B) is a text file containing the

full path to the dwi run flagged in v0_validation.txt for missing PED.

The user must create this file before running cubids-purge (a command such

as echo $PWD/BIDS_Dataset_DataLad/sub-02/ses-phdiff/func/sub-02_ses-

phdiff_task-rest_bold.nii.gz > no_ped.txt will work).

Covitz et al. Page 13

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We elect to use cubids-purge instead of simply removing the run because cubids-purge

will ensure all associated files, including sidecars and IntendedFor references in the sidecars

of fieldmaps, are also deleted. This change will be reflected in the git history (see Fig. 4E).

Returning again to v0_validation.tsv, we can also see that there is one DWI run

missing TotalReadoutTime, a metadata field necessary for certain pipelines. In this case, we

determine that TotalReadoutTime (TRT) was erroneously omitted from the DWI sidecars.

For the purpose of this example, we assume we are able to obtain the TRT value for this

run (perhaps by asking the scanner technician). Once we have this value, we manually add it

to the sidecar for which it is missing by opening BIDS_Dataset_DataLad/sub-03/ses-

phdiff/dwi/sub-03_ses-phdiff_acq-HASC55AP_dwi.json in an editor and adding

the following line:

"TotalReadoutTime": 0.0717598, on a new line anywhere inside the curly braces

between lines containing parameters and their values, save the changes, and close the JSON

file. We then save the latest changes to the dataset with a detailed commit message as

follows:

 datalad save -d BIDS_Dataset_DataLad

-m "Added TotalReadoutTime to

sub-03_ses-phdiff_acq-HASC55AP_dwi.nii.json"

This change will be reflected in the git history (see Fig. 4F).

To verify that there are no remaining validation errors, we rerun validation with the

following command:

 cubids-validate BIDS_Dataset_DataLad v1

--sequential

This command will produce no TSV output and instead print “No issues/warnings

parsed, your dataset is BIDS valid” to the terminal, which indicates that the

dataset is now free from BIDS validation errors and warnings.

Along with parsing the BIDS validation errors in our dataset, it is important to understand

the dataset’s structure, heterogeneity, and metadata errors. To accomplish these tasks, we use

cubids-group. Large datasets almost inevitably contain multiple validation and metadata

errors. As such, it is typically useful to run both cubids-validate and cubids-group

in parallel, as validation errors are better understood within the context of a dataset’s

heterogeneity. Additionally, being able to see both the metadata errors that grouping reveals

alongside BIDS errors that the validator catches gives users a more comprehensive view of

the issues they will need to fix during the curation process. Note that if users choose to

provide just a pass in just a filename prefix (e.g. v0) for the second argument, then CuBIDS

will put the four grouping outputs in bids_dir/code/CuBIDS. If users provide a path

Covitz et al. Page 14

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(e.g. $PWD/v0), then output files will go to the specified location. The command to run the

grouping function is as follows:

cubids-group BIDS_Dataset_DataLad v0

As noted in Table 1, this command will produce four tables that display the dataset’s

heterogeneity in different ways. First, v0_summary.tsv contains all detected Key and

Parameter groups and provides a high-level overview of the heterogeneity in the entire

dataset (see Supplementary Data 1C). Second, v0_files.tsv (see Supplementary Data

1D) maps each imaging file in the BIDS directory to a Key and Parameter group. Third,

v0_AcqGrouping.tsv (see Supplementary Data 1E) maps each session in the dataset to an

Acquisition Group. Finally, v0_AcqGroupInfo.txt (see Supplementary Data 1F) lists the

set of scanning parameters present in each Acquisition Group.

The next step in the CuBIDS curation process is to examine v0_summary.tsv, which

allows for automated metadata quality assurance (QA)—the identification of incomplete,

incorrect, or unusable parameter groups based on acquisition fields such as dimension

and voxel sizes, number of volumes, etc. While v0_validation.tsv identified all BIDS

validation errors present in the dataset, it will not identify several issues that might be

present with the sidecars. Such issues include instances of erroneous metadata and missing

sidecar fields, which may impact successful execution of BIDS Apps.

Examining v0_summary.tsv (see Supplementary Data 1C) we can see that one

DWI Parameter Group—acquisition-HASC55AP_datatype-dwi_suffix-dwi--2--

contains only one image (see “Counts” column) with only 10 vol (see “NumVolumes”

column). Since the majority of DWI runs in this dataset have 61 vol, CuBIDS assigns

this single run to a “Non-Dominant”, or “Variant” Parameter Group and populates that

Parameter Group’s “RenameKeyGroup” column in v0_summary.tsv with acquisition-

HASC55APVARIANTNumVolumes_datatype-dwi_suffix-dwi. For the purpose of this

demonstration, we elect to remove this run because it does not have enough volumes to

be usable for most analyses. To do this, we can either use cubids-purge, or we can

edit v0_summary.tsv by adding “0” to the “MergeInto” column in the row (Parameter

Group) we want to remove. For this walkthrough, we chose the latter. To do this, we

open v0_summary.tsv in an editor, navigate to row 4, which contains all information for

Key Group acquisition-HASC55AP_datatype-dwi_suffix-dwi Parameter Group 2.

If we scroll to the NumVolumes column (row 4, column S), we see this Parameter Group

has only 10 vol, which explains why it received an auto-generated Rename Key Group

value of acquisition-HASC55APVARIANTNumVolumes_datatype-dwi_suffix-dwi.

Remaining in this same row, we navigate back to column C, which is labeled “MergeInto”

and manually a “0” to the cell in row 4 column C. This will ensure all runs in that

Parameter Group (in this example, just one scan) are removed when we run cubids-

apply. We then export and save the TSV in our CuBIDS_Test working directory as

v0_edited_summary.tsv (see Supplementary Data 1 G). We will then save this edited

Covitz et al. Page 15

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

version of v0_summary.tsv as v0_edited_summary.tsv, which will be passed into

cubids-apply in our next curation step.

Now that all metadata issues have been remedied--both the validation and summary

outputs appear problem-free--we are ready to rename our files based on their Rename

Key Group values and apply the requested deletion in v0_edited_summary.tsv. The

cubids-apply function renames runs in each Variant Parameter Group according to the

metadata parameters with a flag “VARIANT”, which is useful because the user will then be

able to see, in each scan’s filename, which metadata parameters associated with that run

vary from those in the acquisition’s Dominant Group. Note that like in cubids-group,

cubids-apply requires full paths to the BIDS Dataset, summary and files TSVs, and

output prefix. If the edited summary and files TSVs are located in the bids_dir/code/

CuBIDS directory, the user may just pass in those filenames. Otherwise, specifying the path

to those files is necessary. We execute cubids-apply with the following command:

 cubids-apply BIDS_Dataset_DataLad

v0_edited_summary.tsv v0_files.tsv v1

--use-datalad

Checking our git log, we can see that all changes from apply have been saved (see Fig.

4G). As a final step, we can check the four grouping TSVs cubids-apply produces

(see Supplementary Data 1H-K) to ensure they look as expected--that all files with

variant scanning parameters have been renamed to indicate the parameters that vary in the

acquisition fields of their filenames (and therefore Key Group names).

At this stage, the curation of the dataset is complete; next is preprocessing. CuBIDS

facilitates this subsequent step through the creation of an Exemplar Dataset: a subset of

the full dataset that spans the full variation of acquisitions and parameters by including one

subject from each Acquisition Group. By testing only one subject per Acquisition Group,

users are able to pinpoint both the specific metadata values and runs that may be associated

with pipeline failures; these acquisition groups could then be evaluated in more detail and

flagged for remediation or exclusion. The Exemplar Dataset can easily be created with the

cubids-copy-exemplars command, to which we pass in v1_AcqGrouping.tsv—the

post-apply acquisition grouping TSV (see Supplementary Data 1 J).

 cubids-copy-exemplars BIDS_Dataset_DataLad

Exemplar_Dataset v1_AcqGrouping.tsv

--use-datalad

Since we used the use-datalad flag, Exemplar_Dataset is a DataLad dataset with the

version history tracked in its git log (see Fig. 4H). Once a preprocessing pipeline completes

successfully on the Exemplar Dataset, the full dataset can be executed with confidence, as

a pipeline’s behavior on the full range of metadata heterogeneity in the dataset will have

already been discovered during exemplar testing.

Covitz et al. Page 16

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2. Application to a large-scale study of brain development

In addition to applying the CuBIDS workflow to a toy dataset, here we describe the

workflow applied to the Philadelphia Neurodevelopmental Cohort (PNC), a multimodal

dataset of n = 1601 participants. The PNC data is publicly available (Satterthwaite et

al., 2014) and is one of many datasets encompassing the forthcoming Reproducible Brain

Chart (RBC)—a large, developmental neuroimaging aggregation initiative led jointly by

the University of Pennsylvania and the Child Mind Institute. CuBIDS was developed, in

part, to help manage the data for RBC. The curated version of the dataset will be publicly

available as part of the forthcoming RBC data release. The PNC curation workflow involved

iterative rounds of checking and fixing due to the heterogeneity and size of the dataset, so

the following section will be a summary of how we used CuBIDS to curate this dataset

(rather than a step-by-step walkthrough).

One of our early curation actions was to take inventory regarding the metadata heterogeneity

of PNC by obtaining the initial summary table. To do this, we ran cubids-group, which

requires approximately 15 min to finish on PNC. For smaller datasets including our toy

dataset from the walkthrough described above, cubids-group completes in just seconds.

Examining the initial summary table (see Supplementary Data 2B), we find that PNC

contains 144 Parameter Groups—runs containing both identical BIDS filename key-value

pairs and identical metadata parameters present in their sidecars. The summary table is

organized by MRI image type, so we can easily see that some MRI image types and

acquisitions in the dataset are much more heterogeneous with respect to their metadata

parameters than are others. For example, from the table, we can see that PNC has only one

Key Group for T1w runs and only three Parameter Groups. Furthermore, according to the

“Counts” column of the tsv, the vast majority of T1w runs (n = 1597), are in the Dominant

Parameter Group. By contrast, in this same summary table we can see that there are 62

different Parameter Groups in the dataset for task-frac2back BOLD fMRI scans. Examining

the “RenameKeyGroup” column of those frac2back rows in the summary table, we can see

that the primary source of variance is the number of volumes acquired.

Our team relied upon the summary table to make a number of curation decisions—especially

inclusion/exclusion based on metadata. The summary table provided a platform for

collaboration and discussion among the team that was curating, validating, and modifying

the dataset. Since PNC was curated with DataLad and is saved as a DataLad Dataset, a

detailed history of the curation decisions can be found in the commit history. Each change

to the dataset was saved with a commit message, so all modifications we made to the dataset

are tracked and tagged with a shasum. If we want to restore PNC to a previous curation

stage, we can so using cubids-undo.

Modifications to PNC during the curation stage, documented in the dataset’s git log, include

creating and adding previously missing events tsvs, adding NIfTI header information to all

sidecars in the dataset (using the cubids-add-nifti-info command), removing DWI

runs that do not have enough volumes to successfully run through diffusion preprocessing

pipelines (e.g. QSIPrep), and adding Parallel Reduction Factor in Plane to two sidecars

that were initially missing this field. Once the validation and grouping outputs revealed we

Covitz et al. Page 17

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

had no more BIDS and metadata issues to fix, we ran cubids-apply on the dataset to

produce a new set of TSVs (see Supplementary Data 2 G-J). As can be seen in the summary

table (see Supplementary Data 2G) generated by cubids-apply, all runs in Variant (e.g.,

non-Dominant) Groups were renamed based on the scanning parameters that are variant (see

Fig. 3).

We then executed the final step of the CuBIDS workflow, which entailed running cubids-

copy-exemplars. This command creates the Exemplar Dataset—a DataLad-tracked BIDS

dataset containing one subject from each Acquisition Group (see Supplementary Data

2I). The final, curated version of PNC contains 1601 participants, 15,077 scans, and 65

Acquisition Groups. Thus, the Exemplar Dataset contains only 65 participants but spans the

entire dataset’s parameter space, reducing the scope of the pipeline testing by 96%. We then

used this Exemplar Dataset to test MRI image type-specific preprocessing pipelines such as

fMRIPrep and QSIPrep.

For large datasets especially, exemplar testing can be a necessary step; users will often

need to go back and re-curate aspects of the BIDS data based on metadata errors that

only become apparent during pipeline runs on the Exemplar Dataset. For example, after we

ran the PNC Exemplar Dataset through QSIPrep, we noticed that one participant (whose

Acquisition Group includes 34 participants), failed to complete the pipeline successfully.

After examining the error log, we realized that for this participant, the number of bvals

did not match the number of volumes in the scan’s sidecar (which was pulled directly

from the NIfTI header and added to the sidecar during the cubids-add-nifti-info

step of curation). Since all participants in the same Acquisition Group possess identical

scanning parameters, when a pipeline encounters a metadata error in an Exemplar Subject,

all participants in that Acquisition Group will have that same error and thus require the

same fix. Accordingly, we used cubids-purge to remove all DWI runs from that Exemplar

Group and reran cubids-group to obtain our final CuBIDS outputs (see Supplementary

Data 2K-N). Since all other Exemplar Subjects passed through QSIPrep successfully, we

were then able to run the pipeline through the entire dataset without concern that erroneous

metadata would impact preprocessing.

4. Discussion

Ample recent evidence has emphasized the challenges to reproducibility in neuroimaging

research (Kang et al., 2016). Although often overlooked, curation can be a critical part of

the scientific workflow. Because curation is often the first step after data acquisition, errors

in curation can ramify throughout each subsequent stage. BIDS apps adapt to metadata

encountered in an automatic and flexible way, which can be a vulnerability in ensuring

datasets are processed identically. If BIDS data are improperly curated, pre-processing

pipelines may mis-configure, with the potential to impact eventual results. Curation

challenges are particularly acute in large-scale data resources, which continue to proliferate

(e.g., UK Biobank, ABCD, PNC, HBN, HCP, etc.) (Bycroft et al., 2018; Karcher and Barch,

2021; Satterthwaite et al., 2014; Alexander et al., 2017; Van Essen et al., 2013). In large

datasets, curation is often an iterative, manual process that is neither well documented nor

reproducible. To address these challenges, CuBIDS allows for reproducible data curation

Covitz et al. Page 18

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

at scale. As discussed below, our software provides five main advantages: stability in

validation, reproducibility in curation, the ability to identify and manage heterogeneity,

transparency in naming, and accelerated pipeline testing.

4.1. Stable BIDS validation at scale

The BIDS Validator is the current standard tool for validation of all BIDS datasets. It

is widely used and plays an essential role in the standard BIDS workflow; it effectively

identifies the ways in which a dataset does not comply with BIDS standards. However, it

does not scale well, at times failing unpredictably on larger samples. Furthermore, when

run in a Linux shell, the validator prints (often a large volume) of text describing the errors

and warnings to the terminal screen. For large datasets with many errors and warnings,

such information is often quite difficult to visualize and comprehend. We wrapped the BIDS

Validator in the cubids-validate CLI to address these challenges, creating a scalable

implementation that yields a readable TSV. This allows users to easily identify the range of

validation issues that may be present in a large-scale dataset.

4.2. Reproducible data curation

Curation of large, heterogeneous BIDS datasets is an iterative, multistep task. However,

this process is often not reproducible, which, in turn, may compromise the reproducibility

of subsequent workflows. Without version control, any decision made during the curation

process—such as inclusion/exclusion decisions or editing metadata—will go unrecorded.

Further, if the person curating the data makes a mistake, they will have no clear way to undo

that mistake and revert the data to a prior state. In leveraging CuBIDS’ use of DataLad, users

can save each change made to a dataset with a detailed commit message (e.g. “Removed all

DWI runs with less than 30 vol ”). If a user erroneously changes the data and wants to undo

those changes, cubids-undo reverts the most recent commit.

4.3. Parsing heterogeneity in large-scale data resources

While cubids-validate will catch instances where the data does not comply with BIDS

format, it has important limitations. For example, validation does not always account for

missing JSON sidecars or empty NIfTI headers. In addition, it will neither identify runs

that have errant metadata values nor those with parameters that might render the runs

unusable. This functionality is provided by cubids-group, which produces parameter-

based summary tables that parse the dataset based on metadata, allowing for users to

visualize and assess metadata quality in ways that validation cannot.

This functionality is especially critical in the curation of large datasets. Scaling up both

the number of participants and the number of scanners within a single data resource has

the potential to introduce a massive amount of heterogeneity to that study’s eventual BIDS

dataset. Heterogeneity in scanning parameters can result in heterogeneity in preprocessing

pipelines; if users are do not appreciate the metadata heterogeneity in their dataset, they may

be surprised by inconsistencies in preprocessing settings and outcomes. Further, parameter

groups could be explicitly modeled when accounting for batch effects rather than just using

scanner or site. Thus, being able to identify and correct metadata errors in a heterogeneous

Covitz et al. Page 19

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dataset is a critical part of the data curation process, as such decisions may impact the

derived images from preprocessing pipelines.

4.4. Enhancing transparency with dominant and variant groups

In order to provide transparent documentation of parameter heterogeneity, the cubids-

apply function renames runs in each MRI image type according to their variant metadata

parameters. For example, if the majority of BOLD task-rest runs in a dataset are Oblique

but sub-X’s image is not oblique, CuBIDS users can choose to accept and apply the

automatically suggested renaming of “acq-VARIANTObliquity” to that run’s filename.

When performing sensitivity analyses on derivatives from datasets that have been curated

using CuBIDS, researchers may choose to exclude any runs in Non-Dominant Groups

to ensure that scanning parameters variance does not affect their results. Alternatively,

researchers could use image harmonization tools (e.g., ComBat) to ensure that such variation

does not impact analyses (Fortin et al., 2018).

4.5. Accelerating pipeline testing with exemplar datasets

Even after careful curation, the best way to verify successful image processing is empirical

testing. In a highly heterogeneous dataset, pipeline testing often reveals errors that were not

immediately apparent on initial curation, which usually require minor additional adjustments

to the metadata or exclusion of specific scans. Finding such edge cases while processing

a large dataset can slow down the workflow, so it is advantageous to conduct pipeline

testing before full deployment on a large data set. CuBIDS facilitates this process through

the creation of Exemplar Datasets that include data from each Acquisition Group and thus

span the full variation of the metadata present. After successful testing on the Exemplar

Dataset, the likelihood that unexpected outcomes occur when the full dataset is processed

is dramatically reduced. Furthermore, resource usage can be monitored during the exemplar

runs to estimate the runtime and storage demands for processing the entire dataset.

4.6. Limitations

CuBIDS possesses several limitations that should be acknowledged. First, at present,

CuBIDS does not possess a GUI, so running the software requires basic knowledge of

the terminal and Linux machines. However, such skills are likely to be a prerequisite

for curating large-scale imaging datasets. Second, if users are curating BIDS Datasets

with n>2500 participants and using the DataLad-enabled version control option, CuBIDS

programs that rely on saving changes made to the dataset might experience runtimes

that extend to over an hour—due to the need for DataLad to index such a large dataset.

Third, our add-nifti-info program does pull Obliquity, Number of Volumes, Dimension

Size, Image Orientation, and Voxel Sizes from the NIfTI header and adds those values to

the sidecars. However, we do not currently cross-reference existing sidecar metadata with

NIFTI header values. This additional functionality would be a good future direction for the

software but is currently outside the scope of this paper. Finally, CuBIDS is currently only

able to handle MRI BIDS, not other MRI image types, and can only be run on disk—either a

local machine or a high performance computing cluster; users cannot currently run CuBIDS

using either cloud-based computing (e.g., Amazon’s S3) or neuroimaging databases such as

Covitz et al. Page 20

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the eXtensible Neuroimaging Archive Toolkit (XNAT), Longitudinal Online Research and

Imaging System (LORIS), Collaborative Informatics Neuroimaging Suite (COINS), and the

commercial platform Flywheel (Herrick et al., 2016; Das et al., 2012; Landis et al., 2016).

Such functionality may be added to the software in future releases.

5. Conclusions

Curating large, heterogeneous neuroimaging datasets can be a difficult and frustrating task.

As the size and heterogeneity of data resources continues to expand, tools that allow

for reproducible curation are not only helpful but necessary. CuBIDS facilitates efficient

identification and correction of issues present in the metadata of heterogeneous BIDS

datasets in a reproducible manner. Furthermore, CuBIDS Exemplar Datasets allow users

to verify that BIDS Apps perform as intended on a small sub-sample of participants that

spans the entire parameter space of the dataset, accelerating the processing of all data from

the complete study. Together, CuBIDS allows users to simultaneously streamline curation

and ameliorate metadata issues while maximizing reproducibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This study was supported by grants from the National Institutes of Health: R01MH120482,
R37MH125829, R01MH113550, R01EB022573, RF1MH116920, R01MH112847, R01MH123550,
R01NS112274, R01MH123563. Additional support was provided by the CHOP-Penn Lifespan Brain Institute,
the Penn Brain Science Center, and the Center for Biomedical Image Computing and Analytics

References

Alexander L, Escalera J, Ai L, et al. , 2017. An open resource for transdiagnostic research in pediatric
mental health and learning disorders. Sci. Data 4, 170181. doi: 10.1038/sdata.2017.181. [PubMed:
29257126]

Bycroft C, Freeman C, Petkova D, et al. , 2018. The UK Biobank resource with deep phenotyping and
genomic data. Nature 562, 203–209. doi: 10.1038/s41586-018-0579-z. [PubMed: 30305743]

Cieslak M, Cook PA, He X, et al. , 2021. QSIPrep: an integrative platform for preprocessing and
reconstructing diffusion MRI data. Nat. Methods 18, 775–778. doi: 10.1038/s41592-021-01185-5.
[PubMed: 34155395]

Das S, Zijdenbos AP, Harlap J, Vins D, Evans AC, 2012. LORIS: a web-based data management
system for multi-center studies. Front. Neuroinformatics 5, 37. doi: 10.3389/fninf.2011.00037.

Esteban O, Markiewicz CJ, Blair RW, et al. , 2019. fMRIPrep: a robust preprocessing pipeline
for functional MRI. Nat. Methods 16 (1), 111–116. doi: 10.1038/s41592-018-0235-4. [PubMed:
30532080]

Gorgolewski K, Auer T, Calhoun V, et al. , 2016. The brain imaging data structure, a format for
organizing and describing outputs of neuroimaging experiments. Sci. Data 3, 160044. doi: 10.1038/
sdata.2016.44. [PubMed: 27326542]

Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, Cooper C, Fava
M, McGrath PJ, McInnis M, Phillips ML, Trivedi MH, Weissman MM, Shinohara RT, 2018.
Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167, 104–
120. doi: 10.1016/j.neuroimage.2017.11.024, 2018 Feb 15. [PubMed: 29155184]

Covitz et al. Page 21

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gorgolewski K, et al. , 2017. BIDS apps: improving ease of use, accessibility, and reproducibility of
neuroimaging data analysis methods. PLoS Comput. Biol doi: 10.1371/journal.pcbi.1005209.

Halchenko, et al. , 2021. DataLad: distributed system for joint management of code, data, and their
relationship. J. Open Source Softw 6 (63), 3262. doi: 10.21105/joss.03262.

Herrick R, Horton W, Olsen T, McKay M, Archie KA, Marcus DS, 2016. XNAT
central: open sourcing imaging research data. Neuroimage 124, 1093–1096. doi: 10.1016/
j.neuroimage.2015.06.076. [PubMed: 26143202]

Kang J, et al. , 2016. Editorial: recent advances and challenges on big data analysis in neuroimaging.
Front. Neurosci doi: 10.3389/fnins.2016.00505.

Karcher NR, Barch DM, 2021. The ABCD study: understanding the development of risk for
mental and physical health outcomes. Neuropsychopharmacology 46, 131–142. doi: 10.1038/
s41386-020-0736-6. [PubMed: 32541809]

Landis D, Courtney W, Dieringer C, Kelly R, King M, Miller B, et al. , 2016. COINS data exchange:
an open platform for compiling, curating, and disseminating neuroimaging data. Neuroimage 124,
1084–1088. doi: 10.1016/j.neuroimage.2015.05.049. [PubMed: 26019122]

Satterthwaite T, Elliott M, Ruparel K, Prabhakaran K, Calkins M, Hopson R, Jackson C, Keefe J,
Riley M, Mensh Frank, Sleiman Patrick, Verma Ragini, Davatzikos Christos, Gur Ruben, Gur
Raquel., 2014. Neuroimaging of the philadelphia neurodevelopmental cohort. Neuroimage 86. doi:
10.1016/j.neuroimage.2013.07.064.

Van Essen DC, et al. , 2013. The WU-Minn Human Connectome project: an overview. Neuroimage 80,
62–79. doi: 10.1016/j.neuroimage.2013.05.041, ISSN 1053-8119. [PubMed: 23684880]

Yarkoni, et al. , 2019. PyBIDS: python tools for BIDS datasets. J. Open Source Softw 4 (40), 1294.
doi: 10.21105/Joss.01294. [PubMed: 32775955]

Covitz et al. Page 22

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1. CuBIDS workflow.
The CuBIDS workflow begins after the generation of NIfTI files and JSON sidecars and

ends directly before the execution of pre-processing pipelines. We start with a BIDS dataset,

which can be validated using CuBIDS’ robust version of the BIDS-validator. After purging

the dataset of any sensitive fields, users can move to the next workflow stage: detecting

Parameter Groups. Users can then rename or delete Parameter Groups. At any point in the

workflow, users can implement version control to track changes made to the data using an

easy-to-use, wrapped version of DataLad. Finally, users test one Exemplar Subject from

each Acquisition Group on BIDS Apps to ensure each set of scanning parameters can run

through pipelines error-free. CuBIDS includes command line programs for each step of the

workflow (see Table 1).

Covitz et al. Page 23

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 2. Stable, scalable BIDS validation.
CuBIDS wraps a stable version of the BIDS Validator and adds a few additional features

including the ability to reorganize the validator output into an easy to read, tabular structure

and save it as a TSV. A) The standard BIDS Validator’s default option (Gorgolewski

et al., 2016) validates an entire BIDS dataset and outputs a summary of the errors and

warnings it discovers to the terminal screen. B) In addition to visualizing the output

in a scalable and easy-to-read format, cubids-validate includes the standard BIDS

Validator’s ability to ignore cross-session comparisons or metadata from NIfTI headers

while also adding an option for sequential participant-by-participant validation. This feature,

which we recommend users leverage, parallelizes validation and validates each subject

directory as its own BIDS dataset.

Covitz et al. Page 24

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3. Parsing the dataset by Parameter Group.
The summary.tsv file is a cubids-group output that contains one row per Parameter

Group and one column per scanning parameter. Thus, this TSV summarizes all metadata

present within a dataset. A) Before cubids-apply is run, a given Key Group may

have multiple Parameter Groups, each containing a different set of scanning parameters.

This summary table includes a “Rename Key Group” column that auto-configures when

cubids-apply is run and labels each non-dominant Parameter Group as a Variant Group

based on the scanning parameters that differentiate that group from the Dominant Group.

Specifically, CuBIDS represents this variance by adding “VARIANT*”—where * indicates

the metadata parameters that cause those files to vary from the Dominant Group—to the

“acq” field of those files in non-dominant Parameter Groups. For example, in A), the

metadata in the Param Group 2 image differs from that of the Dominant Group (Param

Group 1) image because that run is missing a fieldmap. The result of running cubids-

apply can be seen in B) where the Param Group 2 image ends up in a new Key group

because CuBIDS added “VARIANTNoFmap” to the acquisition field of its filename when

cubids-apply was run.

Covitz et al. Page 25

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Version history throughout the curation process.

Covitz et al. Page 26

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Covitz et al. Page 27

Ta
b

le
 1

C
uB

ID
S

co
m

m
an

d
lin

e
in

te
rf

ac
e

pr
og

ra
m

s.

C
uB

ID
S

fe
at

ur
es

 s
ev

er
al

 c
om

m
an

d
lin

e
in

te
rf

ac
e

(C
L

I)
 p

ro
gr

am
s

th
at

 h
el

p
us

er
s

cu
ra

te
 a

nd
 p

ro
ce

ss
 B

ID
S

da
ta

se
ts

. W
e

us
e

th
e

co
lo

r-
co

de
d

ba
ck

gr
ou

nd
s

to
 m

ap
 e

ac
h

pr
og

ra
m

 to
 a

 s
ta

ge
 in

 th
e

cu
ra

tio
n

w
or

kf
lo

w
 s

ee
n

in
 F

ig
. 1

. T
he

se
 p

ro
gr

am
s

w
er

e
bu

ilt
 f

or
 th

e
st

ep
s

of
 a

 s
tu

dy
’s

 c
ur

at
io

n
pr

oc
es

s.
 S

om
e

pr
og

ra
m

s—
su

ch
 a

s
p
r
i
n
t
-
m
e
t
a
d
a
t
a
-
f
i
e
l
d
s
,

g
r
o
u
p
,

v
a
l
i
d
a
t
e

, a
nd

 c
o
p
y
-
e
x
e
m
p
l
a
r
s

--
re

qu
ir

e
on

ly
 “

re
ad

”
ac

ce
ss

 to
 th

e
da

ta
 a

nd
 a

id
 th

e
us

er
 in

vi
su

al
iz

in
g

a
da

ta
se

t’
s

he
te

ro
ge

ne
ity

. O
th

er
s—

su
ch

 a
s
a
p
p
l
y
,

p
u
r
g
e
,

u
n
d
o

, a
nd

 r
e
m
o
v
e
-
m
e
t
a
d
a
t
a
-
f
i
e
l
d
s

—
re

qu
ir

e
"w

ri
te

"
ac

ce
ss

, a
s

th
ey

in
vo

lv
e

m
od

if
yi

ng
 m

et
ad

at
a,

 c
ha

ng
in

g
fi

le
na

m
es

, o
r

re
m

ov
in

g
en

tir
e

su
bj

ec
ts

 a
lto

ge
th

er
.

C
O

M
M

A
N

D
P

O
SI

T
IO

N
A

L
 A

R
G

U
M

E
N

T
S

O
P

T
IO

N
A

L
 A

R
G

U
M

E
N

T
S

O
U

T
P

U
T

 F
IL

E
S

D
E

SC
R

IP
T

IO
N

c
u
b
i
d
s
-

p
r
i
n
t
-

m
e
t
a
d
a
t
a
-

f
i
e
l
d
s

b
i
d
s
_
d
i
r

th
e

ro
ot

 o
f

a
B

ID
S

da
ta

se
t.

It

sh
ou

ld
 c

on
ta

in
 s

ub
-X

 d
ir

ec
to

ri
es

 a
nd

da

ta
se

t_
de

sc
ri

pt
io

n.
js

on

Pr
in

ts
 o

ut
 a

ll
si

de
ca

r
fi

el
d

na
m

es
 p

re
se

nt
 in

th

e
da

ta
se

t

c
u
b
i
d
s
-

r
e
m
o
v
e
-

m
e
t
a
d
a
t
a
-

f
i
e
l
d
s

b
i
d
s
_
d
i
r

-
-
f
i
e
l
d
s

F
I
E
L
D
S

[
F
I
E
L
D
S

…
]

sp
ac

e-
se

pa
ra

te
d

lis
t o

f
m

et
ad

at
a

fi
el

ds
 to

 r
em

ov
e

(d
ef

au
lt:

 [
])

R
em

ov
es

 a
 d

es
ir

ed

lis
t o

f
m

et
ad

at
a

fi
el

ds

an
d

ca
n

be
 u

se
d

to

de
le

te
 P

at
ie

nt
 H

ea
lth

In

fo
rm

at
io

n
(P

H
I)

 f
ro

m

da
ta

se
ts

c
u
b
i
d
s
-

a
d
d
-

n
i
f
t
i
-

i
n
f
o

b
i
d
s
_
d
i
r

-
-
u
s
e
-
d
a
t
a
l
a
d

en
su

re
 th

at
 th

er
e

ar
e

no
 u

nt
ra

ck
ed

 c
ha

ng
es

 b
ef

or
e

fi
nd

in
g

gr
ou

ps
 a

nd
 s

av
e

da
ta

se
t a

ft
er

 N
if

T
I

in
fo

 is

ad
de

d
to

 s
id

ec
ar

s
(d

ef
au

lt:
 F

al
se

)

-
-
f
o
r
c
e
-
u
n
l
o
c
k

un
lo

ck
 d

at
as

et
 b

ef
or

e
ad

di
ng

 N
if

T
I

in
fo

rm
at

io
n

(d
ef

au
lt:

 F
al

se
)

A
dd

s
th

e
fo

llo
w

in
g

in
fo

rm
at

io
n

fr
om

th

e
he

ad
er

s
of

im

ag
es

 in
 N

if
T

I
fo

rm
at

: O
bl

iq
ui

ty
,

N
um

V
ol

um
es

,
D

im
*S

iz
e,

Im

ag
eO

ri
en

ta
tio

n,

V
ox

el
Si

ze
D

im
*

to
 it

s
co

rr
es

po
nd

in
g

si
de

ca
r

c
u
b
i
d
s
-

v
a
l
i
d
a
t
e

b
i
d
s
_
d
i
r

th
e

ro
ot

 o
f

a
B

ID
S

da
ta

se
t.

It

sh
ou

ld
 c

on
ta

in
 s

ub
-X

 d
ir

ec
to

ri
es

 a
nd

da

ta
se

t_
de

sc
ri

pt
io

n.
js

on

o
u
t
p
u
t
_
p
r
e
f
i
x

-
-
s
e
q
u
e
n
t
i
a
l

ru
n

th
e

B
ID

S
V

al
id

at
or

 s
eq

ue
nt

ia
lly

 o
n

ea
ch

 s
ub

je
ct

(d

ef
au

lt:
 F

al
se

)

-
-
i
g
n
o
r
e
_
n
i
f
t
i
_
h
e
a
d
e
r
s

o
u
t
p
u
t
_
p
r
e
f
i
x
_
v
a
l
i
d
a
t
i
o
n
.
t
s
T
S
V

T
SV

 f
ile

 w
ith

 o
ne

 r
ow

 p
er

 f
ile

 c
on

ta
in

in
g

a
B

ID
S

va
lid

at
io

n
er

ro
r.

C
ol

um
ns

: f
ile

s,
 ty

pe
, s

ev
er

ity
,

de
sc

ri
pt

io
n,

 c
od

e,
 u

rl
, s

ub
je

ct

St
ab

le
, r

ob
us

t v
er

si
on

of

 th
e

B
ID

S-
va

lid
at

or

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Covitz et al. Page 28

C
O

M
M

A
N

D
P

O
SI

T
IO

N
A

L
 A

R
G

U
M

E
N

T
S

O
P

T
IO

N
A

L
 A

R
G

U
M

E
N

T
S

O
U

T
P

U
T

 F
IL

E
S

D
E

SC
R

IP
T

IO
N

fi
le

 p
re

fi
x

to
 w

hi
ch

 ta
bu

la
te

d
ou

tp
ut

fi

le
(s

)
ar

e
w

ri
tte

n.
 I

f
us

er
s

pa
ss

 in
 ju

st
 a

fi

le
na

m
e

pr
ef

ix
 (

e.
g.

 V
1

),
 th

en
 C

uB
ID

S
w

ill
 p

ut
 th

e
fo

ur
 g

ro
up

in
g

ou
tp

ut
s

in
 b
i
d
s
_
d
i
r
/
c
o
d
e
/
C
u
B
I
D
S

.
If

 th
e

us
er

 a
 p

at
h

(e
.g

. /
U
s
e
r
s
/

s
c
o
v
i
t
z
/
B
I
D
S
/
V
1

),
 th

en
 o

ut
pu

t
fi

le
s

w
ill

 g
o

to
 th

e
sp

ec
if

ie
d

lo
ca

tio
n.

di
sr

eg
ar

d
N

lf
T

I
he

ad
er

 c
on

te
nt

 d
ur

in
g

va
lid

at
io

n
(d

ef
au

lt:
 F

al
se

)

-
-
i
g
n
o
r
e
_
s
u
b
j
e
c
t
_
c
o
n
s
i
s
t
e
n
c
y

sk
ip

 c
he

ck
in

g
th

at
 a

ny
 g

iv
en

 f
ile

 f
or

 o
ne

 s
ub

je
ct

 is

pr
es

en
t f

or
 a

ll
ot

he
r

su
bj

ec
ts

 (
de

fa
ul

t:
Fa

ls
e)

-
-
s
e
q
u
e
n
t
i
a
l
-
s
u
b
j
e
c
t
s

S
E
Q
U
E
N
T
I
A
L
_
S
U
B
J
E
C
T
S

L
is

t:
Fi

lte
r

th
e

se
qu

en
tia

l r
un

 to
 o

nl
y

in
cl

ud
e

th
e

lis
te

d
su

bj
ec

ts
, e

.g
. -

-s
eq

ue
nt

ia
l-

su
bj

ec
ts

 s
ub

-0
1

su
b-

02

su
b-

03
 (

de
fa

ul
t:

N
on

e)

c
u
b
i
d
s
-

g
r
o
u
p

b
i
d
s
_
d
i
r

o
u
t
p
u
t
_
p
r
e
f
i
x

-
-
a
c
q
-
g
r
o
u
p
-
l
e
v
e
l

A
C
Q

G
R
O
U
P

L
E
V
E
L

L
ev

el
at

 w
hi

ch
 a

cq
ui

si
tio

n
gr

ou
ps

 a
re

 c
re

at
ed

 o
pt

io
ns

:
"s

ub
je

ct
"

or
 "

se
ss

io
n"

 (
de

fa
ul

t:
su

bj
ec

t)

-
-
c
o
n
f
i
g

C
O
N
F
I
G

pa
th

 to
 a

 c
on

fi
g

fi
le

 f
or

 g
ro

up
in

g
(d

ef
au

lt:
 N

on
e)

o
u
t
p
u
t
_
p
r
e
f
i
x
_
s
u
m
m
a
r
y
.
t
s
v

o
u
t
p
u
t
_
p
r
e
f
i
x
_
f
i
l
e
s
.
t
s
v

o
u
t
p
u
t
_
p
r
e
f
i
x
_
A
c
q
G
r
o
u
p
i
n
g
.
t
s
v

o
u
t
p
u
t
_
p
r
e
f
i
x
_
A
c
q
G
r
o
u
p
I
n
f
o
.
t
x
t

Pr
od

uc
es

 f
ou

r
fi

le
s

th
at

di

sp
la

y
th

e
he

te
ro

ge
ne

lt
y

pr
es

en
t i

n
th

e
da

ta
se

t
in

 a
 u

se
r-

fr
ie

nd
ly

fo

rm
at

c
u
b
i
d
s
-

p
u
r
g
e

b
i
d
s
_
d
i
r

th
e

ro
ot

 o
f

a
B

ID
S

da
ta

se
t.

It

sh
ou

ld
 c

on
ta

in
 s

ub
-X

 d
ir

ec
to

ri
es

 a
nd

da

ta
se

t_
de

sc
ri

pt
io

n.
js

on

-
-
u
s
e
-
d
a
t
a
l
a
d

sa
ve

 d
el

et
io

ns
 a

ft
er

 p
ur

ge
 r

un
s

(d
ef

au
lt:

 F
al

se
)

Ta
ke

s
in

 a
 li

st
 o

f
N

lf
T

I
im

ag
es

 a
nd

 r
em

ov
es

th

em
 a

nd
 a

ll
th

ei
r

as
so

ci
at

io
n

fi
le

s
an

d
In

te
nd

ed
Fo

r
re

fe
re

nc
es

fr

om
 th

e
da

ta
se

t

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Covitz et al. Page 29

C
O

M
M

A
N

D
P

O
SI

T
IO

N
A

L
 A

R
G

U
M

E
N

T
S

O
P

T
IO

N
A

L
 A

R
G

U
M

E
N

T
S

O
U

T
P

U
T

 F
IL

E
S

D
E

SC
R

IP
T

IO
N

s
c
a
n
s

pa
th

 to
 th

e
tx

t f
ile

 o
f

ru
ns

 w
ho

se

as
so

ci
at

io
ns

 s
ho

ul
d

be
 p

ur
ge

d

c
u
b
i
d
s
-

a
p
p
l
y

b
i
d
s
_
d
i
r

e
d
i
t
e
d
_
s
u
m
m
a
r
y
_
t
s
v

th
e

*_
su

m
m

ar
y.

cs
v

th
at

 h
as

 b
ee

n
ed

ite
d

in
 th

e
M

er
ge

ln
to

 a
nd

 R
en

am
eK

ey
G

ro
up

co

lu
m

ns
.

f
i
l
e
s
_
t
s
v

th
e

*_
fi

le
s.

cs
v

th
at

 th
e

*_
su

m
m

ar
y.

cs
v

co
rr

es
po

nd
s

to
.

**
N

ot
e:

 I
f

th
e

ed
ite

d
su

m
m

ar
y

an
d

fi
le

s
ts

vs
 a

re
 lo

ca
te

d
at

 b
i
d
s
_
d
i
r
/

c
o
d
e
/
C
u
B
I
D
S

, u
se

rs
 m

ay
 p

as
s

ju
st

th

e
fi

le
na

m
e,

 if
 n

ot
, t

he
y

m
ut

 p
as

s
th

e
pa

th

to
 th

e
fi

le
.

o
u
t
p
u
t
_
p
r
e
f
i
x

fi
le

 p
re

fi
x

to
 w

hi
ch

 ta
bu

la
te

d
va

lid
at

or

ou
tp

ut
 is

 w
ri

tte
n.

 I
f

us
er

s
pa

ss
 in

 ju
st

 a

fi
le

na
m

e
pr

ef
ix

 (
e.

g.
 V
1

),
 th

en
 C

uB
ID

S
w

ill
 p

ut
 th

e
fo

ur
 g

ro
up

in
g

ou
tp

ut
s

in
 b
i
d
s
_
d
i
r
/
c
o
d
e
/
C
u
B
I
D
S

.
If

 th
e

us
er

 a
 p

at
h

(e
.g

. /
U
s
e
r
s
/

s
c
o
v
i
t
z
/
B
I
D
S
/
V
1

),
 th

en
 o

ut
pu

t
fi

le
s

w
ill

 g
o

to
 th

e
sp

ec
if

ie
d

lo
ca

tio
n.

-
-
u
s
e
-
d
a
t
a
l
a
d

sa
ve

 c
ha

ng
es

 a
pp

lie
d

to
 th

e
da

ta
se

t (
de

fa
ul

t:
Fa

ls
e)

-
-
a
c
q
-
g
r
o
u
p
-
l
e
v
e
l

A
C
Q
_
G
R
O
U
P
_
L
E
V
E
L

le
ve

l a
t w

hi
ch

 a
cq

ui
si

tio
n

gr
ou

ps
 a

re
 c

re
at

ed
 o

pt
io

ns
:

"s
ub

je
ct

"
or

 "
se

ss
io

n"
 (

de
fa

ul
t:

su
bj

ec
t)

-
-
c
o
n
f
i
g

C
O
N
F
I
G

pa
th

 to
 a

 c
on

fi
g

fi
le

 f
or

 g
ro

up
in

g
(d

ef
au

lt:
 N

on
e)

o
u
t
p
u
t
_
p
r
e
f
i
x
_
s
u
m
m
a
r
y
.
t
s
v

o
u
t
p
u
t
_
p
r
e
f
i
x
_
f
i
l
e
s
.
t
s
v

o
u
t
p
u
t
_
p
r
e
f
i
x
_
A
c
q
G
r
o
u
p
i
n
g
.
t
s
v

o
u
t
p
u
t
_
p
r
e
f
i
x
_
A
c
q
G
r
o
u
p
I
n
f
o
.
t
x
t

A
pp

lie
s

th
e

us
er

’s
 e

di
ts

to

 th
e

*_
su

m
m

ar
y.

ts
v

fi
le

 to
 th

e
B

ID
S

da
ta

se
t

c
u
b
i
d
s
-

c
o
p
y
-

e
x
e
m
p
l
a
r
s

b
i
d
s
_
d
i
r

pa
th

 to
 th

e
ro

ot
 o

f
a

B
ID

S
da

ta
se

t.
It

 s
ho

ul
d

co
nt

ai
n

su
b-

X
 d

ir
ec

to
ri

es
 a

nd

-
-
u
s
e
-
d
a
t
a
l
a
d

en
su

re
 th

at
 th

er
e

ar
e

no
 u

nt
ra

ck
ed

 c
ha

ng
es

 b
ef

or
e

fi
nd

in
g

gr
ou

ps
 a

nd
 s

av
e

ex
em

pl
ar

 d
at

as
et

 p
os

t

co
pi

es
 o

ne
 s

ub
je

ct

fr
om

 e
ac

h
ex

em
pl

ar

gr
ou

p
in

to
 a

 s
ep

ar
at

e
di

re
ct

or
y

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Covitz et al. Page 30

C
O

M
M

A
N

D
P

O
SI

T
IO

N
A

L
 A

R
G

U
M

E
N

T
S

O
P

T
IO

N
A

L
 A

R
G

U
M

E
N

T
S

O
U

T
P

U
T

 F
IL

E
S

D
E

SC
R

IP
T

IO
N

da
ta

se
t_

de
sc

ri
pt

io
n.

js
on

e
x
e
m
p
l
a
r
s
_
d
i
r

pa
th

 to
 th

e
ro

ot
 o

f
a

B
ID

S
da

ta
se

t
co

nt
ai

ni
ng

 o
ne

 s
ub

je
ct

 f
ro

m
 e

ac
h

A
cq

ui
si

tio
n

G
ro

up
. I

t s
ho

ul
d

co
nt

ai
n

su
b-

X
 d

ir
ec

to
ri

es
 a

nd
 d

at
as

et
_d

es
cr

ip
tio

n.
js

on

e
x
e
m
p
l
a
r
s
_
t
s
v

pa
th

 to
 th

e
.c

sv
 f

ile
 th

at
 li

st
s

on
e

su
bj

ec
t f

ro
m

 e
ac

h
A

cq
ui

si
tio

n
G

ro
up

(*

_A
cq

G
ro

up
in

g.
cs

v
fr

om
 th

e
cu

bi
ds

-
gr

ou
p

ou
tp

ut
)

cr
ea

tio
n

(d
ef

au
lt:

 F
al

se
)

-
-
m
i
n
-
g
r
o
u
p
-
s
i
z
e

M
I
N
_
G
R
O
U
P
_
S
I
Z
E

m
in

im
um

 n
um

be
r

of
 s

ub
je

ct
s

an
 A

cq
ui

si
tio

n
G

ro
up

m

us
t h

av
e

in
 o

rd
er

 to
 b

e
in

cl
ud

ed
 in

 th
e

ex
em

pl
ar

da

ta
se

t (
de

fa
ul

t:
1)

c
u
b
i
d
s
-

u
n
d
o

b
i
d
s
_
d
i
r

re
ve

rt
s

da
ta

se
t t

o
its

st

at
e

pr
io

r
to

 th
e

m
os

t r
ec

en
t s

av
ed

m

od
if

ic
at

io
ns

 (
on

ly

av
ai

la
bl

e
to

 u
se

rs
 u

si
ng

th

e
D

at
aL

ad
-b

as
ed

ve

rs
io

n
co

nt
ro

l o
pt

io
n)

Neuroimage. Author manuscript; available in PMC 2023 May 07.

	Abstract
	Introduction
	Materials and methods
	Data and code availability statement
	Ethics statement
	Overview
	Software development practices
	Installation, setup, and version control
	Definitions
	Accounting for NIfTI header information
	BIDS validation
	Grouping: heterogeneity detection and classification
	Applying changes
	Customizable configuration
	Exemplar testing

	Results
	The CuBIDS workflow for curating a BIDS dataset (example dataset)
	Application to a large-scale study of brain development

	Discussion
	Stable BIDS validation at scale
	Reproducible data curation
	Parsing heterogeneity in large-scale data resources
	Enhancing transparency with dominant and variant groups
	Accelerating pipeline testing with exemplar datasets
	Limitations

	Conclusions
	References
	Fig. 1.
	Fig 2.
	Fig. 3.
	Fig. 4.
	Table 1

