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Abstract

The Brain Imaging Data Structure (BIDS) is a specification accompanied by a software ecosystem 

that was designed to create reproducible and automated workflows for processing neuroimaging 

data. BIDS Apps flexibly build workflows based on the metadata detected in a dataset. However, 

even BIDS valid metadata can include incorrect values or omissions that result in inconsistent 

processing across sessions. Additionally, in large-scale, heterogeneous neuroimaging datasets, 

hidden variability in metadata is difficult to detect and classify. To address these challenges, we 

created a Python-based software package titled “Curation of BIDS” (CuBIDS), which provides 

an intuitive workflow that helps users validate and manage the curation of their neuroimaging 

datasets. CuBIDS includes a robust implementation of BIDS validation that scales to large 

samples and incorporates DataLad—a version control software package for data—as an optional 

dependency to ensure reproducibility and provenance tracking throughout the entire curation 

process. CuBIDS provides tools to help users perform quality control on their images’ metadata 

and identify unique combinations of imaging parameters. Users can then execute BIDS Apps on 

a subset of participants that represent the full range of acquisition parameters that are present, 

accelerating pipeline testing on large datasets.

Keywords

BIDS; MRI; Brain; Neuroimaging; Software; Curation; Validation; Metadata; Version control; 
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1. Introduction

The Brain Imaging Data Structure (BIDS) specification provides a standardized format 

for organizing and describing neuroimaging data (Gorgolewski et al., 2016). BIDS 

relies on specific nested directory structures and filename conventions and requires that 

each MR image file (e.g. Neuroimaging Informatics Technology Initiative or NIfTI) be 

accompanied by a JavaScript Object Notation (JSON) sidecar—a data dictionary detailing 

its corresponding image’s metadata. BIDS is especially helpful when dealing with large, 

multimodal studies; as the number of subjects and runs increases, generalizable structures 

and standards become not only beneficial but essential. Pipelines that ingest BIDS datasets

—commonly referred to in the BIDS software ecosystem as “BIDS Apps ” (Gorgolewski et 

al., 2017)—such as fMRIPrep and QSIPrep—rely heavily on correct specification of BIDS, 

as they build workflows based on the metadata encountered (Esteban et al., 2019; Cieslak 

et al., 2021). While generally an important and useful feature, this workflow construction 

structure can also be a vulnerability: if the BIDS metadata is inaccurate, a BIDS app may 

build an inappropriate (but technically “correct”) preprocessing pipeline. For example, a 

fieldmap with no IntendedFor field specified in its JSON sidecar is not technically incorrect 

but rather incomplete. When a participant containing a fieldmap missing an IntendedFor 

field is run through a MRI image type processing pipeline such as fMRIPrep and QSIPrep, 

the pipeline will execute with neither errors nor warnings but will skip distortion correction. 

Curating the dataset with CuBIDS before running it through such pipelines will allow users 

to easily identify all instances of fieldmaps missing IntendedFor references—CuBIDS places 

those scans in separate groups. Users must understand and verify that the metadata present 

in BIDS is correct. This usually requires meticulous curation—the process of checking and 

fixing filename or metadata issues present in a dataset. In the context of the lifecycle of a 

neuroimaging dataset, the CuBIDS curation workflow begins directly after the data has been 

organized into a BIDS directory structure with BIDS-like filenames.

While large, multi-modal neuroimaging datasets constitute extremely valuable data 

resources, they also frequently possess substantial heterogeneity in their image acquisition 

parameters. BIDS provides an ideal structure for organizing neuroimaging data, but the 

size and complexity of large-scale datasets can render curation both tedious and difficult. 

Data curation can be an ad-hoc process that involves substantial manual intervention; such 

manual curation is usually neither well tracked nor reproducible. Thus, curation constitutes 

a major vulnerability in the field-wide effort to create reproducible, analytic workflows 

for neuroimaging data. Finally, many current BIDS tools, including the BIDS Validator, 

MatlabBIDS, and PyBIDS (Yarkoni et al., 2019), that parse and interact with BIDS datasets 

were optimized for small fMRI studies and may behave erratically when given large 

quantities of heterogeneous data.

With these challenges in mind, we developed “Curation of BIDS” (CuBIDS): a software 

package that provides easy-to-use workflows that help users curate large BIDS datasets. 

CuBIDS provides users with customizable features to visualize heterogeneity in complex 

BIDS datasets and includes a robust, scalable implementation of BIDS validation that can 

be applied to arbitrarily-sized datasets. Critically, CuBIDS renders curation reproducible 

via an easy-to-use, wrapped implementation of DataLad (Halchenko et al., 2021) as an 
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optional feature the user can access at will. Finally, CuBIDS provides tools to identify 

unique combinations of imaging parameters in a dataset so that users can test BIDS Apps on 

a subset of participants that represents the parameter space of the entire dataset. This option 

dramatically speeds up pipeline testing, as users can be assured that they have tested a BIDS 

App on the full range of acquisition parameters present in a dataset. As described below, 

CuBIDS facilitates an understanding of what is present in an MRI BIDS dataset, allows for 

reproducible BIDS curation, and accelerates successful data processing at scale.

2. Materials and methods

The standard lifecycle of a neuroimaging study begins with acquisition and ends with image 

analysis and hypothesis testing. CuBIDS’ role in this process begins directly after the data 

has been organized into a BIDS directory structure with BIDS-like filenames. The CuBIDS 

workflow ends with curated data in a repository, allowing for further exploration, pooling, 

meta-analysis, and runs of preprocessing pipelines. As curation occurs quite early in this 

timeline of preparing neuroimaging data for analysis, decisions made during curation will 

affect every subsequent stage.

2.1. Data and code availability statement

A copy of the small, example dataset whose curation we walk through in the Results 

section is compressed into a ZipFile and submitted with this paper under “Supplementary 

Material.” Additionally, the Philadelphia Neurodevelopmental Cohort (PNC), the dataset 

whose curation we summarize in the second portion of the Results, is publicly available 

in the Database of Genotypes and Phenotypes (dbGaP accession phs000607.v3.p2). The 

source code for CuBIDS is publicly available at https://github.com/PennLINC/CuBIDS, 

the documentation for our software is available at https://cubids.readthedocs.io/en/latest/, 

and our package is available for download on the Python Package Manager (pypi) https://

pypi.org/project/cubids/.

2.2. Ethics statement

No new data was collected specifically for this paper. The Philadelphia Neurodevelopmental 

Cohort (PNC) (Satterthwaite et al., 2014) was approved by IRBs of The University of 

Pennsylvania and Children’s Hospital of Philadelphia. All adult participants in the PNC 

provided informed consent to participate; minors provided assent alongside the informed 

consent of their parents or guardian.

2.3. Overview

CuBIDS provides a workflow that aids users in curating large, heterogeneous BIDS datasets. 

CuBIDS summarizes a dataset’s metadata, enabling users to visualize and understand the 

variability in critical scanning parameters and fix errors when they are present. To do 

this, CuBIDS features several command line interface (CLI) programs (Table 1). Notably, 

all CuBIDS CLI programs wrap DataLad as an optional dependency so that the user can 

implement reproducible tracking at any stage of curation or revert to a prior state of their 

data. If the user wants to apply DataLad version control while using CuBIDS, they can run 

the CLI programs with the ---use-datalad optional flag set.
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2.4. Software development practices

We applied test-driven development while building CuBIDS, prioritizing writing tests for 

each new feature concurrent with its construction. We integrated CircleCI—a web-based 

continuous integration testing platform—into our GitHub repository so that each new 

commit is run through the full suite of tests. We apply a standardized approach to fixing 

bugs and adding features: first creating an issue on our GitHub page and then creating a new 

branch of our code base named specifically for fixing that issue. Once the issue is fixed on 

the new branch, a pull request merges the new branch into the main branch with the issue 

tagged. If all continuous integration tests pass and the merge is successful, the issue gets 

automatically closed. Centering our development process around both tests and issues has 

ensured the integrity of the code and facilitated both organization and documentation.

2.5. Installation, setup, and version control

We recommend users install CuBIDS inside an Anaconda-based Python environment. Users 

can install Anaconda/Miniconda/Miniforge, create and activate an environment, and then 

obtain CuBIDS locally by either installing from the Python Package Manager (Pypi) using 

pip or cloning directly from the CuBIDS GitHub repository. Documentation regarding use of 

CuBIDS is publicly available on our Read the Docs page. Notably, CuBIDS commands 

incorporate version control using DataLad as an optional dependency. Checking their 

BIDS dataset into DataLad and operationalizing command line programs with the ---use-

datalad flag set allows users to access several extra version-control based functionalities. 

These include tracking changes they make to their dataset, reverting their dataset back to 

earlier versions, and automatically saving changes CuBIDS makes to the data with detailed 

commit messages. If users would like to access this functionality, they must separately 

install both DataLad and Git Annex (a dependency of Data-Lad). Although users can run 

CuBIDS programs without DataLad, opting to leverage the version control capabilities is 

recommended, as it renders the CuBIDS workflow portion of curation fully reproducible.

2.6. Definitions

The CuBIDS workflow relies upon five main concepts, all delineating different ways to 

categorize and catalog data: Key, Parameter, Acquisition, Dominant, and Variant Groups. 

The first is a “Key Group” -- the set of runs whose filenames share all BIDS filename 

key-value pairs, except for subject and session. For example, CuBIDS would place 

a T1w NIfTI file named sub-X_ses-A_acq-refaced_T1w.nii.gz, which contains 

the BIDS key-value pair “acq-refaced”—in the following Key Group: acquisition-

refaced_datatype-anat_suffix-T1w. Notably, Key Groups only consider the scan’s 

BIDS filename; they do not account for the variance in metadata fields that might be present 

in the JSON sidecars.

For this reason, within each Key Group, we define a “Parameter Group” as the set of 

runs with identical metadata parameters contained in their sidecars. Parameter Groups 

exist within Key Groups and are denoted numerically—each Key Group will have n 
Parameter Groups, where n is the number of unique sets of scanning parameters present 

in that Key Group. For example, a T1w can belong to Key Group acquisition-
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refaced_datatype-anat_suffix-T1w and Parameter Group 1. CuBIDS defines 

Parameter Groups within Key Groups because differences in parameters can affect how 

BIDS Apps will configure their pipelines (e.g. Fieldmap availability, multiband factor, etc.).

Next, we define a “Dominant Group” as the Parameter Group that contains the most runs 

in its Key Group. Analogously, we define a “Variant Group” as any Parameter Group that 

is non-dominant. This is an important term because (as described below) CuBIDS can 

optionally rename all Variant Groups in an automated and reproducible fashion.

Finally, we define an “Acquisition Group” as a collection of sessions across participants 

that contain the exact same set of Key and Parameter Groups. Since Key Groups are based 

on the BIDS filenames—and therefore both MRI image type and acquisition specific—each 

BIDS session directory contains images that belong to a set of Parameter Groups. CuBIDS 

assigns each session—or set of Parameter Groups—to an Acquisition Group such that all 

sessions in an Acquisition Group possesses an identical set of acquisitions and metadata 

parameters across all MRI image types present in the dataset. We find Acquisition Groups 

to be a particularly useful categorization of BIDS data, as they identify homogeneous sets 

of sessions (not individual scans) in a large dataset. They are also useful for expediting 

the testing of pipelines; if a BIDS App runs successfully on a single subject from each 

Acquisition Group, one can be confident that it will handle all combinations of scanning 

parameters in the entire dataset. These various sets of methods by which one can group a 

BIDS dataset are critical to the CuBIDS workflow (see Fig. 1).

2.7. Accounting for NIfTI header information

Information from NIfTI headers—including number of volumes, voxel size, image 

dimensions, and image obliquity—is often important but is usually absent from JSON 

sidecars. We created a program, cubids-add-nifti-info, that reads information from 

the NIfTI header and adds it to the JSON sidecar. For example, knowing the number of 

volumes in a run may be particularly useful when performing an initial quality assessment—

i.e., identifying and removing runs with unexpectedly short durations (i.e., 20 vol in an fMRI 

timeseries). Similarly, runs with vastly different voxel sizes or fields of view may be easily 

identified and removed if desired.

2.8. BIDS validation

An essential first stage of curation is validation: finding the errors present in a BIDS 

dataset. This step is usually accomplished using the BIDS Validator. However, while 

BIDS validation is essential to the curation process, the standalone BIDS Validator can 

exhibit unstable file I/O behavior when validating large datasets (n>100). As a result, it 

sometimes fails unpredictably. To combat this issue, cubids-validate checks the BIDS 

layout using a wrapped, stable, scalable version of the standard BIDS Validator. To ensure 

scalability, cubids-validate parallelizes validation across participants, validating each 

subject directory on its own and deferring the detection of parameters that may vary 

across subjects. Thereafter, cubids-validate aggregates all validation errors found across 

participants in an easy-to-read TSV (see Fig. 2), which is accompanied by a data dictionary 
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JSON sidecar. This table includes one row for each file that contains a BIDS validation error 

and displays that filename along with a description of the error (see Fig. 2)).

In designing cubids-validate, we also intended to separate metadata heterogeneity 

detection from BIDS error detection. By default, the validator does both—providing large 

amounts of unactionable information concerning the metadata variance in the terminal 

output. For example, if a sample includes participants with different sets of scans, 

the standalone BIDS Validator will print warnings alerting the user to the presence of 

incongruencies across subjects, often producing copious output that can obscure critical 

issues. If there are errors or forms of inconsistency users would prefer excluded from the 

CuBIDS validation TSV, they can run cubids-validate with optional BIDS Validator 

flags such as ---ignore_nifti_headers, which disregards NIfTI header content during 

validation and --ignore_subject_consistency, which we set as the default and skips 

checking that any given file for one subject is present for all other subjects. Furthermore, we 

implemented --sequential, which parallelizes validation by running the BIDS Validator 

sequentially on each subject (i.e. treating each participant as a standalone BIDS dataset 

and performing validation inside a temporary filesystem directory) (see Fig. 2B), and 

---sequential-subjects, which filters the sequential run to only include the listed 

subjects, e.g. --sequential-subjects sub-01 sub-05 sub-09. These flags allow 

users to focus the validation process exclusively on the issues and subjects they would like 

to evaluate, and the sequential option, which parallelizes validation, addresses the standalone 

BIDS Validator’s scalability issue.

2.9. Grouping: heterogeneity detection and classification

While cubids-validate will find and display BIDS validation errors present in a dataset, 

it does not identify metadata parameters that might be inconsistent or omitted. For this 

reason, we developed cubids-group: a grouping function that classifies the heterogeneity 

present in a BIDS dataset and displays it in readable TSVs. Each grouping output is 

accompanied by a data dictionary JSON sidecar. The input to cubids-group is the path 

to the root of a BIDS Dataset, and the program produces four outputs, each of which gives 

a different view of the underlying data. The first (and most important) is summary.tsv, 

which contains one row per Parameter Group, and one column per metadata parameter 

present in the dataset. To understand the relative prevalence of each group, the program 

also counts, and includes in summary.tsv, the number of files in each Key and Parameter 

Group; this documentation is very useful for visualizing metadata heterogeneity across the 

entire dataset.

The next output of cubids-group is files.tsv, which contains one row per NIfTI file in 

the BIDS directory. This table keeps track of every scan’s assignment to Key and Parameter 

Groups and includes a field that allows users to easily identify the Key and Parameter 

Groups to which each image belongs. The next two grouping outputs organize the dataset 

by Acquisition Group. AcqGrouping.tsv organizes the dataset by session and tags each 

one with its Acquisition Group number. Finally, AcqGroupInfo.txt lists all Key Groups 

that belong to a given Acquisition Group along with the number of sessions each group 

possesses.
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When applied to large datasets, cubids-group will often reveal issues within a BIDS 

dataset, some of which validation alone does not always catch. Such issues include missing 

metadata parameters and runs with low numbers of volumes or unusual image and voxel 

dimensions. For this reason, cubids-group can aid users in performing first pass quality 

assurance on their BIDS dataset. Since summary.tsv breaks down the dataset by Parameter 

Group with one column per scanning parameter, users can then search that TSV by desired 

parameters. Next, users can set a threshold or requirement for a certain parameter (e.g. 

number of volumes or dimension/voxel size) and use cubids-purge to remove runs that do 

not possess the desired values for those parameters. For example, a user may want to remove 

all fMRI runs with a low number of volumes before data processing with a BIDS App such 

as fMRIPrep.

2.10. Applying changes

The cubids-apply program provides an easy way for users to manipulate their datasets. 

Specifically, cubids-apply can rename files according to the users’ specification in a 

tracked and organized way. Here, the summary.tsv functions as an interface modifications; 

users can mark Parameter Groups they want to rename (or delete) in a dedicated column of 

the summary.tsv and pass that edited TSV as an argument to cubids-apply.

Additionally, cubids-apply can automatically rename files in Variant Groups based on 

their scanning parameters that vary from those in their Key Groups’ Dominant Parameter 

Groups. Renaming is automatically suggested when the summary.tsv is generated from a 

cubids-group run, with the suggested new name listed in the TSV’s “Rename Key Group” 

column. CuBIDS populates this column for all Variant Groups—e.g., every Parameter Group 

except the Dominant one. Specifically, CuBIDS will suggest renaming all Non-Dominant 

Parameter Groups to include VARIANT* in their acquisition field where * is the reason 

the Parameter Group varies from the Dominant Group. For example, when CuBIDS 

encounters a Parameter Group with a repetition time that varies from the one present in 

the Dominant Group, it will automatically suggest renaming all runs in that Variant Group to 

include acquisition-VARIANTRepetitionTime in their filenames. When the user runs 

cubids-apply, filenames will get renamed according to the auto-generated names in the 

“Rename Key Group” column in the summary.tsv (see Fig. 3)).

2.11. Customizable configuration

CuBIDS also features an optional, customizable, MRI image type-specific configuration file. 

This file can be passed as an argument to cubids-group and cubids-apply using the 

---config flag and allows users to customize grouping settings based on image type and 

parameter. Each Key Group is associated with one (and only one) MRI image type, as BIDS 

filenames include MRI image type-specific values as their suffixes. This easy-to-modify 

configuration file provides several benefits to curation. First, it allows users to add and 

remove metadata parameters from the set that determines groupings. This can be very useful 

if a user deems a specific metadata parameter irrelevant and wishes to collapse variation 

based on that parameter into a single Parameter Group. Second, the configuration file 

allows users to apply tolerances for parameters with numerical values. This functionality 
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allows users to avoid very small differences in scanning parameters (i.e., a TR of 3.0 s vs 

3.0001 s) being split into different Parameter Groups. Third, the configuration file allows 

users to determine which scanning parameters are listed in the acquisition field when 

auto-renaming is applied to Variant Groups.

2.12. Exemplar testing

In addition to facilitating curation of large, heterogeneous BIDS datasets, CuBIDS also 

prepares datasets for testing BIDS Apps. This portion of the CuBIDS workflow relies on 

the concept of the Acquisition Group: a set of sessions that have identical scan types and 

metadata across all MRI image types present in the session set. Specifically, cubids-copy-

exemplars copies one subject from each Acquisition Group into a separate directory, 

which we call an Exemplar Dataset. Since the Exemplar Dataset contains one randomly 

selected subject from each unique Acquisition Group in the dataset, it will be a valid BIDS 

dataset that spans the entire metadata parameter space of the full study. If users run copy-

exemplars with the ---use-datalad flag, the program will ensure that the Exemplar 

Dataset is tracked and saved in DataLad. If the user chooses to forgo this flag, the Exemplar 

Dataset will be a standard directory located on the filesystem. Once the Exemplar Dataset 

has been created, a user can test it with a BIDS App (e.g., fMRIPrep or QSIPrep) to ensure 

that each unique set of scanning parameters will pass through the pipelines successfully. 

Because BIDS Apps auto-configure workflows based on the metadata encountered, they will 

process all runs in each Acquisition Group in the same way. By first verifying that BIDS 

Apps perform as intended on the small sub-sample of participants present in the Exemplar 

Dataset (that spans the full variation of the metadata), users can confidently move forward 

processing the data of the complete BIDS dataset.

3. Results

The CuBIDS workflow is currently being used in neuroimaging labs at a number 

of institutions including the University of Pennsylvania, the Children’s Hospital of 

Philadelphia, the Child Mind Institute, and the University of Minnesota’s Masonic Institute 

for the Developing Brain. To demonstrate the utility of CuBIDS, here we apply the software 

to two datasets. First, we curate a small example dataset that is included in the software’s 

GitHub repository and can be downloaded here. Second, we apply CuBIDS to the large-

scale data of the Philadelphia Neurodevelopmental Cohort.

3.1. The CuBIDS workflow for curating a BIDS dataset (example dataset)

The following walkthrough displays the process of curating a dataset using CuBIDS on a 

Linux machine. This example walkthrough is also documented on the CuBIDS Read the 

Docs page. To do so, we use an example dataset that is bundled with the software. For 

this demonstration, we install CuBIDS inside a conda environment. Note that if you are 

using an Apple M1 chip machine, you will need to install Miniforge instead of Miniconda. 

Once we have conda installed we create and activate a new environment using the following 

commands:
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conda create -n test-env python=3.8

conda activate test-env

To obtain CuBIDS locally, we can use pip to download our software from the Python 

Package Manager (Pypi) using the following command:

pip install CuBIDS

Alternatively, we can clone from the CuBIDS GitHub repository using the following 

command:

git clone https://github.com/PennLINC/CuBIDS.git

Now that we have a copy of the source code, we can install it by running

cd CuBIDS

pip install -e.

We will now need to install some dependencies of CuBIDS. To do this, we first must install 

nodejs. We can accomplish this using the following command:

conda install nodejs

Now that we have npm installed, we can install the bids-validator using the following 

command:

npm install -g bids-validator@1.7.2

In this example, we use the bids-validator v1.7.2. using a different version of the validator 

may result in slightly different validation TSV printouts, but CuBIDS is compatible with all 

versions of the validator at or above v1.6.2. Throughout this example walkthrough, we use 

DataLad for version control, so we will also need to install both DataLad and git-annex, 

the large file storage software DataLad runs under the hood. Installation instructions for 

DataLad and git-annex can be found here.

Now that we have installed CuBIDS and all necessary dependencies, we are ready to 

begin the curation process on our example dataset. We create a CuBIDS_Test directory to 

function as the working directory and navigate to it as follows:
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mkdir $PWD/CuBIDS_Test

cd CuBIDS_Test

Throughout this walkthrough, we will run all commands from the CuBIDS_Test directory. 

Next, we download BIDS_Dataset.zip (a ZipFile containing the example dataset) and 

unzip as follows:

curl -sSLO https://github.com/PennLINC/CuBIDS/raw/main/cubids/testdata/

BIDS_Dataset.zip

unzip BIDS_Dataset.zip

rm BIDS_Dataset.zip

As a first step, we use CuBIDS to identify the metadata fields present in the dataset. This is 

accomplished with the following command:

cubids-print-metadata-fields BIDS_Dataset

This command returns a total of 66 fields, including acquisition parameters and other 

metadata fields present in the dataset’s JSON sidecars. Some of these fields contain 

simulated protected health information (PHI) such as PatientName that we wish to 

remove. Completing this step prior to checking the BIDS dataset into DataLad is critical, as 

we must ensure PHI is not tracked as part of version control. To remove the PatientName 

field from the sidecars, we can use the command:

  cubids-remove-metadata-fields BIDS_Dataset

--fields PatientName

If we were to run cubids-print-metadata-fields once more, we would see that 

PatientName is no longer present in the dataset. Now that all PHI has been removed 

from the metadata, we are ready to check our dataset into DataLad. To do this, we run the 

following command:

datalad create -c text2git BIDS_Dataset_DataLad

The creation of our DataLad dataset will be accordingly reflected in the dataset’s version 

control history, or “git log” (see example in Fig. 4A). At any point in the CuBIDS 

workflow, we can view a summary of our dataset’s version history by running the following 

commands:

cd BIDS_Dataset_DataLad
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git log --oneline

cd ..

Next, we copy the contents of our BIDS dataset into the newly created and currently empty 

DataLad dataset:

cp -r BIDS_Dataset/* BIDS_Dataset_DataLad

In addition to being able to access the version history of our data, any point in this workflow, 

we can also check the status of untracked (not yet saved) changes using the datalad status 

command, as seen below:

datalad status -d BIDS_Dataset_DataLad

This command produces a description of the changes we have made to the data since the last 

commit (see Fig. 4B). The command above shows all files untracked, as we have copied the 

BIDS data into BIDS_Dataset_DataLad but have not yet saved those changes. Our next 

step is to run save. It is best practice to provide a detailed commit message, for example:

   datalad save -d BIDS_Dataset_DataLad -m

"checked dataset into datalad"

This commit is reflected in our git log (see Fig. 4C). Now that the dataset is checked into 

DataLad, at any point in the workflow going forward, we can run the following command to 

revert the dataset back to the previous commit:

cubids-undo BIDS_Datast_DataLad

At this stage, we also recommend removing the BIDS_Dataset directory — its contents are 

safely copied into and tracked in BIDS_Dataset_DataLad.

Next, we seek to add new fields regarding our image parameters that are only reflected in 

the NIfTI header to our metadata; these include important details such as image dimensions, 

number of volumes, image obliquity, and voxel sizes. To do this, we run:

   cubids-add-nifti-info BIDS_Dataset_DataLad

--use-datalad

This command adds the NIfTI header information to the JSON sidecars and saves those 

changes. In order to ensure that this command has been executed properly, we can 

run cubids-print-metadata-fields once more, which reveals that NIfTI header 
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information has been successfully included in the metadata. Since we ran add-nifti-info 

with the --use-datalad flag set, CuBIDS will automatically save the changes made to the 

dataset to the git log (see Fig. 4D)).

The above panels display the version history of the small, example DataLad dataset we 

curated to display the effectiveness of the CuBIDS workflow. These panels are screenshots 

of the git history of the dataset taken after each change was made to the data. A shasum 

(yellow string of letters and numbers to the left of each commit message) is assigned to each 

commit, and each commit is recorded with a message (white text describing the changes 

made to the data). If users would like more information about each commit, they can 

run the git log command without the oneline flag to get a detailed summary of each 

commit. This summary will include files that were changed, exact changes that were made 

to each file, date and time of the commit, and information about the git user who made the 

changes. At any point in the workflow after checking the dataset into DataLad, we can use 

cubids-undo to revert the dataset back to the previous commit.

The next step in the CuBIDS workflow is to understand what BIDS validation errors may 

be present (using cubids-validate) as well as the structure, heterogeneity, and metadata 

errors present in the dataset (using cubids-group). Notably, neither of these two programs 

requires write access to the data, as each simply reads in the contents of the data and creates 

TSVs that parse the metadata and validation errors present. Validation can be accomplished 

by running the following command:

  cubids-validate BIDS_Dataset_DataLad v0

--sequential

The use of the sequential flag forces the validator to treat each participant as its own BIDS 

dataset. This command produces v0_validation.tsv (see Supplementary Data 1A).

This initial validation run reveals that Phase Encoding Direction (PED) is not specified for 

one of the BOLD task-rest scans. We can clearly see that we either need to find the PED 

for this run elsewhere and edit that sidecar to include it or remove that run from the dataset, 

as this missing scanning parameter will render field map correction impossible. For the 

purpose of this demonstration, we elect to remove the scan. To do this, we run the following 

command:

   cubids-purge BIDS_Dataset_DataLad no_ped.txt

--use-datalad

Here, no_ped.txt (see Supplementary Data 1B) is a text file containing the 

full path to the dwi run flagged in v0_validation.txt for missing PED. 

The user must create this file before running cubids-purge (a command such 

as echo $PWD/BIDS_Dataset_DataLad/sub-02/ses-phdiff/func/sub-02_ses-

phdiff_task-rest_bold.nii.gz > no_ped.txt will work).
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We elect to use cubids-purge instead of simply removing the run because cubids-purge 

will ensure all associated files, including sidecars and IntendedFor references in the sidecars 

of fieldmaps, are also deleted. This change will be reflected in the git history (see Fig. 4E).

Returning again to v0_validation.tsv, we can also see that there is one DWI run 

missing TotalReadoutTime, a metadata field necessary for certain pipelines. In this case, we 

determine that TotalReadoutTime (TRT) was erroneously omitted from the DWI sidecars. 

For the purpose of this example, we assume we are able to obtain the TRT value for this 

run (perhaps by asking the scanner technician). Once we have this value, we manually add it 

to the sidecar for which it is missing by opening BIDS_Dataset_DataLad/sub-03/ses-

phdiff/dwi/sub-03_ses-phdiff_acq-HASC55AP_dwi.json in an editor and adding 

the following line:

"TotalReadoutTime": 0.0717598, on a new line anywhere inside the curly braces 

between lines containing parameters and their values, save the changes, and close the JSON 

file. We then save the latest changes to the dataset with a detailed commit message as 

follows:

   datalad save -d BIDS_Dataset_DataLad

-m "Added TotalReadoutTime to

sub-03_ses-phdiff_acq-HASC55AP_dwi.nii.json"

This change will be reflected in the git history (see Fig. 4F).

To verify that there are no remaining validation errors, we rerun validation with the 

following command:

  cubids-validate BIDS_Dataset_DataLad v1

--sequential

This command will produce no TSV output and instead print “No issues/warnings 

parsed, your dataset is BIDS valid” to the terminal, which indicates that the 

dataset is now free from BIDS validation errors and warnings.

Along with parsing the BIDS validation errors in our dataset, it is important to understand 

the dataset’s structure, heterogeneity, and metadata errors. To accomplish these tasks, we use 

cubids-group. Large datasets almost inevitably contain multiple validation and metadata 

errors. As such, it is typically useful to run both cubids-validate and cubids-group 

in parallel, as validation errors are better understood within the context of a dataset’s 

heterogeneity. Additionally, being able to see both the metadata errors that grouping reveals 

alongside BIDS errors that the validator catches gives users a more comprehensive view of 

the issues they will need to fix during the curation process. Note that if users choose to 

provide just a pass in just a filename prefix (e.g. v0) for the second argument, then CuBIDS 

will put the four grouping outputs in bids_dir/code/CuBIDS. If users provide a path 
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(e.g. $PWD/v0), then output files will go to the specified location. The command to run the 

grouping function is as follows:

cubids-group BIDS_Dataset_DataLad v0

As noted in Table 1, this command will produce four tables that display the dataset’s 

heterogeneity in different ways. First, v0_summary.tsv contains all detected Key and 

Parameter groups and provides a high-level overview of the heterogeneity in the entire 

dataset (see Supplementary Data 1C). Second, v0_files.tsv (see Supplementary Data 

1D) maps each imaging file in the BIDS directory to a Key and Parameter group. Third, 

v0_AcqGrouping.tsv (see Supplementary Data 1E) maps each session in the dataset to an 

Acquisition Group. Finally, v0_AcqGroupInfo.txt (see Supplementary Data 1F) lists the 

set of scanning parameters present in each Acquisition Group.

The next step in the CuBIDS curation process is to examine v0_summary.tsv, which 

allows for automated metadata quality assurance (QA)—the identification of incomplete, 

incorrect, or unusable parameter groups based on acquisition fields such as dimension 

and voxel sizes, number of volumes, etc. While v0_validation.tsv identified all BIDS 

validation errors present in the dataset, it will not identify several issues that might be 

present with the sidecars. Such issues include instances of erroneous metadata and missing 

sidecar fields, which may impact successful execution of BIDS Apps.

Examining v0_summary.tsv (see Supplementary Data 1C) we can see that one 

DWI Parameter Group—acquisition-HASC55AP_datatype-dwi_suffix-dwi--2--

contains only one image (see “Counts” column) with only 10 vol (see “NumVolumes” 

column). Since the majority of DWI runs in this dataset have 61 vol, CuBIDS assigns 

this single run to a “Non-Dominant”, or “Variant” Parameter Group and populates that 

Parameter Group’s “RenameKeyGroup” column in v0_summary.tsv with acquisition-

HASC55APVARIANTNumVolumes_datatype-dwi_suffix-dwi. For the purpose of this 

demonstration, we elect to remove this run because it does not have enough volumes to 

be usable for most analyses. To do this, we can either use cubids-purge, or we can 

edit v0_summary.tsv by adding “0” to the “MergeInto” column in the row (Parameter 

Group) we want to remove. For this walkthrough, we chose the latter. To do this, we 

open v0_summary.tsv in an editor, navigate to row 4, which contains all information for 

Key Group acquisition-HASC55AP_datatype-dwi_suffix-dwi Parameter Group 2. 

If we scroll to the NumVolumes column (row 4, column S), we see this Parameter Group 

has only 10 vol, which explains why it received an auto-generated Rename Key Group 

value of acquisition-HASC55APVARIANTNumVolumes_datatype-dwi_suffix-dwi. 

Remaining in this same row, we navigate back to column C, which is labeled “MergeInto” 

and manually a “0” to the cell in row 4 column C. This will ensure all runs in that 

Parameter Group (in this example, just one scan) are removed when we run cubids-

apply. We then export and save the TSV in our CuBIDS_Test working directory as 

v0_edited_summary.tsv (see Supplementary Data 1 G). We will then save this edited 
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version of v0_summary.tsv as v0_edited_summary.tsv, which will be passed into 

cubids-apply in our next curation step.

Now that all metadata issues have been remedied--both the validation and summary 

outputs appear problem-free--we are ready to rename our files based on their Rename 

Key Group values and apply the requested deletion in v0_edited_summary.tsv. The 

cubids-apply function renames runs in each Variant Parameter Group according to the 

metadata parameters with a flag “VARIANT”, which is useful because the user will then be 

able to see, in each scan’s filename, which metadata parameters associated with that run 

vary from those in the acquisition’s Dominant Group. Note that like in cubids-group, 

cubids-apply requires full paths to the BIDS Dataset, summary and files TSVs, and 

output prefix. If the edited summary and files TSVs are located in the bids_dir/code/

CuBIDS directory, the user may just pass in those filenames. Otherwise, specifying the path 

to those files is necessary. We execute cubids-apply with the following command:

   cubids-apply BIDS_Dataset_DataLad

v0_edited_summary.tsv v0_files.tsv v1

--use-datalad

Checking our git log, we can see that all changes from apply have been saved (see Fig. 

4G). As a final step, we can check the four grouping TSVs cubids-apply produces 

(see Supplementary Data 1H-K) to ensure they look as expected--that all files with 

variant scanning parameters have been renamed to indicate the parameters that vary in the 

acquisition fields of their filenames (and therefore Key Group names).

At this stage, the curation of the dataset is complete; next is preprocessing. CuBIDS 

facilitates this subsequent step through the creation of an Exemplar Dataset: a subset of 

the full dataset that spans the full variation of acquisitions and parameters by including one 

subject from each Acquisition Group. By testing only one subject per Acquisition Group, 

users are able to pinpoint both the specific metadata values and runs that may be associated 

with pipeline failures; these acquisition groups could then be evaluated in more detail and 

flagged for remediation or exclusion. The Exemplar Dataset can easily be created with the 

cubids-copy-exemplars command, to which we pass in v1_AcqGrouping.tsv—the 

post-apply acquisition grouping TSV (see Supplementary Data 1 J).

  cubids-copy-exemplars BIDS_Dataset_DataLad

Exemplar_Dataset v1_AcqGrouping.tsv

--use-datalad

Since we used the use-datalad flag, Exemplar_Dataset is a DataLad dataset with the 

version history tracked in its git log (see Fig. 4H). Once a preprocessing pipeline completes 

successfully on the Exemplar Dataset, the full dataset can be executed with confidence, as 

a pipeline’s behavior on the full range of metadata heterogeneity in the dataset will have 

already been discovered during exemplar testing.

Covitz et al. Page 16

Neuroimage. Author manuscript; available in PMC 2023 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2. Application to a large-scale study of brain development

In addition to applying the CuBIDS workflow to a toy dataset, here we describe the 

workflow applied to the Philadelphia Neurodevelopmental Cohort (PNC), a multimodal 

dataset of n = 1601 participants. The PNC data is publicly available (Satterthwaite et 

al., 2014) and is one of many datasets encompassing the forthcoming Reproducible Brain 

Chart (RBC)—a large, developmental neuroimaging aggregation initiative led jointly by 

the University of Pennsylvania and the Child Mind Institute. CuBIDS was developed, in 

part, to help manage the data for RBC. The curated version of the dataset will be publicly 

available as part of the forthcoming RBC data release. The PNC curation workflow involved 

iterative rounds of checking and fixing due to the heterogeneity and size of the dataset, so 

the following section will be a summary of how we used CuBIDS to curate this dataset 

(rather than a step-by-step walkthrough).

One of our early curation actions was to take inventory regarding the metadata heterogeneity 

of PNC by obtaining the initial summary table. To do this, we ran cubids-group, which 

requires approximately 15 min to finish on PNC. For smaller datasets including our toy 

dataset from the walkthrough described above, cubids-group completes in just seconds. 

Examining the initial summary table (see Supplementary Data 2B), we find that PNC 

contains 144 Parameter Groups—runs containing both identical BIDS filename key-value 

pairs and identical metadata parameters present in their sidecars. The summary table is 

organized by MRI image type, so we can easily see that some MRI image types and 

acquisitions in the dataset are much more heterogeneous with respect to their metadata 

parameters than are others. For example, from the table, we can see that PNC has only one 

Key Group for T1w runs and only three Parameter Groups. Furthermore, according to the 

“Counts” column of the tsv, the vast majority of T1w runs (n = 1597), are in the Dominant 

Parameter Group. By contrast, in this same summary table we can see that there are 62 

different Parameter Groups in the dataset for task-frac2back BOLD fMRI scans. Examining 

the “RenameKeyGroup” column of those frac2back rows in the summary table, we can see 

that the primary source of variance is the number of volumes acquired.

Our team relied upon the summary table to make a number of curation decisions—especially 

inclusion/exclusion based on metadata. The summary table provided a platform for 

collaboration and discussion among the team that was curating, validating, and modifying 

the dataset. Since PNC was curated with DataLad and is saved as a DataLad Dataset, a 

detailed history of the curation decisions can be found in the commit history. Each change 

to the dataset was saved with a commit message, so all modifications we made to the dataset 

are tracked and tagged with a shasum. If we want to restore PNC to a previous curation 

stage, we can so using cubids-undo.

Modifications to PNC during the curation stage, documented in the dataset’s git log, include 

creating and adding previously missing events tsvs, adding NIfTI header information to all 

sidecars in the dataset (using the cubids-add-nifti-info command), removing DWI 

runs that do not have enough volumes to successfully run through diffusion preprocessing 

pipelines (e.g. QSIPrep), and adding Parallel Reduction Factor in Plane to two sidecars 

that were initially missing this field. Once the validation and grouping outputs revealed we 
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had no more BIDS and metadata issues to fix, we ran cubids-apply on the dataset to 

produce a new set of TSVs (see Supplementary Data 2 G-J). As can be seen in the summary 

table (see Supplementary Data 2G) generated by cubids-apply, all runs in Variant (e.g., 

non-Dominant) Groups were renamed based on the scanning parameters that are variant (see 

Fig. 3).

We then executed the final step of the CuBIDS workflow, which entailed running cubids-

copy-exemplars. This command creates the Exemplar Dataset—a DataLad-tracked BIDS 

dataset containing one subject from each Acquisition Group (see Supplementary Data 

2I). The final, curated version of PNC contains 1601 participants, 15,077 scans, and 65 

Acquisition Groups. Thus, the Exemplar Dataset contains only 65 participants but spans the 

entire dataset’s parameter space, reducing the scope of the pipeline testing by 96%. We then 

used this Exemplar Dataset to test MRI image type-specific preprocessing pipelines such as 

fMRIPrep and QSIPrep.

For large datasets especially, exemplar testing can be a necessary step; users will often 

need to go back and re-curate aspects of the BIDS data based on metadata errors that 

only become apparent during pipeline runs on the Exemplar Dataset. For example, after we 

ran the PNC Exemplar Dataset through QSIPrep, we noticed that one participant (whose 

Acquisition Group includes 34 participants), failed to complete the pipeline successfully. 

After examining the error log, we realized that for this participant, the number of bvals 

did not match the number of volumes in the scan’s sidecar (which was pulled directly 

from the NIfTI header and added to the sidecar during the cubids-add-nifti-info 

step of curation). Since all participants in the same Acquisition Group possess identical 

scanning parameters, when a pipeline encounters a metadata error in an Exemplar Subject, 

all participants in that Acquisition Group will have that same error and thus require the 

same fix. Accordingly, we used cubids-purge to remove all DWI runs from that Exemplar 

Group and reran cubids-group to obtain our final CuBIDS outputs (see Supplementary 

Data 2K-N). Since all other Exemplar Subjects passed through QSIPrep successfully, we 

were then able to run the pipeline through the entire dataset without concern that erroneous 

metadata would impact preprocessing.

4. Discussion

Ample recent evidence has emphasized the challenges to reproducibility in neuroimaging 

research (Kang et al., 2016). Although often overlooked, curation can be a critical part of 

the scientific workflow. Because curation is often the first step after data acquisition, errors 

in curation can ramify throughout each subsequent stage. BIDS apps adapt to metadata 

encountered in an automatic and flexible way, which can be a vulnerability in ensuring 

datasets are processed identically. If BIDS data are improperly curated, pre-processing 

pipelines may mis-configure, with the potential to impact eventual results. Curation 

challenges are particularly acute in large-scale data resources, which continue to proliferate 

(e.g., UK Biobank, ABCD, PNC, HBN, HCP, etc.) (Bycroft et al., 2018; Karcher and Barch, 

2021; Satterthwaite et al., 2014; Alexander et al., 2017; Van Essen et al., 2013). In large 

datasets, curation is often an iterative, manual process that is neither well documented nor 

reproducible. To address these challenges, CuBIDS allows for reproducible data curation 
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at scale. As discussed below, our software provides five main advantages: stability in 

validation, reproducibility in curation, the ability to identify and manage heterogeneity, 

transparency in naming, and accelerated pipeline testing.

4.1. Stable BIDS validation at scale

The BIDS Validator is the current standard tool for validation of all BIDS datasets. It 

is widely used and plays an essential role in the standard BIDS workflow; it effectively 

identifies the ways in which a dataset does not comply with BIDS standards. However, it 

does not scale well, at times failing unpredictably on larger samples. Furthermore, when 

run in a Linux shell, the validator prints (often a large volume) of text describing the errors 

and warnings to the terminal screen. For large datasets with many errors and warnings, 

such information is often quite difficult to visualize and comprehend. We wrapped the BIDS 

Validator in the cubids-validate CLI to address these challenges, creating a scalable 

implementation that yields a readable TSV. This allows users to easily identify the range of 

validation issues that may be present in a large-scale dataset.

4.2. Reproducible data curation

Curation of large, heterogeneous BIDS datasets is an iterative, multistep task. However, 

this process is often not reproducible, which, in turn, may compromise the reproducibility 

of subsequent workflows. Without version control, any decision made during the curation 

process—such as inclusion/exclusion decisions or editing metadata—will go unrecorded. 

Further, if the person curating the data makes a mistake, they will have no clear way to undo 

that mistake and revert the data to a prior state. In leveraging CuBIDS’ use of DataLad, users 

can save each change made to a dataset with a detailed commit message (e.g. “Removed all 

DWI runs with less than 30 vol ”). If a user erroneously changes the data and wants to undo 

those changes, cubids-undo reverts the most recent commit.

4.3. Parsing heterogeneity in large-scale data resources

While cubids-validate will catch instances where the data does not comply with BIDS 

format, it has important limitations. For example, validation does not always account for 

missing JSON sidecars or empty NIfTI headers. In addition, it will neither identify runs 

that have errant metadata values nor those with parameters that might render the runs 

unusable. This functionality is provided by cubids-group, which produces parameter-

based summary tables that parse the dataset based on metadata, allowing for users to 

visualize and assess metadata quality in ways that validation cannot.

This functionality is especially critical in the curation of large datasets. Scaling up both 

the number of participants and the number of scanners within a single data resource has 

the potential to introduce a massive amount of heterogeneity to that study’s eventual BIDS 

dataset. Heterogeneity in scanning parameters can result in heterogeneity in preprocessing 

pipelines; if users are do not appreciate the metadata heterogeneity in their dataset, they may 

be surprised by inconsistencies in preprocessing settings and outcomes. Further, parameter 

groups could be explicitly modeled when accounting for batch effects rather than just using 

scanner or site. Thus, being able to identify and correct metadata errors in a heterogeneous 
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dataset is a critical part of the data curation process, as such decisions may impact the 

derived images from preprocessing pipelines.

4.4. Enhancing transparency with dominant and variant groups

In order to provide transparent documentation of parameter heterogeneity, the cubids-

apply function renames runs in each MRI image type according to their variant metadata 

parameters. For example, if the majority of BOLD task-rest runs in a dataset are Oblique 

but sub-X’s image is not oblique, CuBIDS users can choose to accept and apply the 

automatically suggested renaming of “acq-VARIANTObliquity” to that run’s filename. 

When performing sensitivity analyses on derivatives from datasets that have been curated 

using CuBIDS, researchers may choose to exclude any runs in Non-Dominant Groups 

to ensure that scanning parameters variance does not affect their results. Alternatively, 

researchers could use image harmonization tools (e.g., ComBat) to ensure that such variation 

does not impact analyses (Fortin et al., 2018).

4.5. Accelerating pipeline testing with exemplar datasets

Even after careful curation, the best way to verify successful image processing is empirical 

testing. In a highly heterogeneous dataset, pipeline testing often reveals errors that were not 

immediately apparent on initial curation, which usually require minor additional adjustments 

to the metadata or exclusion of specific scans. Finding such edge cases while processing 

a large dataset can slow down the workflow, so it is advantageous to conduct pipeline 

testing before full deployment on a large data set. CuBIDS facilitates this process through 

the creation of Exemplar Datasets that include data from each Acquisition Group and thus 

span the full variation of the metadata present. After successful testing on the Exemplar 

Dataset, the likelihood that unexpected outcomes occur when the full dataset is processed 

is dramatically reduced. Furthermore, resource usage can be monitored during the exemplar 

runs to estimate the runtime and storage demands for processing the entire dataset.

4.6. Limitations

CuBIDS possesses several limitations that should be acknowledged. First, at present, 

CuBIDS does not possess a GUI, so running the software requires basic knowledge of 

the terminal and Linux machines. However, such skills are likely to be a prerequisite 

for curating large-scale imaging datasets. Second, if users are curating BIDS Datasets 

with n>2500 participants and using the DataLad-enabled version control option, CuBIDS 

programs that rely on saving changes made to the dataset might experience runtimes 

that extend to over an hour—due to the need for DataLad to index such a large dataset. 

Third, our add-nifti-info program does pull Obliquity, Number of Volumes, Dimension 

Size, Image Orientation, and Voxel Sizes from the NIfTI header and adds those values to 

the sidecars. However, we do not currently cross-reference existing sidecar metadata with 

NIFTI header values. This additional functionality would be a good future direction for the 

software but is currently outside the scope of this paper. Finally, CuBIDS is currently only 

able to handle MRI BIDS, not other MRI image types, and can only be run on disk—either a 

local machine or a high performance computing cluster; users cannot currently run CuBIDS 

using either cloud-based computing (e.g., Amazon’s S3) or neuroimaging databases such as 
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the eXtensible Neuroimaging Archive Toolkit (XNAT), Longitudinal Online Research and 

Imaging System (LORIS), Collaborative Informatics Neuroimaging Suite (COINS), and the 

commercial platform Flywheel (Herrick et al., 2016; Das et al., 2012; Landis et al., 2016). 

Such functionality may be added to the software in future releases.

5. Conclusions

Curating large, heterogeneous neuroimaging datasets can be a difficult and frustrating task. 

As the size and heterogeneity of data resources continues to expand, tools that allow 

for reproducible curation are not only helpful but necessary. CuBIDS facilitates efficient 

identification and correction of issues present in the metadata of heterogeneous BIDS 

datasets in a reproducible manner. Furthermore, CuBIDS Exemplar Datasets allow users 

to verify that BIDS Apps perform as intended on a small sub-sample of participants that 

spans the entire parameter space of the dataset, accelerating the processing of all data from 

the complete study. Together, CuBIDS allows users to simultaneously streamline curation 

and ameliorate metadata issues while maximizing reproducibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. CuBIDS workflow.
The CuBIDS workflow begins after the generation of NIfTI files and JSON sidecars and 

ends directly before the execution of pre-processing pipelines. We start with a BIDS dataset, 

which can be validated using CuBIDS’ robust version of the BIDS-validator. After purging 

the dataset of any sensitive fields, users can move to the next workflow stage: detecting 

Parameter Groups. Users can then rename or delete Parameter Groups. At any point in the 

workflow, users can implement version control to track changes made to the data using an 

easy-to-use, wrapped version of DataLad. Finally, users test one Exemplar Subject from 

each Acquisition Group on BIDS Apps to ensure each set of scanning parameters can run 

through pipelines error-free. CuBIDS includes command line programs for each step of the 

workflow (see Table 1).
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Fig 2. Stable, scalable BIDS validation.
CuBIDS wraps a stable version of the BIDS Validator and adds a few additional features 

including the ability to reorganize the validator output into an easy to read, tabular structure 

and save it as a TSV. A) The standard BIDS Validator’s default option (Gorgolewski 

et al., 2016) validates an entire BIDS dataset and outputs a summary of the errors and 

warnings it discovers to the terminal screen. B) In addition to visualizing the output 

in a scalable and easy-to-read format, cubids-validate includes the standard BIDS 

Validator’s ability to ignore cross-session comparisons or metadata from NIfTI headers 

while also adding an option for sequential participant-by-participant validation. This feature, 

which we recommend users leverage, parallelizes validation and validates each subject 

directory as its own BIDS dataset.
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Fig. 3. Parsing the dataset by Parameter Group.
The summary.tsv file is a cubids-group output that contains one row per Parameter 

Group and one column per scanning parameter. Thus, this TSV summarizes all metadata 

present within a dataset. A) Before cubids-apply is run, a given Key Group may 

have multiple Parameter Groups, each containing a different set of scanning parameters. 

This summary table includes a “Rename Key Group” column that auto-configures when 

cubids-apply is run and labels each non-dominant Parameter Group as a Variant Group 

based on the scanning parameters that differentiate that group from the Dominant Group. 

Specifically, CuBIDS represents this variance by adding “VARIANT*”—where * indicates 

the metadata parameters that cause those files to vary from the Dominant Group—to the 

“acq” field of those files in non-dominant Parameter Groups. For example, in A), the 

metadata in the Param Group 2 image differs from that of the Dominant Group (Param 

Group 1) image because that run is missing a fieldmap. The result of running cubids-

apply can be seen in B) where the Param Group 2 image ends up in a new Key group 

because CuBIDS added “VARIANTNoFmap” to the acquisition field of its filename when 

cubids-apply was run.
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Fig. 4. 
Version history throughout the curation process.
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