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Abstract 

Background  Applied behavioral analysis (ABA) is regarded as the gold standard treatment for autism spectrum disorder 
(ASD) and has the potential to improve outcomes for patients with ASD. It can be delivered at different intensities, 
which are classified as comprehensive or focused treatment approaches. Comprehensive ABA targets multiple devel-
opmental domains and involves 20–40 h/week of treatment. Focused ABA targets individual behaviors and typically 
involves 10–20 h/week of treatment. Determining the appropriate treatment intensity involves patient assessment 
by trained therapists, however, the final determination is highly subjective and lacks a standardized approach. In our 
study, we examined the ability of a machine learning (ML) prediction model to classify which treatment intensity 
would be most suited individually for patients with ASD who are undergoing ABA treatment.

Methods  Retrospective data from 359 patients diagnosed with ASD were analyzed and included in the training and 
testing of an ML model for predicting comprehensive or focused treatment for individuals undergoing ABA treat-
ment. Data inputs included demographics, schooling, behavior, skills, and patient goals. A gradient-boosted tree 
ensemble method, XGBoost, was used to develop the prediction model, which was then compared against a stand-
ard of care comparator encompassing features specified by the Behavior Analyst Certification Board treatment guide-
lines. Prediction model performance was assessed via area under the receiver-operating characteristic curve (AUROC), 
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

Results  The prediction model achieved excellent performance for classifying patients in the comprehensive versus 
focused treatment groups (AUROC: 0.895; 95% CI 0.811–0.962) and outperformed the standard of care comparator 
(AUROC 0.767; 95% CI 0.629–0.891). The prediction model also achieved sensitivity of 0.789, specificity of 0.808, PPV 
of 0.6, and NPV of 0.913. Out of 71 patients whose data were employed to test the prediction model, only 14 misclas-
sifications occurred. A majority of misclassifications (n = 10) indicated comprehensive ABA treatment for patients 
that had focused ABA treatment as the ground truth, therefore still providing a therapeutic benefit. The three most 
important features contributing to the model’s predictions were bathing ability, age, and hours per week of past ABA 
treatment.

Conclusion  This research demonstrates that the ML prediction model performs well to classify appropriate ABA 
treatment plan intensity using readily available patient data. This may aid with standardizing the process for determin-
ing appropriate ABA treatments, which can facilitate initiation of the most appropriate treatment intensity for patients 
with ASD and improve resource allocation.
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1  Introduction
Autism spectrum disorder (ASD) is a complex, life-long 
neurodevelopmental disorder which expresses heteroge-
neously in afflicted patients and is characterized by defi-
cits in social communication and social interaction, as 
well as the presence of restricted, repetitive patterns of 
behavior, interests, and activities ([1–3]). Approximately 
1 in 100 children worldwide are diagnosed with ASD 
[4], and the Centers for Disease Control and Prevention 
(CDC) estimates that approximately 1 in 44 children 
8 years of age in the United States (US) have been identi-
fied as having ASD [5]. If left untreated or if treatment 
is insufficient, children with ASD may not develop com-
petent skills with regards to learning, speech, or social 
interactions [6, 7]. Further, adults with ASD who have not 
received appropriate treatment may have difficulty living 
independently, maintaining employment, developing and 
maintaining relationships, and are at greater risk for both 
physical and mental health issues [6].

Although many therapeutic approaches exist, applied 
behavioral analysis (ABA) treatment is considered by 
many as the gold standard for ASD treatment [8, 9, 10, 
10, 11]. Effective ABA treatment relies upon an early ASD 
diagnosis and determination of appropriate ABA treat-
ment intensity to improve prognosis, which can generally 
be defined as a better quality of life, ranging from signifi-
cant gains in cognition, language, and adaptive behavior 
to more functional outcomes in later life [8, 2, 11]. Owing 
to the heterogeneity of ASD, an individualized treat-
ment plan is a defining feature and integral component 
of ABA treatment. The type of ABA treatment plan is 
conventionally determined by a trained Board Certified 
Behavior Analyst (BCBA) via integrated assessment of 
information derived from detailed patient intake forms, 
patient and family goals, and functional analysis of the 
patient [8]. Presently, there are two types of recognized 
ABA treatment plans, as defined by the level of inten-
sity and target domains. A focused ABA treatment plan 
is provided directly to the patient for a limited number 
of behavioral targets, typically ranging from 10–20 h per 
week [8, 11]. A comprehensive ABA treatment plan tar-
gets all developmental domains (cognitive, communica-
tive, social, and emotional) impacted by the patient’s ASD 
and typically ranges in intensity from > 20–40 h per week 
[8, 11]. Determination of whether to pursue comprehen-
sive versus focused ABA treatment for a given patient is 
intrinsically subjective and inconsistent [12]. Although 
the Behavior Analyst Certification Board (BACB) pro-
vides guidelines for this determination [8], there is no 
standardized approach. BCBAs must frequently conduct 
re-assessments to ensure the patient is still experienc-
ing a positive clinical response from the selected type 

of treatment, which further compounds the subjective 
nature of determining the most beneficial type of ABA 
treatment for a given patient over time. Although it has 
been clearly documented that comprehensive ABA treat-
ment plans significantly improve clinical outcomes in 
patients with ASD [9–11], data also indicate that similar 
clinical benefits can be achieved with focused ABA treat-
ment plans for certain patients with an ASD diagnosis 
that require a lower level of support [10, 11]. This find-
ing is consistent with the most recent guidelines set forth 
in the Diagnostic and Statistical Manual of Mental Dis-
orders, Fifth Edition (DSM-5), which clearly establishes 
that different patients have different needs in terms of 
support depending on the “severity” of symptoms [1].

Although ABA treatment has been shown to improve 
clinical outcomes in patients with ASD, there are chal-
lenges and significant considerations associated with 
determining which type of ABA treatment plan inten-
sity (focused or comprehensive) is most appropriate for 
the affected patient, as well as their family and the ASD 
community at-large. First, although several studies have 
demonstrated that outcomes (e.g., mastery of learning 
objectives) are linearly related to the number of treat-
ment hours per week (i.e., “intensity” of treatment), there 
is considerable variability in treatment responses and, as 
such, many patients with ASD benefit significantly with 
less intense treatment [10, 11]. Second, there is a substan-
tially greater demand for BCBAs and registered behavior 
technicians (RBTs) than practically available to treat all 
patients with ASD [13–18], and shortages of ASD sup-
port services are well documented. In the US, 53%-94% of 
states report shortages of various ASD support services 
[17]; shortages of trained ABA therapists are reported in 
49 states based on the Analyst Certification Board case-
load recommendations [18]. Shortages of appropriately 
trained ABA therapists have also been documented out-
side of the US, in countries where ABA therapy is com-
monly sought by families to treat ASD [19–22]. This can 
lead to substantial delays in access to care. Clearly identi-
fying patients that may benefit from a focused ABA treat-
ment plan, which requires fewer resources, may increase 
the availability of current professionals (e.g., BCBAs and 
RBTs) to treat more patients and ensure those patients 
who most need a comprehensive ABA treatment plan 
will receive the appropriate level of care. Third, there 
is a significant financial burden associated with ABA 
treatment plans, with the cost of a comprehensive ABA 
treatment plan being considerably greater than that of a 
focused ABA treatment plan (e.g., cost of a comprehen-
sive ABA treatment plan of 30–40  h/week vs. cost of a 
focused ABA treatment plan of 10–20 h/week). Similarly, 
the time burden is much greater for a comprehensive 
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compared with a focused ABA treatment plan. The col-
lective effect of these latter stressors is not trivial, as car-
egivers of patients with ASD have been shown to exhibit 
higher rates of stress, depression, anxiety, and other men-
tal health disorders than the caregivers of patients having 
other developmental delays and disabilities [23, 24].

Recently, a range of machine learning (ML) tech-
niques and models have been developed to assist in the 
diagnosis of ASD and to better understand neurological 
and genetic biomarkers which might be related to the 
condition [25–33]. Advances in patient data availability 
through the widespread adoption of electronic health 
records (EHRs) and the use of publicly available de-
identified data through databases which contain records 
including demographic information, clinical assessments, 
and medical history can also allow for predictions related 
to ABA treatment plans using software only applica-
tions, for example, by employing ML prediction models 
[34]. Given the complex and heterogeneous nature of 
ASD, and the individualization of ABA treatment plan 
required, ML can be a powerful tool to improve the 
standardization of ASD treatment plan type determina-
tion, and ultimately maximize clinical outcomes, par-
ticularly in children. A small pilot study by Kohli et  al. 
examined the use of ML to identify goals that would be 
most beneficial to ASD patients undergoing ABA treat-
ment, irrespective of whether the type of ABA treatment 
was focused or comprehensive [34]. Their prediction 
model achieved an area under the receiver-operator char-
acteristic curve (AUROC) of 0.78–0.80 for identifying 
specific skills to target, demonstrating the potential value 
of integrating ML into ASD treatment planning [34]. ML 
classification of an ABA treatment plan as either focused 
or comprehensive could also be helpful for newly trained 
BCBAs and RBTs to improve decision-making regarding 
ABA treatment plan types, and could potentially offer a 
more standardized approach for determining the plan 
type. ML may be particularly useful as this specialty field 
continues to grow as a direct result of increased health-
care needs owing to a higher number of patients being 
clinically-diagnosed with ASD [14, 15, 4]. Therefore, 
the purpose of the present study was to develop an ML 
prediction model for ABA treatment plan type determi-
nation using readily available information solely from 
patient intake forms for patients who were diagnosed 
with ASD by a licensed professional.

2 � Methods
2.1 � Dataset information
All patients included in this retrospective study (n = 359 
patients ranging from 1 to 50 years of age) were referred 
to Montera Inc. dba Forta for ABA treatment after 
being diagnosed with ASD according to DSM-5 criteria 

by a licensed professional. The retrospective data were 
obtained from patient intake forms for ABA treatment 
completed by the parents, caregivers, or patients them-
selves for the 359 individuals diagnosed with ASD and 
provided with ABA treatment by Montera Inc. dba Forta. 
No patient data were excluded from this retrospective 
study. The ABA patient intake form utilized for all 359 
patients included questions regarding demographics, 
schooling, behavior, skills, and goals related to the clients. 
The methods described in this paper did not utilize any 
identifiable data for data analysis, feature engineering, 
training of the machine learning model, or testing/vali-
dation of the model. The human subjects research con-
ducted herein has been determined to be exempt by Pearl 
Institutional Review Board per Food and Drug Adminis-
tration 21 Code of Federal Regulations (CFR) 56.104 and 
45CFR46.104(b)(4) (#22-MONT-101).

The full dataset encompassing 359 patient forms was 
divided into a training dataset and a hold-out test dataset 
in an 80:20 split (i.e., training dataset: 288 forms, hold-
out test dataset: 71 forms). The data from the 288 forms 
in the training dataset were used for feature selection, 
as well as cross-validation and optimization of hyper-
parameters. The data from the 71 forms in the hold-out 
test dataset were never exposed to the model during the 
feature selection or during cross-validation and opti-
mization of hyperparameters, and were used solely as a 
hold-out test dataset to evaluate the efficacy of the ML 
prediction model. In other words, the hold-out test data-
set remained completely independent of the training 
process and was solely used to evaluate the performance 
of the ML prediction model. The ground truth for the 
type of treatment received was determined based on the 
average number of hours of ABA treatment prescribed 
by a BCBA and authorized by insurance for a patient to 
receive weekly. The prevalence of patients who received 
comprehensive ABA treatment in the full dataset was 
27.6% (99 patients). The remaining patients from the full 
dataset received focused ABA treatment (260 patients).

The ABA patient intake form includes various infor-
mation about the patient as listed in Additional file  1: 
Table S1, mostly in the form of simple yes/no or multi-
ple choice questions. It should be noted that these ques-
tions and answers from the intake forms were used by 
the BCBAs to determine the treatment plan intensity 
(i.e., the number of hours of ABA treatment) for each 
patient, and these BCBA determinations were the ground 
truth for each patient. It should be further noted that the 
BCBAs employ their knowledge and expertise to analyze 
the questionnaire answers and deliver a recommenda-
tion of the number of hours of ABA treatment for each 
patient, which recommendation is intrinsically subjec-
tive. The BCBAs do not have an algorithm to follow in 
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their interpretation of the questionnaire answers, they 
simply abide by the BACB guidelines and utilize personal 
experience in the field to inform their recommendation 
of how many hours of ABA treatment a given patient 
should receive. These same questions and answers (listed 
in Additional file  1: Table  S1) were used as features for 
the model’s analysis, ensuring that the data used by both 
the model and the BCBAs to determine treatment plan 
type (i.e., focused vs. comprehensive) were identical. 
Owing to the nature of the patient intake form, the data 
collected from this questionnaire have numerous binary 
and categorical inputs, which increases the dimension-
ality of the data. Thus, the process of feature processing 
and feature selection becomes critical. Some of the tech-
niques implemented in the data processing and feature 
selection process are described below.

2.2 � Data processing and feature selection
As previously discussed, the features that were selected 
for the model to generate an analysis were identical to 
the intake categories that were used by the BCBAs to 
make a determination of focused versus comprehensive 
ABA treatment plans. The raw data collected from ABA 
patient intake forms included a variety of information 
about the patients, including their demographic infor-
mation, medical history, records of the past treatment, 
schooling, parental medical history, behavioral  assess-
ment, skills assessment, and expected parent goals. The 
data from all 359 patients were processed and subjected 
to rigorous feature selection to generate the feature 
matrix used to train and test the ML prediction model. 
The feature matrix is the final input data matrix consist-
ing of the individual patients as rows and their input fea-
tures as columns. Figure 1 displays a flowchart outlining 
the data processing and feature selection applied to the 
raw data from the intake forms in order to generate the 
feature matrix used to train and test the ML prediction 
model.

Data processing encompassed converting all the data 
into numeric format. Most of the data in the ABA patient 
intake forms were in a textual form, either as categori-
cal values or yes/no type questions. The categorical val-
ues were either one-hot encoded (e.g., Sex was one-hot 
encoded into two columns: Male, Female) or converted 
into an ordinal type value (e.g., How severe is the child’s 
aggressive behavior?: Mild = 1, Moderate = 2, Severe = 3). 
After conversion to numeric format, some of the input 
features in the data were combined to create a single 
derived feature. For example, the feature “Aggression 
Score” was derived from three variables by multiplying 
their values: (i) “Does the child display aggression?” with 
possible values of Yes (1) and No (0); (ii) “How frequently 

does the child exhibit aggression?” with possible values 
of Less often than weekly (0), Weekly (1), Daily (2) and 
Hourly (3); and (iii) “How severe is the child’s aggres-
sive behavior?” with possible values of Mild (1), Moder-
ate (2), Severe (3). A patient who exhibited moderate 
aggressive behavior on a daily basis would have a value 
of 4 (1 × 2 × 2, respectively) for “Aggression Score.” If a 
patient did not exhibit any aggressive behavior or exhib-
ited aggressive behavior less often than weekly, the 
Aggression Score would be 0 (1 × 0 × 1, respectively). 
Combining such binary and numeric inputs into a single 
numeric input for a particular feature (e.g., aggression 
score) allowed capturing the relevant information while 

Fig. 1  Data processing and feature selection flowchart. The raw data 
from the ABA intake forms were processed and subjected to rigorous 
feature selection to generate the feature matrix used to train and test 
the machine learning (ML) prediction model. ABA applied behavioral 
analysis; SHAP SHapley Additive exPlanations; AUROC area under the 
receiver-operator characteristic curve
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decreasing the number of inputs in order to maintain a 
suitable dimension of the feature matrix.

After processing the data, an analysis of missingness of 
input features and the correlation between input features 
was performed. While the chosen ML model (XGBoost) 
is able to handle missing data, a high rate of missingness 
in the data can lead the model to draw wrong conclu-
sions [35], and thus, input features were checked for a 
high missing rate (> 50%). No features had a missing rate 
of over 50% and thus no features were eliminated due 
to missingness. Further, inputs that were highly corre-
lated (correlation coefficient r > 0.85) with other features 
were eliminated. For example, input features ‘Male’ and 
‘Female,’ which both represent sex, were highly correlated 
and thus one of the features was eliminated and the other 
one retained as an input feature. Highly correlated fea-
tures provide similar information to the model and thus, 
removing highly correlated features helps reduce the 
dimensionality of the data and also addresses the con-
cerns of computational complexity without hampering 
the model’s performance. If not mitigated, high dimen-
sionality can also lead to difficulties in the model’s ability 
to identify the features of most importance [36].

After removing features with a high rate of missingness 
and highly correlated features, various additional feature 
selection methods including Forward Feature Selection, 
Backward Feature Elimination and Feature Selection 
based on SHapely Additive exPlanations (SHAP) values 
were run on the remaining features to generate heuris-
tics on the predictive capabilities of each feature [37, 38], 
essentially using the model to illuminate which features 
contribute the most to the model’s predictions. Forward 
Feature Selection evaluates features by incrementally 
adding features to the model, Backward Feature Elimina-
tion successively eliminates features from the model; and 
Feature Selection based on SHAP values evaluates fea-
tures based on their importance for the model prediction. 
SHAP feature prediction (i.e., Feature Selection based on 
SHAP values) utilizes the SHAP values of a model trained 
on all of the original features to filter out the features 
showing the least importance. This approach allows for 
an earlier understanding of the features which contribute 
the most to the model’s predictive capabilities. As SHAP 
values provide an indication of the magnitude of a fea-
ture’s impact on the model, they can be used as a feature 
selection method during the feature engineering process. 
As described under the Results and Discussion sections 
below, subsequent to feature selection and model train-
ing, SHAP values can be employed in methods of eval-
uating the model, for example to further interpret the 
model following training and testing. It should be noted 
that the SHAP plots used in the method of interpreting 

the prediction model only include the final features uti-
lized in the prediction model. It should be further noted 
that the SHAP values employed in the feature selection 
process evaluate all of the features in order to arrive to 
feature matrix, and thus the method of Feature Selection 
based on SHAP values and the SHAP-based method of 
interpreting the prediction model are different and dis-
tinct from each other. The three methods of feature selec-
tion (i.e., Forward Feature Selection, Backward Feature 
Elimination and Feature Selection based on SHAP values) 
can be used sequentially, in parallel, or a combination of 
sequentially and in parallel. However, we employed them 
in parallel (i.e., these feature selection methods were 
used independently of each other), and their results were 
evaluated for commonly emerging features. The features 
emerging independently from each other in each of the 
three methods of feature selection were further targeted 
for either elimination or retention based on their predic-
tive capabilities.

We also trained single feature XGBoost models to pre-
dict whether a patient requires a comprehensive ABA 
treatment plan or a focused ABA treatment plan. In 
order to understand the discriminative quality of each of 
the features, the AUROC of each single feature XGBoost 
model was evaluated. Based on the results of the afore-
mentioned data processing and feature selection meth-
ods including the evaluation based on the AUROCs of 
the single feature XGBoost models, we pruned the fea-
ture set down from 154 to 83 features, ensuring that at 
least one feature representing each of the various aspects 
of the patients, such as demographics, schooling infor-
mation, parental medical history, behavioral assessments 
and goal related information, was preserved. The remain-
ing set of 83 features was subjected to a feature elimina-
tion method based on a combined AUROC method as 
described below.

Subsequent to the preliminary data processing and the 
feature selection methods described above, we employed 
the combined AUROC-based feature elimination method 
by building a baseline model using the remaining 83 fea-
tures. This baseline model was an XGBoost model with 
low tree depth (maximum tree depth of 2) and 100 deci-
sion trees, where these particular values were chosen to 
prevent overfitting. We then trained additional XGBoost 
models using the same set of hyperparameters for each 
of these additional XGBoost models, where the training 
was performed iteratively by removing one feature at a 
time with replacement from the feature set (i.e., the set 
encompassing 83 features). These additional XGBoost 
models were trained using cross-validation, and the 
mean of cross-validation AUROC was used as the main 
performance metric. It should be noted that feature 
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subsets were not reshuffled between folds. We observed 
that removing certain features improved the model per-
formance more than the others. In order to examine the 
effect of feature removal, the single feature which led 
to the highest increase in the mean of cross-validation 
AUROC when removed was eliminated from the feature 
set to avoid data overfitting. We repeated this process 
of elimination on the remaining set of features until we 
observed a sustained decline in the mean of cross-val-
idation AUROC as displayed in Fig. 2, which shows the 
variation in the mean of the cross-validation AUROC as 
features are eliminated in the combined AUROC-based 
feature elimination method. The combination of features 
that achieved the highest AUROC while capturing the 
various aspects of the patient’s data was selected as the 
set of features to train the final ML prediction model. By 
using the combined AUROC-based feature elimination 
method, we further pruned the feature set down from 83 
to 30 features, which are listed in Table 1.

2.3 � Model training
The ML prediction model was trained using the fea-
ture matrix with the 30 input features chosen during 
the feature selection process described above for all 
288 patients in the training dataset. The ML prediction 
model, an XGBoost-based model, is a gradient-boosted 
tree ensemble method of ML which combines the esti-
mates of simpler, weaker models—in this case shallow 
decision trees—to make predictions for a chosen target 
[39]. The recent research has used gradient-boosted tree 

algorithms for acute and chronic prediction tasks with 
high accuracy. This includes sepsis prediction, long-
term care fall prediction, non-alcoholic steatohepatitis 
or fibrosis, neurological decompensation, autoimmune 
disease, and more [40–46]. One of the benefits of using 
XGBoost is that it can implicitly handle a certain level of 
missingness in the data by accounting for missingness 
during the training process [47]. This is achieved by the 
model assigning the given feature with missing values to 
a default “node” on the model’s decision tree based on 
the best model performance after the feature has been 
assigned to a given node [47]. The ability to implicitly 
handle missing data is of particular importance when 
data are collected from individuals through a form vs. 
an automated collection, as individuals are more likely to 
submit incomplete data from which a determination of 
treatment plan type still needs to be performed. XGBoost 
has also been shown to perform better than other ML 
models on tabular data, which made it an appropriate 
choice for our dataset [48].

Before training the ML prediction model, hyperpa-
rameter optimization was performed using the train-
ing dataset, subsequent to the feature selection process 
and as shown in Fig.  3. Similar to the feature selection 
process, the hyperparameter optimization process also 
used the cross-validation method to tune the hyperpa-
rameters. Cross-validation is a resampling method that 
uses different portions of the data (i.e., data subsets) to 
test and validate a model on different iterations [49]. In 
this case, the 288 data points in the training dataset were 

Fig. 2  Cross-validation area under the receiver-operator characteristic curve (AUROC) vs. number of features. AUROC area under the receiver 
operator characteristic curve
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divided into 5 random and equal subsets after which an 
XGBoost model was trained on 4 of them and validated 
on the remaining one. This was repeated using each of 
the 5 subsets as a validation set, and the subsets were not 
reshuffled between folds. The method of cross-validation 
allows for building a model more robust to variability in 
the data, i.e., a more generalizable model. Hyperparam-
eters were optimized using a grid search method, from 
Scikit-learn, which takes each possible combination of 
hyperparameters and runs through cross-validation with 
each combination [50].

The three main hyperparameters tuned using the 
grid search method included maximum tree depth, 
number of decision trees and scale positive weight. The 
maximum tree depth hyperparameter determines the 
complexity of the weak learners—it limits the depth 
of the contributing decision trees, thereby controlling 
for the number of features which are part of the clas-
sification of each weak learner. Relatively lower range of 
values between 2 and 4 were selected for tuning maxi-
mum tree depth in order to develop a more conserva-
tive model, thus, limiting weak learners which overfit 

Table 1  List of input features used to train the machine learning prediction model. The table also shows the type or category (e.g., 
demographics, schooling information, parent’s medical history, past treatment and therapy, behavioral assessments, etc.) of the input 
features, and is a subset of all available inputs (shown in Additional file 1: Table S1). The input features were selected from the larger list 
of features by using the feature selection process described in the Methods section (and outlined in Fig. 1). Inputs in bold font were 
derived by combining multiple inputs within the category

IEP/ARD individual education program/admission, review and dismissal; OCD obsessive compulsive disorder; ADHD attention-deficit hyperactivity disorder; Stim/RRB 
self-stimulatory/restricted, repetitive behaviors

ML prediction model input categories ML prediction model input features

Demographics Age

Schooling Attends school?

Grade

Child received additional services as part of IEP/ARD

Child has a school aide/support during school hours

Parent’s medical history Mother or Father has history/presence of depression or manic-depression

Mother or Father has history/presence of substance abuse or dependence

Mother or Father has history/presence of anxiety disorders (OCD, phobias, etc.)

Mother or Father has history/presence of attention-deficit hyperactivity disorder (ADHD)

Treatment/therapy Amount of prior ABA treatment (hours of treatment per week)

Amount of prior ABA treatment (years)

History of Occupational Therapy: Has the patient ever received Occupational Therapy?

History of Speech Therapy: Has the patient ever received Speech Therapy?

Behavioral assessment Does the child destroy property?

Aggression Score: Level of the patient’s engagement in aggressive behavior derived from the 
frequency and severity of aggression
Does the child engage in stereotypy?

Stereotypy Score: Level of the patient’s engagement in Stereotypical repetitive behavior derived 
from the frequency and severity of stereotypy behavior

Consequences for misbehavior Consequences Count—How many of the ’consequences for misbehavior’ options were checked off
Communication Understanding—strangers can usually understand child

Understanding—parent can usually understand child

Feeding and drinking habit Food Choice Score: Score indicating food choice behaviors
Toileting and bathing skills Bathing Ability: Ability of patients to bathe themselves

Toileting Independence Score: Score indicating independence in toileting skills
Stim/RRB count Stim/RRB Count: Count of Stim/RRB options checked for a patient
Expected parent goals Expected Parent Goals—improve communication skills

Expected Parent Goals—learn to eat healthier/more balanced diet

Expected Parent Goals—learn to be more independent

Expected Parent Goals—new ways to express frustration or when upset

Medical history Medication for Sleep

Medication for Allergies
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to the specific feature values of the training dataset. 
The number of decision trees determines the number 
of rounds of boosting (a method of combining the esti-
mates of the weak learners by taking each weak learner 
sequentially and modeling it based on the error of the 
preceding weak learner). Higher values for the num-
ber of decision trees would increase the risk of model 
overfitting. Thus, the search grid for the number of 
decision trees was kept under 500. Scale positive weight 
is tuned to manage the class imbalance in the dataset. 
This hyperparameter represents the ratio of the posi-
tive to negative class samples utilized to build each of 
the weak learners in the model, allowing the model 
to sufficiently learn from the data of the class with a 
lower prevalence in the dataset. This hyperparameter’s 
search grid was set with values close to the ratio of the 
counts of two classes. Other hyperparameters includ-
ing learning rate and regularization coefficients (alpha, 
gamma) were optimized as well. Learning rate deter-
mines how quickly the model adapts to the problem. A 
lower learning rate is preferred as lower learning rates 
lead to improved generalization error [51]. Regulariza-
tion parameters are used to penalize the models as they 
become more complex in order to find sensible models 
that are both accurate and as simple as possible [52]. 
The final set of hyperparameters values were: maximum 
tree depth = 2, number of decision trees = 100, scale 
positive weight = 2.65, alpha = 0.1, gamma = 0.05, and 
learning rate = 0.25. Once the optimal hyperparameters 

were obtained, the ML prediction model was trained 
using the training dataset (i.e., 288 patients). The ML 
prediction model was then evaluated on the hold-out 
test dataset.

In addition to the cross-validation for the hyperpa-
rameter tuning, a separate k-fold cross validation was 
performed with 5 additional random train-test splits 
(5 folds) to further ensure the reliability of the results. 
This was performed after the hyperparameters had 
been optimized and was performed by creating 5 addi-
tional train-test splits and training a new model on 
each data fold. This additional model was evaluated for 
the same performance metrics as the primary model 
and used as a supplemental comparison.

2.4 � Comparison with other machine learning models
To gauge the performance of the XGBoost-based ML 
prediction model versus models built with other machine 
learning algorithms, a random forest model was trained. 
The random forest model required additional data pro-
cessing (by comparison to the data processing done for 
the XGBoost-based ML prediction model) to successfully 
train the model. In contrast to XGBoost models, ran-
dom forest models cannot handle null values implicitly, 
and thus any data points with null values either had to 
be removed from the dataset or replaced. For features 
with time ordinal data, such as hours of past ABA, as well 
as binary variables based on family medical history, null 

Fig. 3  Model training and evaluation workflow. The training dataset was used for feature selection and optimization of hyperparameters using a 
fivefold cross-validation method. The tuned model hyperparameters were then used to train the machine learning prediction model with the full 
training dataset. The trained model was then evaluated on the hold-out test dataset
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values were replaced with an impossible extreme value 
(i.e., a value so extreme it could not occur in reality). As 
random forests utilize the values of variables and do not 
infer a relationship within the variable values, using an 
extreme value does not affect the model’s performance. 
However, for null values in data representing behav-
ior, such as bathing ability, rows with null values were 
removed from the random forest training set as excessive 
replacement of null values with extreme values can lead 
to erratic or inaccurate behavior [35]. After this imputa-
tion and filtering, the final size of the training set utilized 
for the random forest model was 212 patients with the 
same 30 features employed for training the XGBoost-
based ML prediction model. The random forest model 
was trained on this 212 patients dataset and tested on 
a separate hold-out test consisting of 46 patients after 
data filtering. Further, as data are collected through the 
response of individuals on a form, missing data constitute 
a natural part of the data collection process and while 
XGBoost can implicitly handle this missing data, addi-
tional techniques are required to process missing data in 
other algorithms, such as the random forest.

2.5 � Comparison with standard of care
As the current standard of care for ABA treatment plan 
type determination is multifactorial and encompasses a 
high degree of subjective clinical judgment [8, 11, 12], 
no direct comparator exists against which to measure 
the ML prediction model performance. Consequently, 
we developed a “standard of care” comparator encom-
passing the features that are specified by the BACB in 
their treatment guidelines to contribute to the decision 
of a focused vs. a comprehensive ABA treatment plan 
[8]. The features selected from the ABA patient intake 
form for constructing the standard of care comparator 
(i.e., comparator features) encompass (per BACB guide-
lines) the types of behaviors exhibited by a patient, the 
number of behaviors exhibited by the patient, and the 
number of targets to be addressed for that particular 
patient. The standard of care comparator accounted 
for the following features as inputs into the compara-
tor: age, restricted and repetitive behaviors, social and 
communication behaviors, listening skills, aggressive 
behaviors, and total number of goals to be addressed. 
The comparator features were utilized in combination 
by the standard of care comparator to determine which 
care plan should be recommended, as described below. 
It should be noted that the standard of care comparator 
is a mathematical proxy comparator that we have devel-
oped for the purpose of our research, and thus it is not 
a tool available to BCBAs. As described above in the 

Dataset Information sub-section, the BCBAs employ 
their knowledge and expertise to recommend a specific 
number of hours of ABA treatment for each patient, 
which recommendation is intrinsically subjective.

A linear regression function was constructed to 
enable combining the inputs to the standard of care 
comparator in order to generate a determination of 
a focused vs. a comprehensive ABA treatment plan. 
This linear regression function generated an output 
score which was a linear combination of the compara-
tor features. The inputs for the linear regression func-
tion were obtained from the data processed to train 
and test the ML prediction model (i.e., the processed 
data of the training dataset prior to the feature selec-
tion process described above for the ML prediction 
model). The score generated by the linear regression 
function serves as a proxy, accounting for the BACB 
guidelines [8], for the manual assessment process that 
the BCBA follows in order to determine whether a 
patient should receive focused or comprehensive ABA 
treatment. Scores generated by the linear regression 
function were then compiled into a receiver-operating 
characteristic (ROC) curve, and an operating point was 
selected on the ROC curve to determine which scores 
of the comparator indicated a focused ABA treatment 
plan and which scores indicated a comprehensive ABA 
treatment plan. The operating point value is the cutoff 
determining which class (e.g., focused ABA treatment 
plan or comprehensive ABA treatment plan) to which a 
particular output belongs. The operating point for the 
linear regression function ROC curve was selected 
to meet the desired sensitivity of the ML prediction 
model. As the chosen operating point for the ML pre-
diction model corresponded to a sensitivity of 0.789, 
the operating point for the linear regression function 
was also selected as the point on the ROC curve with 
similar sensitivity in order to allow for an appropriate 
comparison. As a measured sensitivity of 0.789 was 
not available with the random forest model, the near-
est measured sensitivity of 0.75 was utilized to compare 
performance.

2.6 � Evaluation metrics
The AUROC was used as the primary metric to evaluate 
the performance of both the ML prediction model, the 
random forest model, and the linear regression function 
used as a proxy for the standard of care. Other metrics 
used to evaluate the performance of the ML prediction 
model, the random forest model, and for comparison 
with the standard of care were calculated as follows:
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Note: In the above equations, ‘the model’ refers to the 
ML prediction model, the random forest model, or the 
linear regression function for the comparator.

2.7 � Statistical analysis
The confidence intervals (CIs) for AUROC were calcu-
lated using a bootstrapping method. For the bootstrap-
ping method, a subset of patients from the hold-out test 
dataset were randomly sampled and the AUROC was cal-
culated using the data from those patients. This step was 
repeated 1000 times with replacement. From these 1000 
bootstrapped AUROC values, the middle 95% range was 
selected to be the 95% CI for the AUROC. As the sam-
ple size of the hold-out test dataset was greater than 30, 

Sensitivity =

No. of patients correctly classified by the model as needing comprehensive treatment plan

No. of patients who received comprehensive treatment plan
(

ground truth
)

Specificity =

No. of patients correctly classified by themodel as needing focused treatment plan

No. of patients who received focused treatment plan
(

ground truth
)

Positive Predictive Value (PPV ) =

No. of patients correctly classified by themodel as needing comprehensive treatment plan

No. of patients whowere classified by themodel as needing comprehensive treatment plan

Negative Predictive Value (NPV ) =

No. of patients correctly classified by themodel as needing focused treatment plan

No. of patients whowere classified by themodel as needing focused treatment plan

the CIs for other metrics were calculated using normal 
approximation [53].

3 � Results
3.1 � Subject population and characteristics
Subject demographics for patients in the training 
dataset separated by ABA treatment plan type (com-
prehensive or focused) are shown in Table  2. Overall, 
the average age was 6 years (range: 1–50 years), and as 
expected, there was a greater number of males com-
pared with females (P < 0.05; [12]. There was a greater 
relative number of younger patients (< 5  years) with 
ASD in the comprehensive ABA treatment group than 
the focused ABA treatment group (53% vs. 26%). In 

Table 2  Demographics table showing the breakdown of the patients in the training dataset based on the age, sex and (ASD 
severity). The table also shows the distribution of various comorbidities between the two types of ABA treatment plans

ASD autism spectrum disorder; ABA applied behavioral analysis; ADHD attention-deficit hyperactivity disorder

Demographics Comprehensive (N = 80) (%) Focused (N = 208) 
(%)

Age (years) 0–5 41 (51.2) 49 (23.6)

5–8 19 (23.8) 71 (34.1)

8-older 20 (25.0) 88 (42.3)

Sex Male 61 (76.2) 155 (74.5)

Female 17 (21.2) 53 (25.5)

Unknown sex 2 (2.5) 0 (0.0)

ASD Severity Mild 25 (31.2) 34 (16.3)

Moderate 24 (30.0) 87 (41.8)

Severe 30 (37.5) 66 (31.7)

No severity Information 1 (1.2) 21 (10.1)

Comorbidities Anxiety and depression 1 (1.2) 15 (7.2)

ADHD 7 (8.8) 48 (23.1)

Intellectual and language disorders 10 (12.5) 20 (9.6)

Developmental delay 3 (3.8) 8 (3.8)
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contrast, there was a lower relative number of older 
patients (> 8  years) with ASD in the comprehensive 
ABA treatment group than the focused ABA treatment 
group (24% vs. 41%). Within the comorbidities pre-
sent, there was a greater relative prevalence of anxiety/
depression and attention-deficit hyperactivity disorder 
(ADHD) in the focused group. Subject demographics 
for patients in the hold-out test dataset separated by 
ABA treatment plan type (comprehensive or focused) 
are shown in Table  3, and the overall demographics 
were similar to those in the training dataset.

3.2 � Feature selection and ML model optimization
The results from the combined AUROC-based feature 
elimination method are shown in Fig. 2. Starting from 
the initially pruned down feature set of 83 features, 
as features were eliminated one after another based 

on the combined AUROC-based elimination method 
described in the Methods section, a gradual increase 
in AUROC was observed with a maximal value being 
achieved with 24 feature inputs. The average cross-
validation AUROC close to the maximal value attained 
during the process (~ 0.80) occurred for three sets of 
features—sets with 30, 27 and 24 features. Thus, in 
order to allow the model to make decisions based on as 
much information as possible, the set of 30 features was 
used as the final set of inputs (i.e., feature matrix).

3.3 � ML model performance
The complete list of performance metrics for the ML pre-
diction model, the random forest model, and the scores 
calculated for the standard of care comparator are shown 
in Table 4. The ROC curves for the hold-out test dataset 
of the ML prediction model, the hold-out test dataset of 
the random forest model, as well as for the standard of 

Table 3  Demographics table showing the breakdown of the patients in the hold-out test dataset based on the age, sex, and ASD 
severity. The table also shows the distribution of various comorbidities between the two types of ABA treatment plans

ASD autism spectrum disorder; ABA applied behavioral analysis; ADHD attention-deficit hyperactivity disorder

Demographics Comprehensive (N = 19) (%) Focused (N = 52) 
(%)

Age (years) 0–5 11 (57.9) 14 (26.9)

5–8 5 (26.3) 14 (26.9)

8-older 3 (15.8) 24 (46.2)

Sex Male 15 (78.9) 42 (80.8)

Female 4 (21.1) 10 (19.2)

Unknown 0 (0.0) 0 (0.0)

ASD Severity Mild 0 (0.0) 5 (9.6)

Moderate 7 (36.8) 14 (26.9)

Severe 9 (47.4) 24 (46.2)

No severity info 3 (15.8) 9 (17.3)

Comorbidities Anxiety and depression 0 (0.0) 3 (5.8)

ADHD 2 (10.5) 12 (23.1)

Intellectual and language disorders 1 (5.3) 5 (9.6)

Developmental delay 1 (5.3) 2 (3.8)

Table 4  Performance metrics demonstrating the discriminative capabilities of the XGBoost-based machine learning prediction model 
by comparison with the random forest model and the standard of care comparator. Metrics used include AUROC, sensitivity, specificity, 
PPV, and NPV. The performance metrics are reported at operating points chosen to have the same sensitivity of 0.789 for both the ML 
prediction model and the standard of care comparator. All metrics include a 95% CI

AUROC area under the receiver operator characteristic curve; CI confidence interval; PPV positive predictive value; NPV negative predictive value

Performance metrics ML prediction model Random forest model Standard of care comparator

AUROC (95% CI) 0.895 (0.808–0.959) 0.826 (0.678–0.951) 0.767 (0.629–0.891)

Sensitivity (95% CI) 0.789 (0.673–0.906) 0.750 (0.615–0.885) 0.789 (0.700–0.878)

Specificity (95% CI) 0.808 (0.740–0.876) 0.824 (0.753–0.894) 0.635 (0.571–0.698)

PPV (95% CI) 0.600 (0.478–0.722) 0.600 (0.464–0.736) 0.441 (0.360–0.522)

NPV (95% CI) 0.913 (0.861–0.965) 0.903 (0.846–0.960) 0.892 (0.843–0.940)
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care comparator are shown in Fig. 4. The baseline curve 
in Fig.  4 represents a model that is equivalent to a ran-
dom coin-flip, and unable to discriminate between the 
classes (i.e., types of ABA treatment plans). The ML pre-
diction model achieved a strong performance for classify-
ing patients as requiring comprehensive ABA treatment 
or requiring focused ABA treatment with an AUROC of 
0.895 for the hold-out test dataset (95% CI 0.808–0.959). 
The random forest model achieved a good performance 
for classifying patients with an AUROC of 0.826 (95% 
CI 0.678–0.951). The ML prediction model significantly 
outperformed the standard of care comparator, which 
had an AUROC of 0.767 for the hold-out test dataset 
(95% CI 0.629–0.891). In addition, the ML prediction 
model also outperformed the random forest model. Both 
machine learning models, the ML prediction model and 
the random forest model outperformed the standard of 
care comparator. The ML prediction model is a binary 
classifier, and in this case, the “positive” class represents 
patients who have a ground truth of comprehensive ABA 
treatment, and the “negative” class represents patients 
who have a ground truth of focused ABA treatment. 
Calculations of sensitivity, specificity, positive predictive 
value, and negative predictive value were all greater for 
the ML prediction model compared with the standard of 
care comparator. At the chosen operating point, the ML 
prediction model outperformed the random forest model 
in sensitivity and negative predictive value and displayed 

similar positive predictive value. As all four metrics are 
related and specificity typically increases as sensitivity 
decreases, without a direct measure value of sensitivity 
of 0.789 for the random forest model, the direct com-
parison is not possible. However, as seen in Fig.  4, the 
random forest model sits at or below the ML prediction 
model specificity for nearly every sensitivity value. Both 
machine learning models sit at or above the standard of 
care specificity for nearly every sensitivity value.

In addition to the ML prediction model, random forest 
model, and the standard of care comparator, the results 
of the 5 split k-fold cross-validation for the XGBoost-
based model are consistent with the results of the final 
model. Across the 5 validation results, the mean AUROC 
was 0.877 and while an exact sensitivity of 0.789 was 
not measured, at the nearest measured operating point 
for each model, the mean sensitivity was 0.816 and the 
mean specificity was 0.803. These results suggest that the 
model did not overfit to the primary model’s holdout test 
set and the results are generalizable to a larger dataset.

At the chosen operating point for the ML prediction 
model (i.e., sensitivity: 0.789; specificity: 0.808), the pre-
diction model was able to classify patients between the 
two ABA treatment plans with only 14 misclassifications 
out of the 71 total patients in the hold-out test dataset 
as shown in the confusion matrix in Fig. 5. It should be 
noted that the operating point for the ML prediction 
model was selected to prioritize true positives and limit 
false negatives, as will be discussed in more detail below 
(in the Discussion section). It should be further noted 
that the majority of misclassifications (false positives = 10 

Fig. 4  AUROCs demonstrating the superior performance of the 
machine learning prediction model by comparison with the standard 
of care comparator, and a random forest model. AUROC area under 
the receiver operator characteristic curve

Fig. 5  Confusion matrix providing a visual representation of the 
machine learning prediction model’s output for the hold-out test 
dataset. Out of the 71 patients in the hold-out test dataset, the ML 
prediction model successfully classified 57 patients as requiring 
comprehensive ABA treatment or focused ABA treatment. ABA 
applied behavioral analysis; TP true positive; FP false positive; TN true 
negative; FN false negative
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accounting for 71% of total misclassifications) indicate 
comprehensive ABA treatment for patients that may only 
require focused ABA treatment. A very small portion of 
the misclassifications (false negatives = 4 accounting for 
28% of total misclassifications) indicated focused ABA 
treatment for patients that may require comprehensive 
ABA treatment.

3.4 � Feature importance
A SHAP analysis was used to evaluate the importance 
of each input feature in generating the model’s output. 
It should be noted that the Feature Selection based on 
SHAP values described in the Methods section was used 
for feature pruning (along with other methods of fea-
ture selection) in order to obtain the feature matrix. The 
SHAP analysis as described here was applied to the pre-
diction model to rank the individual contributions of fea-
tures to the predictive ability of the model. This ranking 
was achieved by examining how each individual feature 
value that was used as a model input affected the classi-
fication of comprehensive versus focused ABA treatment 
while training the model (i.e., within the training dataset). 
Figure 6 shows the SHAP plot detailing the contributions 

of the 15 most important features in classifying patients 
as requiring either comprehensive ABA treatment plans 
(i.e., “positive” class) or focused ABA treatment plans 
(i.e., “negative” class). The SHAP plot ranks features by 
importance to model predictions top to bottom in the 
decreasing order of importance. Within the figure, the 
gray colored data points in the plot represent samples 
with null values for that particular input feature. The 
top three features which contributed most in the dis-
criminative capabilities of the ML prediction model were 
bathing ability, age, and amount of past ABA treatment 
plans (hours per week). The features that contributed 
less substantially (i.e., the bottom three features of the 
plot) were aggression score, self-stimulatory/restricted, 
repetitive behaviors (RRB) count, and parent(s) history 
of substance abuse. However, as Fig. 6 showcases the top 
15 most important features, those three features at the 
bottom of the SHAP plot were still in the middle range 
of overall importance within the 30 features used in the 
feature matrix. Various parent-expected goals, including 
goals to learn new ways to leave non-preferred activities 
and improving communication skills, were also among 
the top 10 most important features.

Fig. 6  SHAP feature importance plot showing the 15 most important input features that contributed to the discriminative ability of the machine 
learning prediction model. SHAP SHapley Additive explanations; ABA applied behavioral analysis; RRB restrictive and repetitive behavior



Page 14 of 19Maharjan et al. Brain Informatics            (2023) 10:7 

4 � Discussion
The aim of the present study was to determine whether 
a machine learning prediction model could classify (i.e., 
determine) the appropriate type of ABA treatment plan 
for patients diagnosed with ASD. We identified only 
one other study that used ML methods to predict ASD 
treatment recommendations, however, the focus of their 
study was predicting which treatment goals to target [34]. 
To the best of our knowledge, our study is the first to use 
ML to predict ABA treatment plan type using readily 
available information gathered solely from patient intake 
forms for patients referred to BCBAs for ABA treatment. 
Using a rigorous approach and feature selection pro-
cess, the ML prediction model achieved excellent per-
formance and revealed which feature inputs contributed 
most to the model’s predictions. For classifying patients 
as requiring comprehensive or focused ABA treatment, 
the ML prediction model achieved an AUROC of 0.895 
in the hold-out test dataset, which exceeded the perfor-
mance of the standard of care comparator and the per-
formance of the random forest model, as shown in Fig. 4. 
Both machine learning models (i.e., XGBoost-based ML 
prediction model and random forest model) outperform 
the standard of care, indicating that machine learning 
more broadly offers substantial value in determining 
the appropriate type of treatment plan for an individual 
beginning ABA therapy. At the chosen operating point 
(i.e., sensitivity: 0.789; specificity: 0.808), all other per-
formance metrics for the ML prediction model were 
also greater than those of the standard of care compara-
tor. The ML prediction model was able to correctly clas-
sify ~ 80% of the ABA treatment plans in the hold-out 
test dataset, with the majority of misclassifications being 
false positives. Regarding input features, the SHAP anal-
ysis demonstrated that bathing ability, age, and amount 
of past ABA treatment plans had the greatest influence 
on the type of treatment plan prediction, providing some 
clinical insight into which features impact ABA treat-
ment plan type determination. Collectively, our findings 
indicate that ML can be used as an aid in determining 
ABA treatment plan type for patients with ASD, provid-
ing a more standardized approach utilizing easily acces-
sible information from patient intake forms.

It is widely accepted that ABA is the gold standard 
treatment for patients with ASD [8, 9, 10, 10, 11]. An 
early and appropriate ABA treatment plan is associated 
with an overall better quality of life, ranging from signifi-
cant improvements in cognition, language, and adaptive 
behavior to more functional outcomes in later life [8, 
2, 11]. Despite these findings, a major challenge in the 
treatment of patients with ASD is determining which 
ABA treatment plan will be most effective for a given 
individual patient. This is particularly true given the 

heterogeneity of this disorder, and the increasing num-
ber of newly trained BCBAs in the workforce to meet 
the demand of therapists qualified for delivering ABA 
treatment that must make individual determinations of 
treatment plan intensity for patients [13–18]. Further, the 
present standard of care for treatment plan type deter-
mination is intrinsically subjective and inconsistent [12]. 
The use of readily available patient information along 
with ML provides an opportunity to standardize ABA 
treatment plan type determination and aid BCBAs in 
determining the most appropriate plan for a given indi-
vidual patient, ultimately leading to more effective treat-
ment for more patients with ASD.

4.1 � ML prediction model feature selection
A key aspect of the present study was our rigorous fea-
ture selection process. Feature selection was crucial in 
reducing the dimensionality of the data and subsequently 
in selecting the inputs to achieve a strong performance, 
especially because of the small sample size of patients 
used in this study. Using a combination of various fea-
ture selection methods, 30 final features were selected 
from an initial set of 154 features. One of the key steps in 
the feature selection process was the combined AUROC-
based feature elimination method. From the initially 
pruned down feature set of 83 features, and using the 
combined AUROC-based feature elimination method, 
we were able to further prune down the feature set to 30 
features  (Table  1) encompassing various aspects of the 
patients’ data. Often when there are more input features, 
the predictive task of the model is made more difficult, 
which is informally referred to as the “curse of dimen-
sionality” [36]. The main objective of the feature selec-
tion process, in this case, was to reduce dimensionality in 
order to increase the model’s performance and to main-
tain model interpretability. The combined AUROC-based 
feature elimination method was successful in improving 
the model performance—the mean of cross-validation 
AUROC on the training dataset improved from 0.72 to 
0.8, as shown in Fig. 2. Also shown in Fig. 2, there were a 
few points where the mean of cross-validation AUROC 
was ~ 0.8. The best performing feature sets were sets with 
between 12 and 30 features. The mean of cross-validation 
AUROC for the training dataset decreased as the dimen-
sionality of the feature sets was reduced further, as illus-
trated by the tail on the right side of the plot in Fig.  2. 
From the candidate feature sets with 12 to 30 features, we 
chose the feature set that had the highest mean of cross-
validation AUROC and also captured the most informa-
tion across various facets of the patient data, which in this 
case was a set of 30 features. However, it should be noted 
that the AUROC performance difference between feature 
sets with 12 and 30 features does not appear significant in 
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Fig. 2. Thus, in a hypothetical case of limited data avail-
ability, a model using a smaller number of inputs could be 
employed, without significant performance degradation. 
Generally, provided that a dataset would be large enough 
to support the evidence, it would be preferable to use a 
feature set with the least number of features.

4.2 � ML prediction model performance for ABA treatment 
plan prediction

Utilizing XGBoost, a gradient-boosted tree ensemble 
method of ML, we developed a prediction model utiliz-
ing readily available and easily accessible information 
from patient intake forms who were referred for ABA 
treatment. The ability of the ML prediction model to 
classify a comprehensive or focused ABA treatment plan 
was robust, achieving an AUROC of 0.895 (Fig.  4) with 
relatively high specificity and sensitivity (Table 4). At the 
selected operating points, the ML prediction model cor-
rectly classified ~ 80% of ABA treatment plans (Fig.  5). 
The operating points were selected to prioritize true pos-
itives and limit false negatives while maintaining a rela-
tively high accuracy (accuracy is defined as the ratio of 
the number of correct classifications to the total number 
of classifications), and this is reflected in our findings that 
the majority (10 of 14) misclassifications in the hold-out 
test dataset were false positives. While a false positive 
result may recommend comprehensive ABA treatment to 
a patient who may benefit from just focused ABA treat-
ment, a false negative may lead to insufficient treatment 
for a patient in need of comprehensive ABA treatment, 
which could reduce the benefits of ABA treatment for 
that particular patient. On the other hand, a false positive 
result could theoretically recommend more treatment 
than the patient may need, but this would not diminish 
the benefits of ABA treatment [54, 55]. In other words, 
a false positive can still provide a benefit to the patient, 
while a false negative might not. However, while it would 
be theoretically ideal to have all misclassifications be 
false positives, in practice, selecting an operating point 
that would further decrease the number of false posi-
tives leads to a significant decrease in accuracy by way of 
significantly increasing the overall number of misclassi-
fications (i.e., via the addition of a significant number of 
false positives). Further, while misclassifications of false 
positives are preferred, increasing the number of false 
positives (e.g., in order to reduce false negatives) would 
have the undesired effect of detracting from treatment 
resources, for example by decreasing the availability of 
current professionals (e.g., BCBAs and RBTs).

To further examine the potential of machine learning 
for ABA treatment plan type determination and evalu-
ate the best type of machine learning algorithm to deliver 
this prediction, the random forest model was developed 

as an additional comparator. The random forest model 
was able to identify the correct plan type with relatively 
high performance metrics, for example as indicated by an 
AUROC of 0.826. In addition, the random forest model 
outperformed the standard of care comparator. This indi-
cates that machine learning can be a powerful tool in pre-
dicting the appropriate type of ABA treatment plan for 
an individual beginning ABA and shows potential to be 
a more capable tool than the currently utilized method. 
However, there were severe limitations to the random 
forest model compared to the XGBoost-based ML pre-
diction model. First, the performance of the XGBoost-
based ML prediction model is substantially higher than 
the performance of the random forest model, showcasing 
the benefits of the XGBoost algorithm over the random 
forest algorithm. Second, by comparison to the XGBoost-
based ML prediction model, the random forest model 
requires additional data processing and filtering to enable 
its use. While the XGBoost-based ML prediction model 
can handle null values, the random forest model either 
needs to impute data or require a complete set of inputs 
for the model to run. Data imputation is a challenging 
approach, particularly with a condition as heterogeneous 
as ASD. Using extreme values to indicate null values can 
be utilized for certain types of data, but is not always an 
approach which can be generalized to all data types. The 
random forest model required filtering out some data 
points without all data present. While these methods for 
mitigating null values as described for the random for-
est model work in order to build a theoretical model for 
comparison purposes, in a real world scenario, it is very 
likely that data provided by the parents of patients with 
ASD may be incomplete. While filtering was performed 
to eliminate features with high levels of missingness, 
the overwhelming majority of patients (89%) in the total 
dataset had at least one missing feature. Without a robust 
imputation process or the ability to handle null values, 
many of these patients may not be eligible for a predic-
tion from a machine learning model that is not developed 
with the XGBoost algorithm. This lack of information 
may hinder BCBAs in traditional determination methods 
as well, so the ability of the ML prediction model to work 
with null values adds additional advantages.

Given that the present standard of care for ABA treat-
ment plan type determination is multifactorial and highly 
subjective and inconsistent [12], there is no comparator 
by which to compare the performance of the ML predic-
tion model. Accordingly, we developed a standard of care 
comparator using features that are specified by the BACB 
in their treatment guidelines to contribute to the deci-
sion of a focused vs. a comprehensive ABA care plan [8, 
11]. While this comparator achieved an AUROC of 0.767, 
the overall performance of the ML prediction model was 
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superior to this comparator for every performance met-
ric calculated (see Fig. 4,Table 3). It should be noted that 
the calculations and data analysis performed by the ML 
prediction model are far too complex to be performed 
manually by any individual. ML models are able to learn 
non-linear relationships between the input features and 
the outcome and also identify the relationships between 
the outcome and the interactions of multiple features.

To the best of our knowledge, this is the first study to 
develop and validate an ML prediction model utiliz-
ing data solely from patient intake forms with the goal 
of determining the ABA treatment plan type. However, 
Kohli et al. recently conducted a pilot study in which two 
ML models, Patient Similarity and Collaborative Filter-
ing, were developed and tested to identify personalized 
treatment goals via domains and specific behavior targets 
for patients with ASD [34]. Both of their methods provide 
recommendations based on similarity between patients. 
The Patient Similarity method determines similarity by 
calculating the cosine similarity between patient vectors 
consisting of demographic information and assessment 
data to recommend treatment plans based on the treat-
ment plans received by similar patients. The Collabora-
tive Filtering method uses the patient demographics and 
assessment data to create profiles and recommends treat-
ment plans based on patients with similar profiles. Their 
AUROC values for target recommendations were high 
(range: 0.78 and 0.80), however, their values for domain 
recommendations did not perform as well (range: 0.65 
and 0.74). Some potential limitations of their study were 
the use of a relatively small number of patients (n = 29) 
and feature inputs that required in-depth assessment and 
score calculation by ASD-trained BCBAs or therapists, 
the latter which may limit the ability of the prediction 
models to generate immediate predictions in clinical set-
tings. In contrast, our prediction model used inputs taken 
solely from patient intake forms and can be deployed to 
make immediate predictions for ABA therapy plan type 
using readily available patient information.

4.3 � ML prediction model feature importance
To gain insight into which features were important con-
tributors in the classification of the ML prediction model, 
a SHAP analysis was employed and a few key findings 
that are of clinical interest should be noted. As shown in 
the SHAP summary plot (Fig. 6), a greater bathing ability 
and an older age were strongly associated with a focused 
ABA treatment plan type classification. This finding 
prompted us to further investigate the performance of the 
model for three subsets of the hold-out test dataset based 
on age (i.e., < 5 years old, 5 to < 8 years old, >  = 8 years old) 
in order to explore the effect of age, which is one of the 
most important factors when determining the treatment 

plan for any individual patient [54, 55, 12, 56]. The per-
formance of the ML prediction model was superior to the 
standard of care comparator for every performance met-
ric calculated in each age subgroup (see Additional file 1: 
Table S2 and Figures S1 and S2A-2C).

The third feature (in the order of decreasing impor-
tance in the SHAP summary plot displayed in Fig. 6), past 
ABA treatment (hours per week), indicates that those 
patients who had greater levels of past ABA treatment 
were more likely to receive comprehensive ABA treat-
ment. Other features on the list of the 10 most impor-
tant features include various goals set for the patients. 
The type of goals set for the patient are usually used by 
BCBAs to determine the type and duration of the ABA 
treatment [8, 11]. Additionally, inputs about the level of 
various day to day skills and behaviors of the patients 
such as toileting, aggression and self stimulatory/
restricted and repetitive behaviors, which play a key role 
in determining the treatment plan type, were also among 
the most important features.

4.4 � Experimental limitations
While the use of ML for ABA treatment plan type deter-
mination is innovative and novel, there are a few note-
worthy experimental limitations. First, compared with 
studies employing ML and relatively larger data sets [57, 
58], the present study included a relatively smaller sam-
ple size. This is particularly true for the hold-out test 
dataset (n = 71), as this comprised 20% of the total sam-
ple size. Second, in the present study, there was a larger 
number of patients (~ 72%) in the focused ABA treat-
ment group (ground truth) than the comprehensive ABA 
treatment group (ground truth). In the present study, 
the ratio between patients in the focused ABA treatment 
group (ground truth) and the patients in the comprehen-
sive ABA treatment group (ground truth) was ~ 2.6. In 
a policy report with a larger population size (i.e., 1879 
patients), it was indicated that more patients underwent 
focused ABA treatment versus comprehensive ABA 
treatment,  however, their ratio between patients in the 
focused ABA treatment group and the patients in the 
comprehensive ABA treatment group was only ~ 1.3 [59]. 
As such, future studies should include a larger sample 
size and a relatively more balanced number of patients 
in comprehensive and focused ABA treatment groups. 
Further, future prospective studies will be needed to 
determine whether the use of ML algorithms for ABA 
treatment recommendations leads to more favorable out-
comes in patients with ASD. Finally, it should be noted 
that the ground truth data for the 359 patients included 
in this retrospective study do not reflect a consensus of 
BCBAs, but rather individual BCBA determinations from 
several different BCBAs. While inconsistencies and a lack 
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of standardized approach for any given BCBA may be 
reflected in our full dataset, having ABA treatment plan 
type determinations (i.e., ground truth determinations) 
from several different BCBAs helps mitigate some incon-
sistencies (as opposed to one BCBA being responsible 
for all 359 ground truth determinations). Future studies 
could include BCBA consensus on ground truth determi-
nations, and/or a larger number of BCBAs to further mit-
igate inconsistencies and a lack of standardized approach 
for any given BCBA.

5 � Conclusions
ASD is a complex, life-long neurodevelopmental dis-
order for which the measured prevalence continues 
to increase. ABA treatment has long been recognized 
as the gold standard treatment for ASD, however the 
present standard of care for ABA treatment plan type 
determination is highly subjective and inconsistent. The 
findings from the present study demonstrate that ML 
can be used to classify the appropriate ABA treatment 
plan type from readily available information derived 
from patient intake forms for patients who have been 
diagnosed with ASD and referred to BCBAs for ABA 
treatment. Starting with patient intake forms contain-
ing a wealth of data, we employed a rigorous feature 
selection process and identified the best perform-
ing feature sets as having between 12 and 30 features. 
While a set with 30 features provides for capturing 
most information across various aspects of the patient 
data, feature sets with a lower number of features (e.g., 
12 features) could be employed (for example when lim-
ited data availability is a drawback), without significant 
model performance degradation. The robust ability of 
our ML prediction model to accurately classify could 
help standardize the determination of the appropriate 
ABA treatment plan type, and aid BCBAs in this pro-
cess. This could ultimately lead to more effective ABA 
treatment for more patients with ASD.
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