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Abstract  Salt stress is one of the most critical abiotic 
stresses having significant contribution in global agri-
culture production. Chickpea is sensitive to salt stress at 
various growth stages and a better knowledge of salt tol-
erance in chickpea would enable breeding of salt tolerant 
varieties. During present investigation, in vitro screening 
of desi chickpea by continuous exposure of seeds to NaCl-
containing medium was performed. NaCl was applied in 
the MS medium at the rate of 6.25, 12.50, 25, 50, 75, 100, 
and 125 mM. Different germination indices and growth 
indices of roots and shoots were recorded. Mean germina-
tion (%) of roots and shoots ranged from 52.08 to 100%, 
and 41.67–100%, respectively. The mean germination time 
(MGT) of roots and shoots ranged from 2.40 to 4.78 d and 
3.23–7.05 d. The coefficient of variation of the germina-
tion time (CVt) was recorded as 20.91–53.43% for roots, 

and 14.53–44.17% for shoots. The mean germination rate 
(MR) of roots was better than shoots. The uncertainty (U) 
values were tabulated as 0.43–1.59 (roots) and 0.92–2.33 
(shoots). The synchronization index (Z) reflected the nega-
tive impact of elevated salinity levels on both root and shoot 
emergence. Application of NaCl exerted a negative impact 
on all growth indices compared to control and decreased 
gradually with elevated NaCl concentration. Results on salt 
tolerance index (STI) also revealed the reduced STI with 
elevated NaCl concentration and STI of roots was less than 
shoot. Elemental analysis revealed more Na and Cl accu-
mulation with respective elevated NaCl concentrations. The 
In vitro growth parameters and STI values validated and 
predicted by multilayer perceptron (MLP) model revealed 
the relatively high R2 values of all growth indices and STI. 
Findings of this study will be helpful to broaden the under-
standing about the salinity tolerance level of desi chickpea 
seeds under in vitro conditions using various germination 
indices and seedling growth indices.
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supplementary material available at https://​doi.​org/​10.​1007/​
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Introduction

Plant growth, development, and production are largely 
influenced by several abiotic stresses like salinity, drought, 
and high or low temperature. These abiotic stresses influ-
ence more than 50% of plant production (Munns and Tester 
2008). Among these, salinity is considered one of the main 
limiting factors to plant production affecting nearly 80 mil-
lion hectares of agricultural lands worldwide (Yamaguchi 
and Blumwald 2005). The salt present in the soil solution 
lowers the availability of water to the roots (osmotic stress) 
and salt taken up by the plant also accumulate in various 
plant parts exceeding toxicity limits and ultimately contrib-
uting to reduced crop production (Munns et al. 1995). Leg-
umes are considered an important pillar of our agriculture 
production system serving as a cheap source of high qual-
ity nutrition (Nadeem et al. 2021). However, legumes have 
been found highly sensitive to salt stress, especially during 
vegetative and reproductive stages (Nadeem et al. 2019).

Chickpea (Cicer auritinum L.) is one of the leading edible 
legumes serving as a vital source of food for millions of 
people all over the world (Kalefetoğlu et al. 2017), and is 
generally divided into two different types; known as Kabuli 
and Desi (Wang et al. 2010) based on their characteristics 
and phenotype. Kabuli chickpea has a smooth seed coat with 
a relatively larger size as compared to desi chickpea, which 
is not only smaller in size but also has a rough seed coat 
(Purushothaman et al. 2014; Aasim and Khan 2019). The 
cultivation of desi chickpea is mainly confined to a specific 
part of the world like the Indian subcontinent (Aydemir and 
Yemenicioğlu 2013) along with Ethiopia, Iran, Mexico, 
and Turkey (Ghribi et al. 2015; Mohammadi 2015). In the 
Indian subcontinent, desi chickpea is used for different pur-
poses ranging from edible legumes to medicinal purposes 
(Kalefetoğlu et al. 2017; Aasim and Khan 2019). In Turkey, 
desi chickpea is cultivated in the Southeastern region for 
both animal fodder and human consumption (Aasim and 
Khan 2019). It is also a habitually cultivated crop in various 
other parts of the world and is considered a highly significant 
medicinal plant mainly due to the presence of dietary fibers 
and certain biochemical contents in its seed (Aharon et al. 
2011; Jukanti et al. 2012).

Germination is a complex process and regulates the 
plant’s establishment and development under variable condi-
tions ranging from open field to controlled conditions under 
greenhouse or in vitro conditions. However, the process is 
complex, and different biological and environmental factor 
governs it (Bewley et al. 2012) by regulating the molecular 
mechanism. Optimum temperature, moisture contents, gases, 

light, salt type, concentration, etc. are the significant abiotic 
factors that alter or hinder the germination process (Kumar 
et al. 2013). Salinity is among one of the most challeng-
ing factors for farmers to germinate plants on salt-contain-
ing soils all over the World. The problem is continuously 
increasing due to ill practices like excessive use of ferti-
lizers, brackish water, and excessive irrigation, especially 
in semi-arid and arid regions of the world. Low yield with 
more input enforces the farmers to adopt new technologies to 
overcome this issue. In recent years, different priming tech-
niques have been employed to overcome the salinity issue by 
exposing the seeds to salinity under different cultural condi-
tions to check the response of seeds.

Germination of seeds is the first step to examine the 
impact of salinity on seeds followed by the impact on 
seedlings. There are a lot of established parameters for the 
screening based on qualitative or quantitative measures. The 
germination ability and seed behavior during the germina-
tion process along with quantitative aspects of germination 
is highly significant in this aspect (Ranal and Santana 2006; 
Bewley et al. 2012). Quantitative parameters like germina-
tion time, rate, homogeneity, and synchronization of the 
whole germination process are considered to be highly sig-
nificant. To date, several variable germination indices have 
been established to check the germination and viability of 
seeds under variable conditions ranging from natural to 
induced artificial environments. These germination indices 
are helpful for seed physiologists, seed technologists, and 
ecologists to better understand the germination process to 
make appropriate field plans from germination to harvesting.

Different germination measurement indices with different 
names and abbreviations make it difficult to regulate and 
understand the germination process (Ranal and Santana 
2006). Researchers from different research areas established 
and employed the mathematical-based germination indices 
to understand the germination process and measurement 
from different angles and aspects (de Santana and Ranal 
2004; Ranal and Santana 2006). Following germination, 
seedling establishment is the next step for the completion 
of a successful plant growth cycle. To understand germina-
tion and seedling establishment under laboratory conditions, 
in vitro plant tissue culture techniques can be employed suc-
cessfully. It offers to germinate recalcitrant crops, endan-
gered or seeds with high dormancy. It is also possible to 
check the efficacy of different stimulants or stressors like 
light, temperature, or stress conditions on agronomic char-
acteristics more easily and efficiently (Phat et al. 2017).

Artificial intelligence (AI) and its subfield machine 
learning (ML) is the application of data science to solve 
complex problems in all scientific fields. However, the use 
of AI/ML approaches in plant and agricultural sciences is 
somewhat limited as compared to other scientific fields. 
It is still successfully employed in different disciplines of 
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plant science like plant breeding, gene function and net-
works, (Mahood et al. 2020; van Dijk et al. 2021), in vitro 
germination (Hesami et al. 2021; Pepe et al. 2021a; Aasim 
et al. 2022c), and regeneration studies (Hesami et al. 2019, 
2020a; Hesami and Jones 2020; Aasim et al. 2022a, c; Kir-
tis et al. 2022), in vitro mutagenesis (Mirza et al. 2022), 
plant identification (Grinblat et al. 2016), plant system 
biology (Hesami et  al. 2022), pathogen identification 
(Mishra et al. 2019), nutrient deficiency (Rico-Chávez 
et al. 2022), and agrochemical applications (Soltis et al. 
2020). Application of ML modeling for salt stress response 
is very circumscribed and these studies focused mainly on 
the plant stress phenotyping (Singh et al. 2016; Gao et al. 
2020) and stress physiology (Jafari and Shahsavar 2020).

In vitro induced stress provides an alternative and effi-
cient way of screening of shoots/plants/lines/genotypes etc. 
against different types of stressors in a relatively short time 
with more accuracy. However, understanding the impact of 
stress followed by making decision on the basis of scien-
tific results is rather a challenging task. The problem can 
be solved by employing different models and algorithms to 
make considerably more precise and accurate prediction. 
Application of mathematical expressions and artificial intel-
ligence-based models under in vitro conditions to understand 
the germination process is very limited. However, successful 
application of AI-based models have been employed to data 
prediction and validation of in vitro germination (Hesami 
et al. 2021; Aasim et al. 2022c) and in vitro growth indices 
of C. sativa (Aasim et al. 2022c) recently. There is an imper-
ative need to investigate the impact of different stressors on 
germination and plant growth of plants via artificial intelli-
gence tools. Keeping in view, the present study was designed 
to investigate the salinity tolerance level of chickpea seeds 
under in vitro conditions using various germination indices 
and seedling growth indices, followed by data validation and 
prediction through multilayer perceptron model.

Materials and methods

Seed sterilization

The chickpea seeds (desi) were procured from the Depart-
ment of Field Crops, Faculty of Agriculture, Dicle Uni-
versity, Diyarbakir. Before sterilization, all damaged and 
non-uniform seeds were removed. Seeds were sterilized by 
using 5% w/v NaOCl for 15 min (Kirtiş and Aasim 2019; 
Kirtis and Aasim 2020). Sterilized seeds were placed on 
agar gelled medium augmented with different levels of NaCl.

In vitro culture conditions and medium preparation

The culture medium was comprised of Murashige and 
Skoog (MS) basal medium (Murashige and Skoog 1962). 
The basal medium was prepared according to the standard 
by using MS (0.44%), sucrose (3.0%), and agar (0.65%). 
NaCl at variable concentration (0, 6.25, 12.50, 25.00, 
50.00, 75.00, 100.00 and 150.00 mM) were added in the 
culture medium prior to autoclave. The pH of the medium 
was automated to around 5.8 with the aid of 1N NaOH 
or HCl after adding NaCl. The medium was autoclaved 
for 20 min. at 121 °C (1.5 kg cm− 2 pressure). The culture 
medium was poured into culture vials having approxi-
mately 50 ml. The seeds were placed on the medium for 
seed germination and Magentas were placed in the growth 
room equipped with white LEDs (~1500 Lux) for 16/8 h 
light/dark photoperiod and a temperature of 24 ± 1 °C. All 
chemicals used in this study were procured from Duchefa 
Biochemie, The Netherland and Sigma-Aldrich, United 
States.

Germination indices

The seeds inoculated on NaCl supplemented medium was 
observed after 12 h and 24 h followed by an interval of 24 h 
for the next 8 days for data collection. Radicle emergence 
(approximately 2–3 mm long) was used as a standard for 
germination count. After tabulation of data, different ger-
mination indices like germination percentage (G), mean 
germination time (MGT or MT), coefficient of variation of 
the germination time (CVt), mean germination rate (MR), 
uncertainty (U), and synchronization index (Z) were calcu-
lated by using respective formulas and methodology (Ranal 
et al. 2009). Notably, the germination indices were computed 
for both root and shoot separately.

Mean germination time (MGT)

Mean germination time or mean emergence time (MET) or 
mean length of incubation time (MLIT) or mean days for 
germination (M-days) is used to calculate the average time 
length for maximum germination of a given seed lot (Ranal 
et al. 2009) and is represented via Eq. (1).

ni: number of newly germinated seeds on the ith day or 
the daily germination percentage at time (ti) from sowing,

ti: time from the start of the experiment to the ith day,
k: last day of observation.

(1)t =

∑k

i=1
niti

∑k

i=1
ni
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Germination percentage (G)

Germination percentage or germination rate is used to cal-
culate the time course of seed germination. Alternatively, 
it also helps to estimate the seed viability of a given popu-
lation (Ranal et al. 2009) and is defined as Eq. (2).

ni: number of seeds newly germinated on the ith day,
k: last day of observation used,
N: total number of seeds per replicate (Magenta).

The coefficient of variation of the germination time (CVt)

The coefficient of variation of the germination time (CVt) is 
the measurement of uniformity or variability of germination 
in relation to the mean germination time (Ranal et al. 2009) 
and it can be written as Eq. (3).

st: the standard deviation of the germination time,
t̄∶ the mean germination time
ti: time between the start of the experiment,
ith: day,
ni: number of seeds germinated on the ith day,
k: the last day of observation.
CVt representation in percentage is given in Eq. (4).

Mean germination rate (MR)

Mean germination rate (MR) is the reciprocal of the mean 
germination time and it is presented as Eq. (5), where t is 
the mean germination time (Ranal et al. 2009).

Uncertainty (U)

Uncertainty (U) is used to assess the degree of uncertainty 
linked with the distribution of the relative germination fre-
quency and is presented in Eq. (6). Here, lower values of U 
express highly synchronized germination (Ranal et al. 2009).

(2)G =

∑k

i=1
ni

N

(3)CVt =

�
st

t

�

with s2
t
=

∑k

i=1
ni
�
ti − t

�2

∑k

i=1
ni − 1

(4)CVt% =

(
st

t

)

× 100

(5)MR =
1

t

fi: relative frequency of germination,
ni: number of seeds germinated on the ith day,
k: the last day of observation.

Synchronization index (Z)

The synchronization index (Z) was originally developed 
to estimate the degree of overlapping of flowering among 
individuals in a population. Later, it was also used as ger-
mination indices and the value of Z = 1 expresses the germi-
nation of entire seeds at the same time and Z = 0 expresses 
the germination of at least two seeds with one at each time. 
More importantly, Z only produces a non-zero value if and 
only if two seeds complete the seed germination process at 
the same time (Ranal et al. 2009). Its formula is expressed 
via Eq. (7).

Cni
,2 ∶ Combination of seeds germinated in the ith time, 

two by two,
ni: number of seeds germinated on the ith day.

In vitro seedling growth indices

After the successful establishment of in vitro seedlings 
on NaCl containing medium, different growth indices like 
shoot length, root length, fresh shoot wt, dry shoot wt, fresh 
root wt, and dry root wt were tabulated after three weeks of 
in vitro culture. Randomly selected 10 plants/replicate were 
selected for the estimation of variable growth indices. The 
shoot and root length of all selected samples were measured 
by using a measuring scale. Thereafter, they were weighed 
on a sensitive electric weighing balance for the estimation 
of fresh shoot or root weight. For the estimation of dry wt, 
both shoot and root samples (weighed) were placed and 
wrapped in aluminum foil followed by placing them in an 
oven at 65 °C (Anawar et al. 2011) for a period of 72 h and 
weighed thereafter. All the data presented as growth indices 
are based on a per plant by dividing the data with the number 
of shoots.

Element analysis

Element analysis (K+, Na+, Cl−) was performed at Agricul-
ture Ankara, Turkey. Shoots and root samples were oven-dried 
at 65 °C for 5 days followed by grinding. 0.25 g oven-dried 
samples were subjected to the mixture of Nitric Acid (HNO3) 

(6)U = −

k�

i=1

fi���2fi with fi =
ni

∑k

i=1
ni

(7)Z =

∑k

i=1
Cni,2

C∑
ni,2

with Cni,2
=

ni
�
ni − 1

�

2
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and Throcoles (HCLO4). Standard solutions were prepared 
for both sodium and potassium and the flame photometer was 
calibrated accordingly. "Standard curve” was created based 
on the recorded readings (Kacar and Inal 2008). For Cl− ion 
analysis, 0.1 g oven-dried samples were used. Potassium chro-
mate indicator and AgNO3 were used for taking the values. 
The Cl− contents were used by protocol and formula reported 
(Kacar and Inal 2008).

Salt tolerance index (STI)

Salt tolerance index (STI) is the estimation of the dry wt of 
salinity treated plants to control plants and can be calculated 
by the formula given below (Karakullukçu 2008).

The STI value of roots and shoots were estimated separately 
to check their respective tolerance level.

Multilayer perceptron analysis

NaCl concentrations were used as input variables, and growth 
parameters along with STI were used as output variables for 
ANN based MLP model (Silva et al. 2019). The data was split-
ted into training and testing sets by using leave-one-out cross-
validation (LOO-CV) technique (Webb et al. 2011). For hyper-
parameter optimization, grid search method was employed. 
The open-source Python programming language (Van Rossum 
and Drake 2009) was used for coding with the aid of sklearn 
library (Pedregosa et al. 2011). The coefficient of determi-
nation (R2), mean square error (MSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE) were 
calculated to validate the performance of the models. The R2 
estimates the strength of the relationship between the model 
and the dependent variables. The MSE exhibits that how close 
a regression line is to the measured data points. MAE specifies 
the average magnitude of the differences between the predic-
tion of an observation and its actual value. Whereas MAPE is 
a prediction accuracy of forecasting system. The mathematical 
representation of the above-mentioned performance metrics is 
given in Eqs. 9–12.

(8)STI =
Dry Wt(plant or plant part)

Totaldry Wt(Respective control)

(9)R2 = 1 −

∑n

i=1

�
Yi − Ŷi

�2

∑n

i=1

�
Yi − Ỹ

�2

(10)MSE =
1

n

∑n

i=1
(Yi − Ŷi)

2

 where Yi = actual value, Ŷi = predicted value,Ỹ  = mean of 
the actual values and n = sample count. Moreover, all fea-
tures (inputs) were standardized to scale the values to be 
centered on the mean with a unit standard deviation by using 
the below formula before training and testing the models.

X
�

∶ standardized value.Xi ∶ actual data.� ∶ mean of the fea-
ture values.� ∶ standard deviation of the featured values.

Statistical analysis

The experiment was designed with four replicates. The SPSS 
26 statistical program for Windows (SPSS Inc. Chicago, 
IL, USA) was used for the univariate statistical analysis 
(ANOVA, standard error) for both germination indices and 
growth indices. Comparison of means was performed by 
applying Duncan’s Multiple Range Test (DMRT) at p < 0.05 
or p < 0.01 level of significance. The arrangement of data 
before ANOVA and comparison of means were done accord-
ing to arcsine (√X) transformation (Snedecor and Cochran 
1967). The Pearson correlation coefficient was performed 
through XLSTAT statistical software (www.​xlstat.​com).

Results

In vitro germination indices

The impact of different NaCl concentrations on the germina-
tion of chickpea was studied by using different mathematical 
expressions to understand the whole germination process. 
Results revealed the more rapid germination from the con-
trol group compared to the medium enriched with NaCl. It 
was observed that exposing seeds to NaCl exerted stress on 
both root and shoot emergence followed by their respective 
growth. Therefore, mathematical expressions of germina-
tion indices of both shoot and root were performed individu-
ally and are presented in Fig. 1. Mean germination of roots 
and shoots ranged from 52.08 to 100% and 41.67–100%, 
respectively (Fig. 1, Table S1). Mean germination of chick-
pea seeds revealed a direct association with NaCl concentra-
tions (p < 0.01). Almost similar germination patterns were 
attributed for both shoots and root emergence in response to 

(11)MAE =
1

n

n∑

i=1

|
|
|
Yi − Ŷi

|
|
|

(12)MAPE =
1

n

n∑

i=1

|
|
|
|
|

Yi − Ŷi

Yi

|
|
|
|
|
× 100

(13)X
�

=
Xi − �

�

http://www.xlstat.com
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NaCl concentration. In general, elevated NaCl concentration 
resulted in delayed germination, which in turn affected the 
other growth indices. However, the delayed emergence was 
more prominent for shoots as compared to roots especially 
at higher salinity levels of 100 and 150 mM NaCl. Expos-
ing seeds to 100 mM NaCl resulted in mean germination of 
52.08% (shoots) and 91.67% (root). Whereas the provision 
of 150 mM NaCl was detrimental for both root and shoot 
emergence and recorded 52.08% and 41.67%, respectively 
(Fig. 1, Table S1). The mean germination time of chick-
pea seeds exhibited a negative impact of NaCl concentra-
tion with delayed root and shoot emergence as compared 
to control. The MGT for roots exposed to different NaCl 
concentrations ranged from 2.40 to 4.78 d which was higher 
than the control (1.10 d). MGT for shoots ranged from 3.23 
to 7.05 d when exposed to different NaCl concentrations. 
The MGT for shoots exposed to 6.25–25 mM NaCl concen-
tration was statistically similar to control shoots (3.40 d). 

The highest MGT for both roots (4.78 d) and shoots (7.05 
d) were recorded on a medium supplemented with 150 mM 
NaCl exhibited the negative impact of salinity level on the 
MGT of chickpea seeds (Fig. 1, Table S1).

Provision of NaCl concentrations exhibited variable 
CVt of roots and ranged from 20.91 to 53.43%. The high-
est CVt (roots) was recorded from a medium supplemented 
with 75 mM NaCl (53.43%) followed by 100 mM NaCl 
(38.60%). Supplementation of 6.25 to 50 and 150 mM 
NaCl resulted in the least and statistically similar CVt val-
ues. On the other hand, CVt of shoots ranged from 14.53 
to 44.17% with the highest CVt of shoots (44.17%) being 
attributed to a 25 mM NaCl-containing medium. The CVt 
of roots and shoots were different from each other and 
response was associated with the salinity level (NaCl con-
centration) of the culture medium. The CVt (%) of roots 
was more than CVt of shoots on the medium supplemented 
with 0, 75, and 100 mM NaCl. Whereas CVt (%) of shoots 

Fig. 1   An overview of the impact of different NaCl concentrations on in vitro germination indices of chickpea
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was almost double than CVt (%) of roots on medium sup-
plemented with 6.25 – 50 mM NaCl (Fig. 1, Table S1). 
Supplementation of NaCl in the culture medium signif-
icantly affected the MR values of both roots and shoot 
emergence. The highest MR values of roots were recorded 
in the control group (0.909) and exposure of seeds to dif-
ferent salinity levels resulted in 2 to fourfold less MR 
than in the control (0.210–0.418) and decreased elevated 
salinity level (Fig. 1, Table S1). The MR values of shoots 
were less than roots and ranged from 0.143 to 0.316. The 
highest MR value of shoots was recorded on a medium 
supplemented with 12.5 mM NaCl but statistically simi-
lar to control, 6.25, and 25 mM NaCl. Further increase in 
salinity level was more detrimental and resulted in reduced 
MR which showed the negative impact of salinity on mean 
germination rate. The least MR value of roots (0.210) and 
shoots (0.143) were recorded on a medium supplemented 
with 150 mM NaCl.

The uncertainty (U) values of roots and shoots ranged 
from 0.43 to 1.59 and 0.92–2.33. The lowest U values of 
both roots and shoots were attributed to the control group 
which shows more synchronized germination. The uncer-
tainty (U) values of roots and shoots ranged from 0.43 to 
1.59 and 0.92–2.33. Results further revealed that U values 
of roots were relatively less than shoots and it reflected more 
salt tolerance in roots as compared to shoots. The U val-
ues of roots on medium supplemented with 6.25–50 mM 
NaCl were statistically similar to each other and resulted in 
more synchronized root emergence and can be confirmed 
by synchronized MT and MR values. Further increase of 
NaCl resulted in elevated U values with a highest U value 
of 1.50 from medium supplemented with 75 mM NaCl. The 
U values of shoots increased with elevated NaCl concentra-
tion and highest U value (2.33) were recorded on a medium 
supplemented with 50 mM NaCl (Fig. 1, Table S1). Results 
on the synchronization index reflected the negative impact 
of elevated salinity levels on both root and shoot emergence 
of chickpea. The highest Z value of both roots and shoots 
were recorded for control which reflects the more synchro-
nization during the germination process and can be con-
firmed by low U values. The Z values of roots declined with 
elevated salinity levels up to 100 mM NaCl followed by a 
significant increase of Z value on medium supplemented 
with 150 mM NaCl. This might be due to the release of 
initial shock caused by high salinity level and development 
of stress mechanism system which enables the radicle to 
tolerate and resulted in high Z value and can be confirmed by 
low U values of roots. On the other hand, Z values of shoots 
were 2–fourfold less than the control group, but these all 
were statistically significant with each other and ranged from 
0.14 to 0.26 compared to control (0.51) (Fig. 1, Table S1).

In vitro seedling growth traits

Application of NaCl in the culture medium affected the vari-
ous growth indices in a similar fashion of less than control 
and exhibited decreased growth with elevated NaCl con-
centration. Shoot numbers and root numbers ranged from 
1.0 to 2.50 and 1.0–16.75, respectively. In the case of shoot 
length and root length, highest values were observed in 
control followed by low concentrations of NaCl-containing 
medium. The incorporation of NaCl up to 25 mM did not 
pose any negative impact on shoot length. However, further 
increase of NaCl concentration was detrimental and resulted 
in decreased shoot length. On the other hand, the applica-
tion of 50 mM NaCl and more was highly detrimental and 
resulted in low root length. In the case of shoot length: root 
length ratio, lowest values were observed at 12.5 mM, while 
the highest was observed at 100 mM (Table 1).

Results on fresh wt and dry wt of shoot and root showed 
a similar pattern of high values on control. Application of 
different NaCl concentrations exerted a negative impact 
on all growth indices and gradually decreased with ele-
vated NaCl concentration. The values were recorded as 
0.063–0.296 g (fresh shoot wt), 0.018–0.0329 g (fresh root 
wt), 0.008–0.028 g (dry shoot wt), and 0.003–0.027 g (dry 
root wt). Results further revealed that NaCl exerted a more 
negative impact on root fresh wt and dry wt compared to 
fresh and dry wt of shoots. Overall, highest fresh shoot 
weight was observed in the control. The same pattern was 
observed for dry shoot weight, fresh root weight, and dry 
root weight as highest values for these traits were observed 
with an increase in NaCl dose.

Correlation analysis

During this study, a highly significant, positive, and very 
strong correlation was observed among the studied traits. 
Dry shoot wt reflected a highly significant, positive, and 
very strong correlation (r = 0.878*) with dry root weight 
(Table 2). Most of the traits reflected a highly significant and 
positive correlation except fresh root wt, which reflected a 
non-significant correlation with root numbers and dry shoot 
wt. A strong and positive correlation among studied traits 
showed that these traits can be used as a trustable criterion 
in the selection of salt stress-tolerant chickpea genotypes.

Salt tolerance index (STI)

Results on STI illustrated the clear impact of NaCl concen-
tration and plant part. Relatively higher STI values were 
attributed to roots compared to shoots. The decline in STI 
(shoots) was relatively slow on mediums supplemented 
with 6.25–50 mM NaCl followed by a sharp decline on 
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mediums containing 100 mM and above NaCl. The low-
est STI (shoots) was recorded (28.57) on a medium sup-
plemented with 150 mM NaCl which was almost half of 
100 mM NaCl (53.57). On the contrary, STI for roots 
behaved variably and the highest STI (roots) was recorded 
on a medium containing 12.5 mM NaCl. Thereafter, gradu-
ally decreased STI (roots) were attributed to elevated NaCl 
and the lowest (11.11) was recorded on a medium contain-
ing 150 mM NaCl (Table 3). On the other hand, decreased 
STI was attributed to elevated NaCl concentration for both 
plant parts. This section may be divided into subheadings.

Table 1   Impact of different NaCl (mM) concentrations on plant growth of in vitro regenerated plantlets of desi chickpea

Means followed by different small letters within columns are significantly different (p < 0.01)

NaCl (mM) Shoot numbers Root numbers Shoot length (cm) Root length (cm)

0 2.50 ± 0.18a 16.75 ± 0.95a 9.24 ± 0.18a 11.21 ± 1.46a
6.25 2.21 ± 0.63ab 15.69 ± 1.90a 8.29 ± 0.55a 8.50 ± 1.46ab
12.5 2.31 ± 0.16a 16.00 ± 2.01a 8.23 ± 0.25a 10.87 ± 1.38a
25 2.00 ± 0.00ab 10.63 ± 2.21bc 8.48 ± 0.69a 7.06 ± 1.33b
50 1.88 ± 0.13ab 12.40 ± 1.45ab 6.27 ± 0.46b 3.39 ± 0.27c
75 1.50 ± 0.10bc 7.75 ± 1.04c 5.83 ± 0.62b 2.36 ± 0.25c
100 1.06 ± 0.06c 7.21 ± 0.76c 6.23 ± 0.79b 2.25 ± 0.10c
150 1.00 ± 0.00c 1.00 ± 0.00d 3.66 ± 0.52c 1.96 ± 0.19c

NaCl (mM) Fresh shoot wt (g) Dry shoot wt (g) Fresh root wt (g) Dry root wt (g)

0 0.296 ± 0.026a 0.028 ± 0.001a 0.329 ± 0.012a 0.027 ± 0.001a
6.25 0.233 ± 0.017b 0.026 ± 0.002ab 0.144 ± 0.018bc 0.017 ± 0.002bc
12.5 0.237 ± 0.019b 0.026 ± 0.001ab 0.179 ± 0.023b 0.021 ± 0.002b
25 0.211 ± 0.019bc 0.024 ± 0.002ab 0.157 ± 0.039b 0.013 ± 0.003 cd
50 0.179 ± 0.023 cd 0.023 ± 0.001b 0.074 ± 0.016de 0.010 ± 0.001de
75 0.151 ± 0.012de 0.018 ± 0.001c 0.115 ± 0.046cde 0.008 ± 0.001ef
100 0.113 ± 0.011ef 0.015 ± 0.002c 0.047 ± 0.008de 0.005 ± 0.001ef
150 0.063 ± 0.011f 0.008 ± 0.001d 0.018 ± 0.002e 0.003 ± 0.00f

Table 2   An overview of Correlation analysis in vitro seedling growth traits of desi chickpea

Variables Shoot numbers Root numbers Shoot 
length 
(cm)

Root length (cm) Fresh 
shoot wt 
(g)

Dry shoot wt (g) Fresh root wt (g) Dry root wt (g)

Shoot numbers 1 0.943 0.893 0.914 0.976 0.962 0.851 0.942
Root numbers 1 0.902 0.856 0.950 0.973 0.773 0.899
Shoot length 

(cm)
1 0.881 0.947 0.936 0.844 0.880

Root length (cm) 1 0.911 0.835 0.863 0.962
Fresh shoot wt 

(g)
1 0.968 0.916 0.961

Dry shoot wt (g) 1 0.795 0.878
Fresh root wt (g) 1 0.943
Dry root wt (g) 1

Table 3   Salt tolerance index (STI) analysis of in  vitro seedling of 
desi chickpea

NaCl (mM) Shoot Root

Actual Predicted Actual Predicted

6.25 92.86 100.00 62.96 63.51
12.5 92.86 93.83 77.78 62.09
25.0 85.71 80.85 48.15 53.55
50.0 82.14 76.99 37.04 43.46
75.0 64.29 65.35 29.63 22.05
100.0 53.57 51.58 18.52 16.16
150.0 28.57 40.45 11.11 8.08
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Estimation of Na+, K+, and Cl− in root and shoot

The results obtained revealed the variable concentration 
of K+ (%) in both shoots and roots and ranged from 2.29 
to 2.77 (shoots) and 1.91–2.22 (roots). Highest K+ (%) 
in shoots (2.77%) and roots (2.22%) were recorded on 
a medium supplemented with 75 mM NaCl and control, 
respectively (Fig.  2, Table  S2). Na+ contents in both 
shoots and roots were linked with their respective salinity 
concentration. Relatively low Na+ contents were recorded 
on medium supplemented with 6.25–50 mM followed by 
an exponential increase of Na+ contents in both shoots 
and roots on medium supplemented with 50–100 mM 
NaCl (Fig.  2, Table S2). A comparison of NaCl con-
centration revealed more Na+ contents in shoots com-
pared to roots. The results revealed that both shoots and 
roots exhibited high K+ uptake with low Na+ contents on 
medium supplemented with 6.25–25 mM NaCl. Likewise, 
Na+, Cl− contents in both shoots and roots varied with 
NaCl concentration, and low Cl− contents in shoots were 
recorded on a medium supplemented with 0–12.5 mM 
NaCl (Fig. 2, Table S2). Thereafter, more Cl− contents 
were attributed to roots compared to shoots on all NaCl 
concentrations. It should provide a concise and precise 
description of the experimental results, their interpreta-
tion, as well as the experimental conclusions that can be 
drawn.

Artificial neural network modeling

The results attained regarding in vitro growth parameters 
and STI were subjected to ANN analysis using MLP algo-
rithm, and results were validated and predicted by employ-
ing four different performance metrics. Results regarding 
R2 were recorded as 0.5749 (shoot number), 0.718 (root 
number), 0.6742 (shoot length), 0.7662 (root length), 0.8193 
(fresh shoot wt), 0.8530 (dry shoot wt), 0.7262 (root fresh 
wt) and 0.7886 (dry root wt). The MSE values were gener-
ally recorded low except root numbers (9.1091) and root 
length (3.8797). The similar trend was also observed for 
MAE values for all growth parameters. On the other hand, 
relatively high MAPE values were recorded for all growth 
parameters and ranged between 12.69–38.37%. The high-
est MAPE value was recorded for fresh root wt followed 
by shoot numbers. Whereas minimum MAPE values were 
attributed for dry shoot wt and shoot numbers, respectively 
(Table 4). The distribution of actual and predicted values of 
all growth parameters is presented in Fig. 3. The ANN mod-
els were also employed for the STI for both shoot and root 
(Table 4) followed by comparing actual and predicted values 
(Table 3). Results revealed the relatively high R2 values for 
STI of both shoot (0.9272) and root (0.8865). The MAE and 
MAPE values (Table 4) were also high but still fall in the 
satisfactory level. However, relatively high MSE values were 
recorded for both outputs (35.850 for shoot and 55.5808 
for root) which reflected in the difference among actual and 
predicted values of STI. Results on STI of shoots revealed 

Fig. 2   Impact of different NaCl concentrations on element analysis of chickpea
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the variable difference among actual and predicted values at 
different NaCl concentration. The major difference between 
actual and predicted values were recorded at 150 mM NaCl 
followed by 6.25 mM NaCl and 50.0 mM NaCl, respectively. 
Whereas relatively minor difference among actual and pre-
dicted values were observed at other concentrations of NaCl. 

On the other hand, the minor difference between mM NaCl 
for STI of root were recorded for 6.25 mM NaCl followed 
by 100 mM NaCl and 150 mM NaCl, respectively (Table 3). 
All other NaCl concentrations (12.5–75.0 mM NaCl) yielded 
major difference between the actual and predicted values.

Discussion

Salinity caused by different salts in water or soil is one of 
the most threatening abiotic factors which affects the plant’s 
metabolic processes, and enzymatic activities and ultimately 
affects the plant growth and productivity. The inhibitory 
impact varies with genotype and salinity level (natural or 
artificially induced) and the first and immediate impact is 
on plant germination followed by respective plant growth 
(Mungala et al. 2008). Screening of genotypes or cultivars 
are highly significant, and in vitro screening involves artifi-
cially induced salinity by incorporating different salts at var-
iable concentration (Day et al. 2016; Day and Aasim 2017). 
Therefore, seeds were inoculated on the saline medium to 

Table 4   Performance metrics for the MLP model

R2 MSE MAE MAPE (%)

Shoot numbers 0.5749 0.1956 0.2470 28.65
Root numbers 0.7184 9.1091 2.2146 20.71
Shoot length 0.6742 1.2676 0.8698 13.56
Root length 0.7662 3.8797 1.3513 20.43
Fresh shoot wt 0.8193 0.0011 0.0243 16.29
Dry shoot wt 0.8530 1e−05 0.0022 12.69
Fresh root wt 0.7262 0.0028 0.0379 38.37
Dry root wt 0.7886 1e−05 0.0026 26.96
STI (Shoot) 0.9272 35.8150 4.6329 9.31
STI (Root) 0.8865 55.5808 5.4736 12.28

Fig. 3   Distribution of predicted 
values of different growth 
parameters of chickpea
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investigate the in vitro germination indices, in vitro growth, 
indices salt tolerance index (STI), and mineral ion contents. 
Overall, NaCl exerted a significant impact on in vitro plant 
growth and development.

The most common method used for checking the seed 
vigor and viability is the estimation of the mean germina-
tion percentage in response to any external stimulant or 
exposing the seed to any stressor. NaCl is one of the most 
widely used stressors for checking the salinity tolerant level 
on germination under variable culture conditions ranging 
from field conditions to in vitro conditions (Day and Aasim 
2017). However, the salinity tolerant level is dependent 
mainly on genotype (Atieno et al. 2017). The study car-
ried out on cowpea cultivars revealed the reduced or total 
inhibition of germination on a medium enriched with a 
high NaCl level of 150 mM (Cokkizgin 2012). The results 
further revealed that further provision of NaCl concentra-
tion in the culture medium may be more lethal with less 
root and shoot emergence. In vitro study on common bean 
resulted in 100% germination on medium supplemented with 
150 mM NaCl followed by the sharp decline of germination 
on medium supplemented with 200 mM NaCl (40%) and 
250 mM (10%) and completed inhibition on 300 mM NaCl 
(Mena et al. 2015). High germination percentage of common 
beans on medium supplemented with 150 mM and 200 mM 
NaCl have also been registered (Thiam et al. 2013). The 
variable response of different plants to salinity conditions 
is dependent on other factors like cultivar and genetic vari-
ability (Kouam et al. 2017). Results  showed that both roots 
and shoot emergence exhibited the same pattern of delayed 
emergence with elevated NaCl concentration. possibly due 
to low seed hydration at higher salinity levels (Asmare and 
Ambo 2013; Mena et al. 2015).

The weighted mean of germination depending on germi-
nation rate in response to time (Bewley et al. 2012) is known 
as mean germination time (MGT) and is another important 
mathematical expression for germination. It is a reciprocal 
of germination rate and is successfully used for different 
types of plants (Demir et al. 2008; Khajeh-Hosseini et al. 
2009). Results obtained reflected the negative impact of 
elevated NaCl concentration on MGT values which resulted 
in delayed germination. The delayed GMT at a higher salin-
ity level might be due to the delayed germination process 
and reduced speed possibly due to enzymes and hormones 
alterations in the seed in response to a high salinity level 
(Botía et al. 1998; Cokkizgin 2012). The other possible rea-
son is the elevated osmotic potential in the culture medium, 
which affects the seed hydration followed by inhibition of 
the radicle emergence and subsequent seedling emergence 
(Gill et al. 2003).

Uniform germination is the prerequisite for the success-
ful establishment of plants/crops for their life cycle. Dif-
ferent internal or external factors regulate the germination 

process, and any type of variation or delayed germination 
may lead to variable plant growth and ultimately low crop 
yield. The uniform or non-uniform germination of seeds 
in association with MGT (Cruz et al. 2001; Dorneles et al. 
2005) can be checked by the coefficient of variation of the 
germination time (CVt). The low CVt value reflects the more 
uniform seed germination at a specific time and vice-versa. 
The results revealed the variable response of root and shoots 
on Cvt of chickpea seeds. The response of salinity in vitro 
and in vivo may differ due to variable culture conditions. 
Although a lot of studies reported the salinity impact of 
NaCl on in vitro germination indices, the impact of NaCl 
concentration on Cvt is very limited. However, work done 
under field conditions or greenhouse conditions highlights 
the impact of salinity level on Cvt values of a given seed 
lot. The highest Cvt values at 100 mM NaCl followed by 
a declining pattern on 200 and 300 mM NaCl of Elymus 
farctu seeds have been documented (Carvalho et al. 2005). 
Contrarily, the insignificant impact of NaCl concentrations 
on CVt of sea fennel seeds (El-Katony et al. 2015) has also 
been registered. Mean germination rate (MR) is the recip-
rocal of mean germination time and it generally expresses 
the seed vigor and germination speed of a given seed lot. 
The value of MR falls from 0 to 1 (0 < v ≤ 1 day-1) with 
MR values of 1 or near to 1 reflecting more vigorous seeds 
with high germination speed in a given time and vice- versa 
(Ranal and Santana 2006). Results illustrated  the impact of 
NaCl concentration and plant part on MR values. Relatively 
more MR values were attracted to roots compared to shoots, 
which reflects the more salinity tolerance of roots compared 
to shoots.

The germination process in seeds is generally regulated 
by variable internal (seeds), external (environmental) fac-
tors (Nimac et al. 2018), and induced factor-like seeds scari-
fication (Regnier 2020), which may result in non-uniform 
germination. This asynchronization of germination reflects 
the certain uncertainty of germination, and its quantification 
can be linked between uncertainty and relative germination 
frequency. The values of uncertainty (U) are 0 ≤ U ≤ log2(n) , 
and a value of “0” or close to “0” presents more synchro-
nized germination and vice-versa (Bewley et al. 2012). A 
single seed in a given seed lot is highly significant, and may 
lead to uncertainty (U). On the other hand, the overlapping 
of germination of two seeds simultaneously is known as the 
synchronization index (Z) and expresses as 0 ≤ Z ≤ 1 (Bew-
ley et al. 2012). The Z values are contrary to the U values 
and Z value of 1 or near to 1 reflects more synchronized 
germination and Z value of “0” means no germination and 
values near to “0” mean asynchronized germination of a 
given seed lot. Results revealed the significant impact of 
induced stress on U values compared to the control group. 
A study on Cassia ferruginea also revealed the high U val-
ues due to mechanical scarification of seeds (Regnier 2020). 
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Results further revealed that an increase in NaCl resulted in 
decreased U values. These results suggested the recovery 
of shoots from the initial shock of high salinity level fol-
lowed by root and shoot development. However, the negative 
impact of high salinity levels was prominent on root and 
shoot growth and development. Interestingly, the U values 
on medium supplemented with 150 mM NaCl was less than 
all other NaCl concentration. Uncertainty of germination is 
a common feature that can be affected by variable induced 
factors (Regnier 2020) or uncontrolled factors like tempera-
ture (Nimac et al. 2018). On the other hand, the negative 
impact of salinity level on the synchronization index of 
shoots which was relatively less than roots on all salinity 
levels was also registered.

The impact of various NaCl concentrations was checked 
on various growth indices and a similar pattern was observed 
for the shoot and root numbers which were less than control 
and gradually decreased with elevated NaCl concentration in 
the culture medium. The incorporation of the highest NaCl 
in the culture medium was most detrimental and resulted 
in a single shoot and root. The negative impact of elevated 
NaCl concentrations on shoot numbers is a common feature 
of salinity in plants (Bahmani et al. 2012). Stunting shoots 
and roots of cowpea attained on various doses of NaCl con-
firmed the findings of this study (Cokkizgin 2012). Simi-
larly, the negative impact of elevated NaCl concentration 
on different growth variables has been documented for dif-
ferent plants like lentils (Ashraf and Waheed 1993), wheat 
(Akbarimoghaddam et al. 2011), and Sorghum bicolor (El 
Naim et al. 2012). However, exposure time is also another 
significant factor, which controlled and affects the different 
seedling growth traits (indices) (Akbarimoghaddam et al. 
2011; Yousef et al. 2020). Another important observation 
was the multiple shoot induction from the seed (Kendir 
et al. 2009; Kirtis et al. 2022) and shoot count depicted the 
negative impact and showed decreased pattern with elevated 
concentration of NaCl.

Correlation analysis is the most used analysis for the 
determination of the magnitude of association between two 
or more traits and can be used as a selection index. There-
fore, breeders give much importance to correlation analysis 
while selecting genotypes. When two traits are correlated 
significantly, the selection of one trait will exert variations in 
its mean through additive gene effects and reflect an indirect 
effect in its correlated trait (Mudasir et al. 2012) Whereas 
the phenomenon of correlation was concluded as the cor-
relation between traits and their genetic linkage or epistatic 
effects among various genes (Özer et al. 2010). Correlation 
analysis also showed a highly significant and positive corre-
lation between the traits. Similarly, a highly significant, posi-
tive, and very strong correlation between dry shoot weight 
with dry root weight in chickpeas has also been documented 
(Zawude and Shanko 2017; Yousef et al. 2020). Moreover, 

these traits also showed significant association with each 
other. Therefore, breeders should use these traits as a selec-
tion criterion for the evaluation of salt-tolerant chickpea 
genotypes.

The salt tolerance index reflects the tolerance potential 
of a given species under natural or artificially induced salin-
ity conditions. It is the ratio between NaCl-treated plants 
with control plants (Wu et al. 2019). Both in vitro germi-
nated shoots and roots were considered for the estimation 
of STI of chickpeas (Karakullukçu 2008). According to the 
results, the STI of shoots was relatively higher than the roots 
on all mediums containing NaCl. The possible reason for 
lower STI values for roots is the direct contact of roots to 
the culture medium supplemented with NaCl concentration 
and relatively low root dry wt compared to shoots. Compar-
ing NaCl concentration, STI decreased with elevated NaCl 
concentration for both shoots and roots. A similar impact 
has already been reported in tomatoes when exposed to dif-
ferent NaCl concentrations under in vitro conditions (Zaki 
and Yokoi 2016). These results reflected that STI values can 
vary with NaCl concentration and plant part. Previous stud-
ies also emphasized the role of different factors like explant 
type (Mungala et al. 2008), NaCl concentration (Day and 
Aasim 2017), and genotype (Wu et al. 2019) on STI  for 
different crops.

Estimation of different elements like Na+, K+, and 
Cl− in plant parts are helpful for salinity tolerance of that 
given plant and both root and shoot can be used for esti-
mating the salinity impact on nutrient uptake and plant 
growth (Wei-hua et al. 2013; Muchate et al. 2019). The 
K+ uptake at a higher salinity level induced by NaCl is 
the desired character for a given trait (Yeo and Flowers 
1989) and generally, low K+ concentration at a higher 
salinity level is a common feature (Wu et al. 2019). Com-
paring plant parts, K (%) was relatively low in shoots 
compared to roots on all mediums, and previous studies 
also revealed the variable K+ contents in different plant 
parts (Zaki and Yokoi 2016; Wu et al. 2019). On the con-
trary, previous studies revealed elevated K+ contents in 
leaves with elevated NaCl contents (Atieno et al. 2017). 
Similarly, variable Na+ contents were attributed to plant 
part and NaCl concentration and increased Na+ contents 
with elevated NaCl concentration for both shoots and 
roots (Zaki and Yokoi 2016; Al-Khateeb et al. 2020). The 
relationship between Na+ and K+ is highly important and 
low Na+ contents and high K contents exhibit a positive 
impact on salinity (Liang et al. 2018). Although K+/Na+ 
ratio is highly significant for salinity tolerance (Almeida 
et al. 2017), the focus must be given to K uptake rather 
than K+/Na ratio for screening against salinity. However, 
it may vary with other factors like genotype (Škrubej 
et al. 2015). Results on Cl contents exhibited increased 
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Cl− contents in response to elevated NaCl concentration 
(Zaki and Yokoi 2016).

In order to comprehend the impact of different stresses 
on growth parameters and germination indices one need 
to fully grasp the relationship between the input and out-
put variables which can be accomplished with the aid of 
statistical or computer-aided algorithms. Lately, valida-
tion, prediction and optimization of data is done by AI/
ML based models and performance of these models is 
tested by scores of different performance metrics. In vitro 
studies on plant revealed the reliability and accuracy of 
different ML in different disciplines ranging from in vitro 
germination to callus and shoot induction (Hesami et al. 
2020b; Hesami and Jones 2021; Pepe et  al. 2021a, b; 
Aasim et al. 2022b). Application of ML or ANN models 
for germination or growth indices has also been employed 
for different crops (Škrubej et al. 2015). These studies 
generally involved the deep learning models for detecting 
germination (Genze et al. 2020) and seedling establish-
ment (Samiei et al. 2020). Whereas, in vitro germination 
and seedling growth parameters using ML/ANN models 
has been documented for industrial hemp (Aasim et al. 
2022c). In this study, four different performance metrics 
were utilized for predicting the data for salinity impact 
on in vitro growth parameters by MLP model. The four 
performance indicators that were employed corroborated 
the findings and accurately anticipated the outcomes. 
However, each output exhibited variable R2 scores with 
relatively less R2 scores were registered for shoot length 
and shoot numbers. All remaining output variables exhib-
ited relatively high R2 scores. Another important aspect 
of the current study was validation and prediction of STI 
of shoot and root at different NaCl concentration. The 
results revealed the clear impact of NaCl concentration 
and organ type, and highest R2 scores were documented 
for STI (shoot) and STI (root). The actual and predicted 
scores for both STI parameters were close to each other 
confirmed by the R2 scores of both output parameters. 
Application of ML/ANN modeling for estimating the salt 
stress is a key tool to screen the plants against different 
types of stresses. Limited number of reports have publi-
cized the successful use of AI/ML models for identifica-
tion, quantification, classification and prediction of salt 
stress in plants like rice (Moghimi et al. 2018), wheat 
(Das et al. 2020; Kecoglu et al. 2022), and Arabidopsis 
(Kang et al. 2018; Vakilian 2020). Whereas, phenotyp-
ing screening of plants against salt stress (Singh et al. 
2016; Feng et al. 2020; Gao et al. 2020) have also been 
employed. The results of the study have successfully dem-
onstrated that AI/ML can be employed for in vitro screen-
ing against different types of stresses.

Conclusion

This study presents the impact of different NaCl concentra-
tions on germination indices and growth indices for desi 
chickpea seeds cultured under in vitro conditions. A nega-
tive impact of elevated NaCl concentration on all germina-
tion and growth indices was clearly observed when com-
pared to the control group. Majority of the traits reflected 
a highly significant and positive correlation except fresh 
root wt, which reflected a non-significant correlation with 
root numbers and dry shoot wt. Elemental analysis revealed 
more Na and Cl accumulation with respective elevated NaCl 
concentrations. Application of MLP models to predict vari-
ous outputs with high precision was achieved efficaciously 
and it was also validated through four different performance 
metrics—R2, MSE, MAE and MAPE. Moreover, STI of desi 
chickpea was precisely predicted via MLP with high preci-
sion for both shoot and root. This work clearly highlights a 
necessity to employ more AI models or hybrid models to 
predict and optimize the stress level under natural or con-
trolled conditions. Above all, the unprecedented findings in 
this study may serve to start a new era to frequently employ 
AI based models for estimating the impact of different types 
of stresses under either in vitro conditions or in field studies 
in conjunction with traditonal statistical analysis.
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