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Multi‑order graph attention 
network for water solubility 
prediction and interpretation
Sangho Lee 1,2,10, Hyunwoo Park 1,2,10, Chihyeon Choi 1,2, Wonjoon Kim 3, Ki Kang Kim 4,5, 
Young‑Kyu Han 6, Joohoon Kang 7,8, Chang‑Jong Kang 9* & Youngdoo Son 1,2*

The water solubility of molecules is one of the most important properties in various chemical 
and medical research fields. Recently, machine learning-based methods for predicting molecular 
properties, including water solubility, have been extensively studied due to the advantage of 
effectively reducing computational costs. Although machine learning-based methods have made 
significant advances in predictive performance, the existing methods were still lacking in interpreting 
the predicted results. Therefore, we propose a novel multi-order graph attention network (MoGAT) for 
water solubility prediction to improve the predictive performance and interpret the predicted results. 
We extracted graph embeddings in every node embedding layer to consider the information of diverse 
neighboring orders and merged them by attention mechanism to generate a final graph embedding. 
MoGAT can provide the atomic-specific importance scores of a molecule that indicate which atoms 
significantly influence the prediction so that it can interpret the predicted results chemically. It also 
improves prediction performance because the graph representations of all neighboring orders, 
which contain diverse range of information, are employed for the final prediction. Through extensive 
experiments, we demonstrated that MoGAT showed better performance than the state-of-the-art 
methods, and the predicted results were consistent with well-known chemical knowledge.

Since most chemical and biological reactions occur when dissolved in water, the water solubility of a molecule 
or polymer is an important factor in various academic and industrial fields such as chemistry, biochemistry, 
food engineering, medical, and pharmaceutical industries. For example, biological activities such as the reac-
tion between proteins1, protein and nucleic acid structures2, protein-substrate binding3, and protein folding3 are 
conducted in the liquid state4; thus, solubility plays an important role in dosage forms and desired concentration 
of drugs to achieve the required pharmacological response5.

Accurate measurement of the water solubility of a molecule involves rigorous and time-consuming experi-
ments that are highly sensitive to the external environment. Furthermore, although there are several theoretical 
models for computing solubility6,7, these models were empirically constructed using only a small amount of 
experimental data. Therefore, building a general empirical model is challenging for a large set of experimental 
data using the existing theoretical models.

Recently, to overcome this limitation, various machine learning (ML)-based methods have been widely intro-
duced to predict solubility and other molecular properties using molecular features, including molecular weights, 
ring structures, and aromatic properties8–11. Some studies have improved the prediction performance with graphs 
consisting of nodes and edges representing atoms and bonds, respectively, as inputs12–15. To effectively capture 
the structural characteristics of the constructed graphs, they used various graph neural network (GNN)-based 
methods, including message passing neural network (MPNN)13 and its variants with attention16,17, to predict 
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molecular property. They also demonstrated the graph could effectively represent the structural characteristics 
of the molecules. Although the GNN-based methods improved the predictive performance of molecular proper-
ties, most of them failed to interpret factors that substantially impact molecular properties prediction18. Analyz-
ing the impacts of each factor in molecules provides confidence in the results; thus, the GNN-based methods 
should interpret which atoms in a molecule highly affect the prediction in a similar way to the well-known 
chemical knowledge. AttentiveFP14, one of the GNN-based chemical property prediction methods, can provide 
the importance of each atom in predicting molecular properties. Specifically, AttentiveFP well-interpreted the 
predicted results through the importance of each atom obtained from neighbors’ information of the final node 
embedding layer, as well as achieved state-of-the-art performance. However, it can only consider the neighbors’ 
information from the last node embedding layer and cannot directly reflect the information of the different 
neighboring orders obtained from the other layers.

Therefore, we propose a multi-order graph attention network (MoGAT) for water solubility prediction to 
improve the performances of prediction and interpretation with diverse aspects of neighbors’ information. 
First, for each node embedding layer, we derived node embeddings, which imply the hidden states of each atom, 
updated by reflecting information of its neighbors. Then, graph embeddings representing the whole molecule 
at every node embedding layer are calculated. Finally, a final graph embedding is derived by giving weights 
calculated with the softmax function to the graph embeddings. The graph embeddings obtained from every 
node embedding layer reflect the information of different neighboring orders; thus, the final graph embedding 
provides useful information in predicting water solubility. In addition, the weights calculated with the softmax 
function to the graph embeddings imply the importance scores of each atom so that we can interpret the effect 
of each atom on the predicted results.

To verify the predictive performance of MoGAT, we performed several experiments with extensive datasets. 
As a result, we demonstrated that MoGAT achieved better performance than the existing GNN-based methods. 
Furthermore, we interpreted which atoms in a molecule are important for water solubility by deriving atomic-
specific importance by integrating information of diverse neighboring orders. The importance scores of atoms 
were also consistent with the chemical intuitions from the existing calculation results19.

The rest of this paper is organized as follows. In the next section, the preliminaries and a detailed algorithm of 
the proposed method are described. Then, we present the experimental results on various benchmark datasets, 
which demonstrate the effectiveness of MoGAT. Finally, we conclude with a discussion on the limitations of 
MoGAT and mention of future research directions.

Methodology
In this section, we first briefly explain the attention mechanism applied to GNNs. Then, we propose a novel graph 
attention network, MoGAT, for predicting and interpreting water solubility.

Graph neural networks with attention mechanism.  In general, GNNs used to predict molecular 
property consist of two phases: a message-passing phase between nodes and a readout phase. The message-
passing phase repeatedly updates the hidden state of each node by reflecting information from its neighboring 
nodes. In the readout phase, a graph embedding is derived by unifying the hidden states of all nodes that have 
been updated in the message passing phase.

The attention mechanism20 can present the importance of each input variable related to a target value. Bahdanau 
et al.20 first introduced the attention mechanism for the machine translation task. However, it has recently been employed 
in various tasks, such as image processing21, speech recognition22, and graph analysis23, owing to its advantage that it 
can enable models to focus on certain important information. When applying the attention mechanism to the GNNs, 
using the regional information around the target node is crucial. To calculate the importance score of each node, we 
first concatenate hidden states of a node v to be updated and a neighboring node n. Then, as the following Eq. (1), we 
generate evn by linearly transforming the concatenated vector with a learnable parameter matrix W and applying the 
leaky rectified linear unit (LeakyReLU) as a non-linear activation function.

where hv and hn denote hidden states of the nodes, v and n, respectively. Second, an importance attention score 
svn for v of n is obtained by normalizing evn for all neighbor nodes of v using the softmax function as follows:

where N (v) denotes all neighbor nodes of v. Next, as in Eq. (3), the context vector cv consisting of the importance 
scores for the node v is calculated by linearly transforming hn with the learnable parameter matrix V, taking a 
weighted sum of it using svn as weights, and applying the exponential linear unit (ELU) as a non-linear activa-
tion function.

Finally, for updating hv , one of the recurrent neural networks, such as the gated recurrent unit (GRU​)24 and 
long short-term memory25, is used to generate messages among nodes.

(1)evn = LeakyReLU(W · [hv; hn]) =

{

W · [hv; hn], ifW · [hv; hn] ≥ 0,
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MoGAT: multi‑order graph attention network.  Although AttentiveFP achieved good predictive per-
formance and presented important atoms affecting the final prediction, it cannot directly reflect information of 
diverse neighboring orders since it computes importance scores at the final node embedding layer only, as shown 
in Fig. 1a. Note that the range of information (neighboring orders) of nodes reflected in the hidden representa-
tions increases as the message passing phase is repeated. For example, a target node receives information from 
the neighboring nodes directly connected to the target node. Then, in the next update, the information for the 
neighbors of the nodes adjacent to the target node is also delivered to the target node because the adjacent nodes 
were updated by reflecting their neighbors’ information in the previous step. Thus, for each update of node 
embedding, information of one additional neighboring order is included.

Therefore, we propose MoGAT that directly reflects the information of diverse neighboring orders from each 
node embedding layer to the final prediction. The architecture of the proposed MoGAT is shown in Fig. 1b. 
Specifically, we first generate graph embeddings in all node embedding layers. Then, we calculate the importance 
scores of each graph embedding and construct a final graph embedding using the calculated importance scores 
as weights of corresponding graph embeddings. In other words, compared with AttentiveFP, we used the atten-
tion mechanism (Eqs. (1)–(3)) to derive the final graph embedding as well as those of each node embedding 

(a) AttentiveFP

(b) MoGAT

Figure 1.   Overviews of (a) AttentiveFP and (b) MoGAT. The first, second, and third-order neighboring nodes 
are colored red, green, and yellow, respectively. In AttentiveFP, a graph embedding is obtained only from the 
final (third) node embedding layer. In contrast, MoGAT constructs graph embeddings corresponding to all 
node embedding layers, and the graph embeddings are combined into one final graph embedding (blue) via the 
attention mechanism.
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layer. Thus, we can improve prediction and interpretation performances by obtaining useful representation and 
importance scores with richer neighbors’ information.

For obtaining a graph representation (graph embedding) of a node embedding layer, we first define a virtual 
super node csuper , which is assumed to be connected to all nodes (atoms). The graph representation of csuper is 
calculated same procedures as in Eqs. (1)–(3). Then, we adopt GRU​ to update hsuper , the hidden state of csuper , that 
equals the graph embedding of the node embedding layer. The GRU​ can efficiently capture the messages when 
updating the hidden state of the node by using update and reset gates at each update step26,27; hence, the GRU 
has been used in many previous studies in the chemistry domain28,29. Given the previous hidden state, hi−1

v  , and 
context vector, ci−1

v  , of the node v, the hidden state is updated as follows:

where riv and ziv are the states of the reset and update gates, respectively, Wr , Wz , and Wh are the learnable param-
eters, σ is a sigmoid function, and ◦ is the Hadamard product. Subsequently, we calculate the weights of each 
atom for the graph embedding using the attention mechanism as in Eq. (8).

where G is a set in which graph embeddings are concatenated, and dG denotes the dimension (finger print) of 
G . Next, a final graph embedding is derived by the dot-product between the weights and corresponding graph 
embeddings. Finally, we use a one-layered fully connected network (FC) to predict the target, water solubility, 
with the final graph embedding.

Thus, MoGAT can track how each atom in the molecule affected the final graph embedding because all 
intermediate graph embeddings were generated by weighting the node embeddings of all atoms with the derived 
attention scores. In other words, our method can interpret the importance of each atom for the molecule for the 
property prediction through the size of attention scores.

To summarize, the proposed method first creates node and graph embeddings for each neighboring order in 
the message-passing phase. Then, the graph attention mechanism is used to update the node embeddings and 
generate the graph embeddings obtained by the virtual super node connected to all atoms for each neighboring 
order. Next, the final graph embedding is obtained by the weighted sum of the graph embeddings, where the 
weights of each graph embedding are calculated using the attention mechanism, as above Eq. (8), in the readout 
phase. Finally, the final prediction result is computed with the obtained final graph embedding using the FC. 
We summarized the overall procedures of the proposed MoGAT in Algorithm 1.

(4)riv = σ

(
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v ; civ]

)
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Experiments
To verify the performance for prediction and interpretation of MoGAT, we used a public water solubility dataset, 
Estimated Solubility (ESOL11), to evaluate the predictive performance of MoGAT. ESOL contains experimentally 
measured solubility values of 1,128 molecular compounds with an average of − 3.05 and a standard deviation of 
2.1 where the unit is log solubility in mols per liter (logS).

In addition, we compared MoGAT with several baseline models for predicting molecular properties based on 
GNNs, such as graph convolution neutral network (GCN)30, Weave12, MPNN13, and AttentiveFP14. GCN trans-
fers and receives information through a weight matrix of neighboring nodes. For Weave and MPNN, additional 
edge features and node features are used when the information is transferred to neighboring nodes. Moreover, 
MPNN reflects the connectivity characteristics between atoms by integrating information from the edge features 
and node features for the enhancement of performance. AttentiveFP is an interpretable GNN based on MPNN. 
It constructs a graph representation by applying the attention mechanism at both atomic and molecular levels. 
The baseline models were implemented using the codes uploaded on the GitHub31.

Training, validation, and test datasets were randomly separated by 80%, 10%, and 10% of the total number 
of data, respectively. We set the hyperparameters, such as ℓ2 weight decay and training epoch, equal to Xiong 
et al.14 for fair comparison. Additional hyperparameters for MoGAT, including the number of node embedding 
and graph embedding updates, are found by the random search. The search ranges and selected optimal hyper-
parameters for MoGAT are listed in Table 1.

For a fair comparison, we used input features for all experiments as same in Xiong et al.14 and listed them 
in Table 2.

For all experiments, we repeated the separation of the dataset five times and reported the averaged results to 
reduce the effect of randomness.

Experimental results.  Figure  2a shows root mean squared error (RMSE) and R-squared ( R2 ) of each 
method for estimating water solubility. The points derived by MoGAT located closer to a diagonal line ( y = x ) 
than the points by the other baseline methods, which implies that MoGAT predicts the water solubility of the 
molecules closer to the target values than the others. In addition, MoGAT achieved the lowest RMSE of 0.4784. 
Thus, we demonstrated that our method outperformed the other baseline methods in solubility prediction. In 
other words, we experimentally showed that the performance is improved by using the information transmit-
ted from various neighboring orders for final prediction as compared with AttentiveFP. Furthermore, as shown 
in Fig.  2b, we provide generalized error distribution (symmetric generalized Gaussian distribution)32 of the 
errors between the predicted and experimental solubility values. The generalized error distribution has three 
parameters, µ , α , and β . µ is the location parameter that determines the location or shift of the distribution33; 

Table 1.   Search ranges for hyperparameters of MoGAT. The optimal values are highlighted in boldface. κ and 
τ denote the number of node embedding and graph embedding updates, respectively. In addition, dG denotes 
dimension of the embeddings.

Hyperparameter Search range

κ 1, 2, 3, 4, 5, 6

τ 1, 2, 3, 4, 5, 6

dG 100, 150, 200, 250, 300, 350, 400

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5

Learning rate 0.1, 0.01, 0.001, 0.0001



6

Vol:.(1234567890)

Scientific Reports |          (2023) 13:957  | https://doi.org/10.1038/s41598-022-25701-5

www.nature.com/scientificreports/

α is the scale parameter that determines the dispersion, which means how spread out the errors are; β is the 
shape parameter, which affects the shape of a distribution, such as peakedness, or fat-tailedness34. The estimated 
parameters of fitted generalized error distributions are provided in Table 3.

As shown in Table 3, when comparing the parameters of the distributions, MoGAT and AttentiveFP, which 
are the variants of graph attention networks, had smaller µ , α , and β ; the predictive performances of these graph 
attention-based methods show better solubility predictive performances than GCN, Weave, and MPNN. Moreo-
ver, MoGAT showed stable predictive performance because it was not biased to one side as µ was closer to zero 

Table 2.   List of input features.

Features Size Type Description

Atomic

Atom symbol 16 One-hot B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, metal

Degree 6 One-hot Number of covalent bonds

Formal charge 1 Integer Electrical charge

Radical electrons 1 Integer Number of radical electrons

Hybridization 6 One-hot sp, sp2, sp3, sp3d, sp3d2, other

Aromaticity 1 Binary Ehether the atom is part of an aromatic system

Hydrogens 5 One-hot Number of connected hydrogens

Chirality 1 Binary Whether the atom is chiral center

Chirality type 2 One-hot R, S

Bond

Bond type 4 One-hot single, double, triple, aromatic

Conjugation 1 Binary Whether the bond is conjugated

Ring 1 Binary Whether the bond is in ring

Stereo 4 One-hot StereoNone, StereoAny, StereoZ, StereoE

Figure 2.   Comparison of the proposed method and other baseline models in estimating water solubility. (a) 
Scatter plots of predicted and experimental solubility values, where the x-axis and y-axis indicate the predicted 
and experimental solubility values. ML and EXP indicate the predicted and experimental solubility values, 
respecitvely. (b) Generalized error distribution of the errors between ML and EXP. The unit of water solubility is 
logS.

Table 3.   Estimated parameters of generalized error distributions corresponding to the proposed and baseline 
methods. µ , α , and β are location, scale, and shape parameters of the distribution, respectively.

GCN Weave MPNN AttentiveFP MoGAT​

µ 0.118 − 0.260 0.089 0.056 − 0.007

α 0.817 0.693 0.674 0.488 0.315

β 1.517 1.421 1.261 1.104 0.946
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than AttentiveFP. For α and β values, which denote the existence of large errors, MoGAT showed the smallest 
values; hence, we also demonstrated that our method outperformed the other methods.

MoGAT also achieved better performance for predicting other molecular properties, including solvation-
free energy and lipophilicity, than the other baseline methods. The detailed results for these experiments can be 
found in Supplementary Tables S1–S3.

Furthermore, to validate the interpretability of MoGAT, we derived the relative importance (attention scores) 
calculated by Eq. (8) and compared them with the attention scores of AttentiveFP. Note that the larger size of the 
attention score, the greater the importance of the corresponding chemical component to the final prediction.

Figure 3 shows the predicted water solubility and relative importance of each chemical component by the 
proposed MoGAT and AttentiveFP. The target value for water solubility was determined experimentally, as 
stated in the ESOL dataset. Figure 3a shows attention scores for water solubility of methyl hydrazine (CH3(NH)
NH2 ) using AttentiveFP (top) and MoGAT (bottom). The experimental solubility value (target value) of methyl 
hydrazine was 1.34 (logS). MoGAT predicted water solubility to 1.339, resulting in a closer value to the true one 
than AttentiveFP. According to Klopman et al.19, which introduced a table of group contribution values of atoms 
to aqueous solubility, the contribution values of NH and NH2 to water solubility were 0.9549 and 0.6935, respec-
tively, while that of CH3 was − 0.3361. In this case, both AttentiveFP and MoGAT emphasized the importance 
of NH and NH2 over CH3 as noted in Klopman et al.19. The attention scores in computing water solubility of 
d-inositol (C6H12O6 ) using AttentiveFP (top) and MoGAT (bottom) are indicated in Fig. 3b. The target value of 
d-inositol was 0.35 (logS). AttentiveFP and MoGAT predicted water solubility as 0.632 and 0.516, respectively. 
Thus, we also confirmed that our method predicted the water solubility more accurately than AttentiveFP. In 
addition, the contribution value19 to the water solubility of OH was 1.0910, and that of C inside the ring system 
was − 0.4072. It is widely acknowledged that OH has a significant role in the water solubility of organic molecules 
with hydroxy groups35. Although MoGAT emphasized OH more than C, the attention scores derived by Atten-
tiveFP differed from the known chemical fact as it predicted that C in the ring system is more important than 
OH in computing water solubility. The interpretability of MoGAT is still valid for other numerous molecules 
provided in Supplementary Figs. S1–S5.

Next, we examined how the predicted solubility values and attention scores change when some atoms (e.g., 
O and N) of the molecules are replaced with others (e.g., C).

In Fig. 4a, we changed NH in methyl hydrazine (CH3(NH)NH2 ) to CH2 . In the analysis of Klopman et al.19, 
the solubility contribution value of CHx is lower than those of OH, O, NH, and NH2 . Thus, in this case, we can 
observe the predicted solubility values were diminished than that of methyl hydrazine. Specifically, the target 
value of methyl hydrazine was 1.34 (logS), and the water solubility derived by MoGAT was 1.339 before the 
replacement, but after the replacement, it decreased to 0.409. In addition, the attention score of the replaced 
atom was also decreased. In Fig. 4b, OH in cyclohexanol (C6H12 O) was replaced with CH3 , becoming methylcy-
clohexane (C7H14 ). The target values of cyclohexanol and methylcyclohexane were − 0.44 and − 3.85, respectively. 
In other words, when OH in cyclohexanol was replaced with CH3 , the water solubility is decreased. MoGAT 
predicted solubility values as − 0.618 and − 4.341, respectively, so the trend of predicted values is consistent 
with common knowledge. As in the previous case, the attention score of the replaced atom was also reduced 
when OH was replaced with CH3 . Finally, valeraldehyde (C5H10 O) was compared to 1-hexene (C6H12 ), which 

(a) Methyl hydrazine (b) d-inositol

Figure 3.   Relative importances of chemical components in computing water solubility predicted by AttentiveFP 
and MoGAT, for (a) methyl hydrazine and (b) d-inositol. The predicted water solubility values (unit: logS) 
are also provided for both AttentiveFP and MoGAT with experimentally measured values (target values). The 
attention scores are illustrated by the color-coding shown in the right panel.
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is a form of valeraldehyde with the double bonded O replaced with CH2 , and the result was presented in Fig. 4c. 
The target values of valeraldehyde and 1-hexene are − 0.85 and − 3.23, respectively. The water solubility derived 
by MoGAT was decreased from − 0.732 to − 3.091 after the replacement and the attention score of the replaced 
atom was also lowered, which also implies the consistency of the results of MoGAT and the existing chemical 
knowledge. Other examples of the changes in water solubility when replacing atoms in various molecules are 
provided in Supplementary Figs. S6–S13.

Commercial medicines.  To verify the generalizability of MoGAT, we applied our method to the existing 
commercially available medicines, including rosuvastatin (C22H28FN3O6S), escitalopram (C20H21FN2O), and 
ranolazine (C24H33N3O4 ). Rosuvastatin is a statin medicine used to prevent cardiovascular disease and treat 
dyslipidemia, escitalopram is an antidepressant for selective serotonin reabsorption inhibition, and ranolazine 
is a medicine used to treat heart-related chest pain36. Their solubility values were calculated by ALOGPS 2.1 in 
Tetko et al.37.

The water solubility values of the commercial medicines predicted by MoGAT are shown in Fig. 5. Given that 
the proposed MoGAT had RMSE of 0.4784 for the original test dataset (see Fig. 2a), the predictive performances 
for three commercial medicines not included in the ESOL dataset are also reliable, owing to predicted errors 
ranging from 0.4052 to 0.4635.

Moreover, when the atomic-specific attention scores were computed for these commercial medicines, nitrogen 
atoms had high attention scores in escitalopram and ranolazine, and sulfur and nitrogen atoms had high atten-
tion scores in rosuvastatin. According to Klopman et al.19, both the double-bonded sulfur and nitrogen have 
negative contributions of − 1.3197 and − 0.372, respectively, in a ring system. Since such negative contributions 
mean that they play important roles in low water solubility, the produced results by MoGAT were consistent 

Figure 4.   Change in water solubility and attention score estimated by MoGAT for some atomic or molecular 
replacements. The attention scores are presented by the color-coding shown in the right panel. (a) NH in methyl 
hydrazine is replaced with CH2 , (b) OH in cyclohexanol is replaced with CH3 , and (c) O in Valeraldehyde is 
replaced with CH2 . The unit of water solubility is logS.

Figure 5.   Predicted water solubility for three commercial medicines. The unit of water solubility is logS.
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with well-known chemical understandings, considering that a large molecule or polymer usually has low water 
solubility.

Conclusion
In this paper, we proposed a novel graph attention neural network, MoGAT, for water solubility prediction to 
improve the predictive performance and interpret the predicted results. Specifically, we first generated graph 
embeddings for every node embedding layer; then, we created a final graph embedding using the graph embed-
dings and an attention mechanism. Generating graph embeddings from all node embedding layers can reflect 
various neighboring orders in the final prediction. Thus, MoGAT, which uses the final graph embedding com-
bining all graph embeddings, improved predictive performance compared to the existing graph-based chemical 
property prediction methods. In addition, for atomic-specific importance to water solubility within a molecule, 
we demonstrated that the attention scores calculated by our method were consistent with existing chemical 
knowledge. Moreover, when specific chemical components of the molecule were replaced with others, the pre-
dicted solubility and atomic attention scores changed as expected based on the existing knowledge. However, 
our method has two limitations. First, since our method, MoGAT, computes graph embeddings from all node 
embedding layers and derives the final graph embedding by combining them, it has a higher time complexity than 
the existing methods. In terms of floating point operations (FLOPs), one of the indicators to measure the amount 
of calculation for a single instance in a model, MoGAT has 36.23 M FLOPs because of the additional parameters 
to generate the above-mentioned graph embedding layers, while AttentiveFP has 33.70 M FLOPs. Therefore, 
contriving an efficient approach, including refining the attention mechanism for obtaining graph embeddings, 
derived to handle this issue can be further studied. Second, the proposed method has several hyperparameters 
that should be optimized, including the number of node embedding and graph embedding updates. Thus, we 
can improve MoGAT by automatically finding the optimal hyperparameters or reducing them.

Data availability
All datasets used in this study are publicly available.
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