
Descriptor
Restaining-based annotat
ion for cancer histology
segmentation to overcome annotation-related
limitations among pathologists
Graphical abstract
Highlights
d SegPath is the largest annotation dataset for cancer histology

segmentation

d Immunofluorescence restaining enables high-throughput

and accurate annotation

d SegPath is morphologically less biased than pathologists’

annotation
Komura et al., 2023, Patterns 4, 100688
February 10, 2023 ª 2023 The Author(s).
https://doi.org/10.1016/j.patter.2023.100688
Authors

Daisuke Komura, Takumi Onoyama,

Koki Shinbo, ..., Tohru Ikeda,

Tetsuo Ushiku, Shumpei Ishikawa

Correspondence
ishum-prm@m.u-tokyo.ac.jp

In brief

We created the largest-scale datasets for

the segmentation of cancer histology

images. Immunostaining with antibodies

that recognize eight tissue/cell types

yields datasets that are more accurate

than those of conventional human

annotations. These datasets enable the

development of accurate deep-learning

models for cancer histological images,

which could assist in computer-aided

diagnosis, interpretation of the diagnosis,

and basic science of cancer.
ll

mailto:ishum-prm@m.u-tokyo.ac.�jp
https://doi.org/10.1016/j.patter.2023.100688
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2023.100688&domain=pdf


OPEN ACCESS

ll
Descriptor

Restaining-based annotation for cancer histology
segmentation to overcome annotation-related
limitations among pathologists
Daisuke Komura,1 Takumi Onoyama,1,2 Koki Shinbo,1 Hiroto Odaka,1 Minako Hayakawa,1,3 Mieko Ochi,1

Ranny Rahaningrum Herdiantoputri,4 Haruya Endo,1 Hiroto Katoh,1 Tohru Ikeda,4 Tetsuo Ushiku,3

and Shumpei Ishikawa1,5,6,*
1Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo

113-0033, Japan
2Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine,

Tottori University, 36-1 Nishicho, Yonago, Tottori 683-8504, Japan
3Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
4Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima,
Bunkyo-ku, Tokyo 113-8549, Japan
5Division of Pathology, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba

277-8577, Japan
6Lead contact
*Correspondence: ishum-prm@m.u-tokyo.ac.jp

https://doi.org/10.1016/j.patter.2023.100688
THE BIGGER PICTURE Tumor tissue is composed of various cell types. Information on the location of
various cells in tumor tissue is essential to identifying tumor features; however, the accurate and quick esti-
mation of this information is challenging. Deep-learning-based segmentation can overcome this challenge
but is hindered by the insufficient amount of training data. We therefore created training datasets for the
segmentation of various tissues or cells at an unprecedented scale through immunostainingwith antibodies
that identify various tissue/cell types. SegPath annotation outperformsmanual annotation in terms of accu-
racy and morphological bias, leading to more optimized segmentation model development. Application of
the segmentation model trained on SegPath to a large number of cancer histopathology specimens that
have been accumulated in hospitals could significantly impact cancer diagnosis and acquisition of addi-
tional insight into cancer research.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Numerous cancer histopathology specimens have been collected and digitized over the past few decades.
A comprehensive evaluation of the distribution of various cells in tumor tissue sections can provide valu-
able information for understanding cancer. Deep learning is suitable for achieving these goals; however,
the collection of extensive, unbiased training data is hindered, thus limiting the production of accurate seg-
mentation models. This study presents SegPath—the largest annotation dataset (>10 times larger than
publicly available annotations)—for the segmentation of hematoxylin and eosin (H&E)-stained sections
for eight major cell types in cancer tissue. The SegPath generating pipeline used H&E-stained sections
that were destained and subsequently immunofluorescence-stained with carefully selected antibodies.
We found that SegPath is comparable with, or outperforms, pathologist annotations. Moreover, annota-
tions by pathologists are biased toward typical morphologies. However, the model trained on SegPath
can overcome this limitation. Our results provide foundational datasets for machine-learning research in
histopathology.
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INTRODUCTION

Tumor tissues comprise various cell types, each with a unique

function and morphology. In cancer histopathology, information

on cell components and their distribution in the tumor tissues of

patients aids with diagnoses, classification of tumor subtypes,

prediction of prognosis and therapeutic effects, and understand-

ing the underlying mechanisms of carcinogenesis.1,2 Although

pathologists estimate such information in clinical practice, the

quantitative and comprehensive measurement of cell compo-

nents and distribution data is almost impossible, particularly

for large tissue specimens. Therefore, an automatic segmenta-

tion system using routinely used hematoxylin and eosin (H&E)-

stained tumor sections can be highly valuable in medical

practice and cancer research.

Deep neural networks are emerging machine-learning tech-

nologies capable of performing such tasks with remarkable ac-

curacy.3–6 However, the remarkable performance of deep neural

networks is attributed to their abundant annotations, which are

often difficult to obtain in medical imaging. There are large-scale

publicly available datasets for the semantic segmentation of H&E

images based on numerous efforts to annotate tissues or cells,

most of which rely on human annotators.6,7 For example,

GlaS8 is a dataset of colorectal gland segmentation consisting

of 165 images derived from 16 histological sections annotated

by a single pathologist. BCSS9 contains more than 20,000 tissue

annotations for segmentation and NuCLS7 contains 220,000 cell

annotations for detection or segmentation, both from breast

cancer images. These two datasets were annotated by a non-

pathologist and then refined by multiple pathologists to increase

the scale of the dataset. In addition, Camelyon10 annotated 499

H&E slides with pathologist-annotated boundaries of metastatic

breast cancer cells, some of which were confirmed by cytokera-

tin immunohistochemistry (IHC) on serial sections. CoNIC5 is the

largest dataset to date for the segmentation of six types of nuclei

from colon cancer, incorporating artificial intelligence to perform

the annotation; however, the difficult cases are annotated by a

pathologist. MoNuSAC202011 comprises 31,000 nuclear bound-

ary annotations for epithelia, lymphocytes, macrophages, and

neutrophils from four organs (lung, prostate, kidney, and breast).

These datasets facilitate the development of deep-learning

models for cancer tissue/cell segmentation or detection. Howev-

er, manual annotation of tumor tissues by non-pathologists is not

feasible and is considerably time and labor intensive, thereby

limiting the generation of large-scale annotated datasets that

cover more tissue/cell and tumor types. Another key issue

that has often been overlooked in previous research is the fact

that human annotations may not cover the full diversity of cell

morphologies. Cells do not always have the typical morphol-

ogies described in textbooks. The surrounding environments

(e.g., narrow lumen) can deform cells, which may lead to the pre-

sentation of atypical morphologies depending on the location

and angle of the cell cross-section. The morphologies of cells

can also be altered by molecular interactions with the surround-

ing microenvironment. For example, the identification of tumor

vascular endothelial cells may be complicated by their enlarged

nuclei and morphologies, which are similar to those of epithelial

cells.12 Additionally, the accurate identification of certain cell

types, such as myeloid cells, by pathologists can be compli-
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cated, as evidenced by the high rates of macrophage count

discordance among pathologists.13 Such factors inhibit the ac-

curate annotation of cells with atypical morphologies by pathol-

ogists and potentially limit the performance of segmentation

models trained using the datasets.

Recently, new methods using IHC technologies or special

stains for the annotation of histological images have emerged

to overcome the aforementioned limitations.14–17 Ing et al.14

used an anti-CD31 antibody to stain vascular endothelial cells

in 204 destained H&E slides of renal cancer and developed a

segmentation model for vascular endothelial cells. In addition,

Liu et al.15 used Ki-67 IHC staining to stain proliferating cells in

12 destained H&E slides to develop a model for detecting prolif-

erating cells in a neuroendocrine tumor, and Bulten et al.17

created a dataset for epithelium segmentation of 102 H&E-

stained prostate specimens using IHC-restained images as a

guide for generating masks. This approach is powerful because

the restaining procedure can produce perfectly matched slides

instead of consecutive slides, enabling the formation of accurate

segmentation masks without the need for pathologist interven-

tion. However, such datasets are not publicly available or are

limited with regard to cell types and tissues.

Our study adopted the aforementioned approach by creating

a dataset for the semantic segmentation of various tissues or

cells at an unprecedented scale. We developed an annotation

workflow with minimal pathologist intervention based on H&E-

stained sections that were destained and immunofluorescence

(IF) stained. Because IF relies on the proteins expressed in target

cells, it can capture the target cells with diverse morphologies in

a more optimized manner than human annotations. Using care-

fully selected antibodies with high specificities for each of the

eight major constituent cells in tumor tissues, we generated

SegPath, a high-quality dataset of diverse cell types. SegPath

is the largest annotated tissue and cell segmentation dataset

of H&E images of various organs. SegPath has been made

accessible to the public (https://dakomura.github.io/SegPath)

to contribute to the development of new segmentation models.

RESULTS

Dataset generation workflow
The workflow for creating SegPath is shown in Figure 1A. First,

tissue microarray (TMA) sections prepared from well-preserved

formalin-fixed paraffin-embedded (FFPE) tissues were stained

with H&E using a standard procedure. They were then digitized

using a slide scanner to create whole-slide images (WSIs) at

403 resolution. After destaining the H&E-stained sections with

alcohol and autoclave processing, IF and 40,6-diamidino-2-phe-

nylindole dihydrochloride (DAPI) nuclear staining was performed

using antibodies that specifically recognized each cell type. The

sections were then digitized again. The procedures were per-

formed within a few days to prevent the degradation of IF

staining.18 After IF staining, the pathologists confirmed that the

staining quality was sufficiently high. Multi-resolution rigid regis-

tration between the H&E and IF images was performed to ensure

that the alignment of the hematoxylin component in the H&E im-

ages and DAPI in the IF images, both recognizing nuclei. Regis-

tration was first performed at the WSI level and then at the patch

level. After rigid registration, a few cells shifted locally and slightly

https://dakomura.github.io/SegPath
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Figure 1. Generation of annotation masks

for tissue/cell-type segmentation using IF

restaining

(A) Workflow overview. After scanning the H&E-

stained sections, the sections were destained and

restained with DAPI nuclear staining and IF

staining with target-specific antibodies. The slides

were then scanned, and the positions of the two

slides were aligned with registration algorithms.

Small patches were created. Cut-off values of IF

signal intensity were determined for each patch to

generate segmentation masks in an iterative

manner based on the segmentation results of the

deep neural network training on the generated

masks. For endothelial cells, leukocytes, lym-

phocytes, myeloid cells, and plasma cells, a nu-

cleus detection algorithm was applied to the DAPI

channel. Positive signals of the target cell in IF

were transferred to the corresponding nuclei. See

also Figures S1 and S2.

(B and C) (B) Annotated areas for each tissue and

(C) the number of annotated cells for each cell

type in SegPath. Those in publicly available

datasets, including BCSS,9 GlaS,8 CoNIC,5

MoNuSAC2020,11 and NuCLS,7 are also shown.

Organs in brackets represent the target organs of

the dataset. ‘‘SM’’ or ‘‘MF’’ include all stroma in

the GlaS and BCSS datasets.

(D) Distribution of target organs in SegPath.

(E) Distribution of cell types in SegPath. SM,

smooth muscle cell; MF, myofibroblast.

See also Table S2.
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in inconsistent directions during destaining and restaining.

Therefore, we performed an additional non-rigid registration for

each patch to accurately align the nuclei (Figure S1A). We also

observed tissue folding in certain slides during destaining and re-
staining, but pathologists carefully anno-

tated them in WSI and removed the re-

gions in the patch selection process.

Subsequently, we created a binary

segmentation mask based on the IF im-

ages (hereafter referred to as IF-mask)

(Figure S2). The area where the fluores-

cence intensity exceeded the cut-off

value initially determined manually was

labeled positive. The false positives

derived from red blood cell (RBC) auto-

fluorescence estimated using the deep

neural network, which was trained on

the dataset using an anti-CD235a anti-

body recognizing RBCs, were labeled

negative in the non-RBC datasets. For

the hematopoietic and endothelial cells,

the positive regions of the target cells

were transferred to the cell nuclei to

reduce false positives and make the seg-

mentation task more traceable. There-

fore, we used Cellpose,19 a pre-trained

deep neural network model for nuclear

segmentation, with the DAPI images to
identify the nuclei (Figure S1B). We then labeled whole nuclei

as positive if the positive region overlapped with the nuclei

over a certain level. Subsequently, the patches were divided

into training, validation, and test datasets. Finally, we iteratively
Patterns 4, 100688, February 10, 2023 3



Table 1. Antibodies used in this study

Antigen Clone Host Target Localization Company Product no. Evidencea

Pan-cytokeratin

(pan-CK)

AE1/AE3 mouse epithelium cytoplasmic DAKO IS05330-2J used in clinical practice

CD3 polyclonal rabbit T lymphocyte cell membrane,

cytoplasmic

DAKO IS50330-2J used in clinical practice

CD20 L26 mouse B lymphocyte cell membrane,

cytoplasmic

DAKO IS60430-2J used in clinical practice

CD45RB 2B11+PD7/26 mouse Leukocyte cell membrane,

cytoplasmic

DAKO IR75161-2J used in clinical practice

aSMA 1A4 mouse smooth muscle/

myofibroblast

cytoplasmic DAKO M085129-2 used in clinical practice

ERG 9FY mouse blood vessel,

lymphatic vessel

nuclei Biocare

Medical

PM421AA PMID: 23334893

MIST1 D7N4B rabbit plasmacyte nuclei Cell Signaling

Technology

#14896 PMID: 22495370

MNDA polyclonal rabbit myeloid cell nuclei Sigma-Aldrich HPA034532-

100UL

https://www.proteinatlas.org/

ENSG00000163563-MNDA/

antibody

Glycophorin A

(CD235a)

JC159 mouse erythrocyte cell membrane Thermo Fisher

Scientific

MA5-12484 PMID: 24399013

aSupporting evidence of sensitivity/specificity.
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improved the fluorescence intensity threshold using deep neural

network models, as the intensity gradient was observed in the

same WSIs, possibly owing to uneven antibody concentrations

during staining; therefore, the fixed threshold was not optimal.

The deep neural network model for the target tissue/cell was

trained on the training dataset with annotations using the fluores-

cence intensity threshold in the iteration. Otsu’s threshold20 for

successfully segmented patches with positive regions, where

there was a positive correlation between the IF density and pre-

diction probability, was used as the cut-off value in the subse-

quent iteration. For the other patches, the threshold was the

weighted mean of the cut-off value of the neighboring success-

fully segmented patches, where the weight was determined

based on the pixel distance between patches. This process

was repeated twice until the generated IF-masks had been

converged (Figure S1C). We confirmed that the different seg-

mentation models with similar performance in terms of validation

loss flipped only 0.045%–0.327% of pixels in the segmentation

mask on average (Table S1).

Nine different antibodies, including five antibodies used in clin-

ical practice, were used to cover themain cell components of the

tumor tissue (Table 1). A mixture of anti-CD3 and anti-CD20 an-

tibodies was used for lymphocytes. Because our workflow can

generate segmentation masks in a high-throughput manner

without the need for manual annotation, the size of the dataset

was over one order of magnitude larger than the currently avail-

able segmentation mask datasets for tumor tissues5,7–9,11

(Figures 1B and 1C). In addition, we created datasets for as

many as 18 different organs from 1,583 patients (Figures 1D

and 1E) to cover a wider spectrum of cancer types (Table S2)

than in the currently available datasets, which cover up to four

organs. Finally, our SegPath dataset consists of 158,687

patches of 9843 984 pixels at 403 resolution. Dataset statistics,
4 Patterns 4, 100688, February 10, 2023
including train/validation/test splits, are shown in Tables 2

and S3.

Antibody and organ selection
The choice of antibodies is one of the most important factors in

the successful generation of IF-masks. We carefully selected the

proteins that are specifically expressed in the target cell types

based on the gene expression profiles (Figure 2A). Moreover,

we selected cytoplasmic proteins for tissue-type segmentation

(epithelium and smooth muscle cell/myofibroblasts). For he-

matopoietic cells or the endothelia, we prioritized proteins local-

ized in the nuclei of target cell types because the position of the

cells can be easier to identify with the antibody to such proteins.

For lymphocytes and leukocytes, we selected antibodies used in

clinical practice that stained the cell membrane, mainly because

the appropriate antibodies that localized to the nuclei could not

be found despite various trials using candidate antibodies

(data not shown).

We observed several failures during the antibody selection

process. A few of the antibodies that had been initially selected

exhibited low staining intensities or specificities, depending on

the clone. In other cases, such as that with myeloperoxidase

(MPO), the antigen diffused into the surrounding area, thereby

complicating the accurate identification of the cell locations (Fig-

ure 2B). Although MIST1 is a plasma-cell-specific antigen, it was

slightly stained with the selected anti-MIST1 antibody in certain

glandular epithelial cells (Figure 2C). Therefore, organs such as

the stomach, pancreas, and salivary glands were excluded

from the MIST1 dataset. For the endothelium, although a few

prostate cancer cases with ERG rearrangement could be posi-

tive in ERG staining, we confirmed that the prostate cancer

cases in our cohort were negative in ERG staining. After

optimizing the antibodies, the trained pathologists carefully

http://www.proteinatlas.org/ENSG00000163563-MNDA/antibody
http://www.proteinatlas.org/ENSG00000163563-MNDA/antibody
http://www.proteinatlas.org/ENSG00000163563-MNDA/antibody


Table 2. Dataset summary

Antigen Target Data partition Tissue Slide Patient Patches

Pan-CK epithelium Train 16 20 341 21,912

Validation 16 19 34 2,259

test 16 20 32 2,338

aSMA smooth muscle/myofibroblast train 27 27 419 25,748

validation 25 25 40 2,489

test 27 27 47 2,941

CD3/CD20 lymphocyte train 22 28 244 10,453

validation 15 18 24 1,082

test 11 14 19 738

CD45RB leukocyte train 30 30 428 20,518

validation 25 25 36 1,988

test 25 25 41 2,299

ERG blood /lymphatic vessel train 22 24 256 9,497

validation 10 11 14 613

test 8 9 12 537

MIST1 plasma cell train 20 37 310 11,320

validation 14 19 23 947

test 10 15 18 964

MNDA myeloid cell train 28 29 339 12,315

validation 15 15 19 894

test 16 17 20 926

CD235a red blood cell train 13 17 302 21,595

validation 13 17 31 2,224

test 13 17 33 2,090

See also Table S3.

ll
OPEN ACCESSDescriptor
confirmed that all the antibodies had high enough sensitivity and

specificity for the target tissue or cells in the target organs by

comparing H&E-stained images and the corresponding IF-

stained images. In the process, prostate cancer, renal cancer,

and hepatocellular carcinoma cases were removed from the

pan-CK dataset owing to weak IF staining of tumor cells.

Dataset evaluation
Figure 3 shows examples of the H&E-stained images, matched

IF images, and generated IF-masks in SegPath for the selected

antibodies in various organs. For example, the anti-pan-CK anti-

body stained cytokeratin, which was localized in the cytoplasm

of the epithelial cells. Although the nuclei of the epithelial cells

were unstained in certain cells, the borders of the epithelial tissue

regions were clear, indicating the use of the mask for epithelial

segmentation. The anti-a-smooth muscle actin (aSMA) antibody

stained perivascular smooth muscle cells densely and smooth

muscle or myofibroblasts in some stroma less densely (Fig-

ure S3), which possibly reflected the density and expression of

aSMA (e.g., cancer-associated fibroblasts [CAFs], which differ-

entiate into cells with the myofibroblast phenotype, are morpho-

logically similar to smooth muscle cells but have variable aSMA

expression depending on the degree of differentiation). Anti-

CD45RB and anti-CD3/CD20 antibodies recognized the proteins

on the cell membranes of leukocytes and lymphocytes, respec-

tively; however, additional pre-processing using a nucleus
detection algorithm caused the generated masks to cover the

nuclei only, thereby clarifying the cell positions. The masks

were almost identical to the IF images for the antibodies against

ERG, myeloid cell nuclear differentiation antigen (MNDA),

and MIST1.

To quantitatively evaluate the quality of the IF-masks in

SegPath, we compared them with two types of manual anno-

tations: the annotation created by three trained pathologists

evaluating the H&E images alone (hereafter referred to as

HE-path), and both the H&E and corresponding IF images

(pathologist-guided ground truth, hereafter referred to as

pGT) (Figures 4 and S4). The evaluation dataset consisted of

20 image patches of 217.5 3 217.5 mm for each antibody.

The pathologists generated HE-paths based on morphology

and pGTs based on morphology and IF intensity and distribu-

tion. The regions or cells annotated by at least two patholo-

gists were regarded as positive. Therefore, the HE-paths

may be considered as baselines in conventional manual anno-

tations, and the pGTs can be considered to be closest to the

ground truth, as pathologists are thought to be less affected

by spurious IF signals.

First, we examined the concordance of the HE-paths among

the three pathologists (Figure S5A). The concordance varied

immensely depending on the tissue and cell type. It was nearly

identical in terms of epithelial tissues but showed a little

overlap in the endothelia, plasma cells, and myeloid cells. These
Patterns 4, 100688, February 10, 2023 5
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Figure 2. Selection of the antibodies and target tissues in SegPath

(A) Gene expression specificities of selected antibodies. Gene expression data were retrieved from single-cell transcriptome profiles in the Human Protein

Atlas.21,22 Target cell type is indicated by a red asterisk on the bar.ACTA2 expression in Sertoli cells, indicated by a green octothorpe, was high in this dataset, but

a pathologist could not confirm the positive staining of anti-a-smooth muscle actin (SMA) antibody; therefore, testicular tissues were included in the dataset. ERG

expression in microglial cells, indicated by a blue octothorpe, was higher in this dataset. This is highly likely to be an erroneous annotation of the single-cell

transcriptome profile, as confirmed by a pathologist; therefore, brain tissues were included in the dataset.

(legend continued on next page)
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Figure 3. Generated masks in cancers of various organs

Each triplet shows an H&E-stained image, the corresponding registered IF image, and generated mask image (positive regions are indicated by red) from left to

right, respectively. The organs are shown above each triplet. All image patches are 72.5 3 72.5 mm. See also Figure S3.
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observations highlighted the complexity of accurate cell identifi-

cation by pathologists.

Next, we evaluated the correctness of the HE-paths and IF-

masks of each tissue or cell type in terms of the Dice coefficient

(F1 score), precision, and recall (Figures 4A, S5B, and S5C)
(B) H&E-stained image and IF staining of anti-MPO antibody, which targets neut

prevent accurate mask generation.

(C) IF staining of anti-MIST1 antibody, which targets plasma cells. It unexpectedly

gastric epithelium. These tissues were excluded from SegPath.
indices compared with those of the pGTs. We found that the

performance of the HE-paths for the five cell types was low, indi-

cating that it would be difficult for pathologists to identify such

cells accurately. Conversely, the IF-masks were significantly

more accurate than the HE-paths, especially in plasma
rophils. Antigens spread around the target cells, as indicated by arrowheads,

stained the nuclei of some glandular epithelia, including the salivary gland and

Patterns 4, 100688, February 10, 2023 7
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Figure 4. Evaluation of the annotation accuracy of SegPath

(A) Annotation accuracy of pathologists and the IF-masks in SegPath (n = 20 patches of 217.5 3 217.5 mm for each tissue or cell type) compared with pGT as

ground truth. Dice coefficients of the IF-masks were compared with those of annotations by each pathologist. Two-sided Wilcoxon signed-rank test was used,

(legend continued on next page)
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(MIST1), myeloid (MNDA), and endothelial (ERG) cells. Unlike the

HE-paths, the performance of leukocytes (CD45RB) and lym-

phocytes (CD3/CD20) was lower than that of the other three

cell types. This may have been because of the antibodies used

to recognize the proteins in the cell membrane. This complicated

the estimation of the exact locations of the cells, particularly with

the variable intensity of the staining. Nevertheless, the perfor-

mance of leukocytes and lymphocytes was comparable with

that of the HE-paths.

We hypothesized that pathologists could not accurately iden-

tify cells with atypical morphologies. To clarify the biases in the

annotations of the pathologists, we analyzed images of cells

that the pathologists correctly identified (pGT+P+M+�) and those

that the pathologists could not correctly identify but that the IF-

masks could identify (pGT+P�M+) (Figures 4B and S6). Although

the pathologists may have overlooked some cells, the morpho-

logical characteristics of the cells that the pathologists correctly

identified were clarified. Overall, the shapes and sizes of

pGT+P+M+� cells were more uniform than those of pGT+P�M+

cells, implying a bias in the decisions of the pathologists toward

the typical morphologies. Furthermore, we quantitatively investi-

gated the bias of pGT+P+M+� morphology toward textbook de-

scriptions. For example, plasma cells generally have a basophilic

cytoplasm and an eccentric nucleus with heterochromatin in a

characteristic cartwheel or clock-face arrangement. As ex-

pected, the plasma cells in pGT+P+M+� tended to have cart-

wheel-shaped nuclei (Figure 4C) but less so in pGT+P�M+ cells,

suggesting that pathologists cannot accurately identify plasma

cells without clear cartwheel-shaped nuclei. Conversely, the ba-

sophilicity of the cytoplasm and eccentricity of the nucleus were

not significantly different between pGT+P+M+� and pGT+P�M+

cells (data not shown). Lymphocytes are generally characterized

by a high nuclear/cytoplasmic ratio and dense nuclei. However,

the lymphocytes overlooked by the pathologists often had

thinner nuclei (Figures 4D and S7). There were no significant dif-

ferences in the shapes of the vascular endothelial cells, but they

weremore likely to be correctly identified if theywere surrounded

by multiple RBCs (Figure 4E). With the myeloid cells, the pathol-

ogists were unlikely to miss polymorphonuclear leukocytes,

such as neutrophils, as they are easy to identify (Figure S6).

Themorphologies of cells that presented false negatives in the

IF-masks but true positives in the HE-paths (pGT+P+M�) were

also examined (Figure S8). The results showed that most of the

false negatives were due to the lack of false negatives for cell
and p values were adjusted using the Benjamini-Hochberg method. p < 0.05 was

and S5; Table S5.

(B) Ground truth (pGT) cell images annotated by multiple pathologists (pGT+P+M+

masks (pGT+P�M+) in the ten patches. The illustrations and the actual images of th

written in a histology textbook are shown in each cell type.23 Original illustration

denser and larger than the original illustration. The image was adjusted to bemore

hinges correspond to the 25th and 75th percentiles, respectively; the upper whisk

range (IQR) from the hinge. The lower whisker extends from the hinge to the smal

See also Figure S6.

(C) Distribution of plasma cells with or without the typical cartwheel-shaped nuclei

exact test).

(D) Nucleus hematoxylin intensity of lymphocytes (n = 63 cells for pGT+P+M+�

Figure S7.

(E) Distance (mm) from the endothelial cell to the closest RBC (n = 32 cells for pG

Figure S8.
nuclei detection by Cellpose. The reason underlying this is un-

clear, but it may be due to the accuracy of the deep-learning

model used in Cellpose. However, morphological bias was un-

clear on visual inspection.

In summary, we revealed an inherent morphological bias in the

annotations of pathologists. However, the SegPath annotations

are likely to be less prone to such bias and may enable the

production of accurate segmentation models to cover the

morphological diversity of cells.

Segmentation model trained on the dataset
We generated numerous annotated histological images of

various tissues or cell types with diversemorphologies. To inves-

tigate whether such large-scale datasets improve segmentation

performance, we trained semantic segmentation models on the

part of the training set of SegPath for each cell type indepen-

dently using a convolutional neural network (see ‘‘training deep

neural network for segmentation’’ for the detailed procedure).

We selected training patches randomly from the training dataset

for each tissue/cell type until the number of patches or cells

reached the target number (Table S6); this process was repeated

three times for each target number. We evaluated the segmenta-

tion performance gains for the test set as a function of increasing

patches for epithelia, smooth muscle cells/myofibroblasts, and

the number of endothelial cells, leukocytes, lymphocytes,

plasma cells, and myeloid cells (Figure 5). Similar to other image

classification tasks for pathological images,24 the predictive per-

formance increased as more samples were used for model

training. Apart from RBCs (CD235a), the performance gain did

not seem to be saturated, indicating that more annotations can

improve the segmentation performance. This result indicates

the importance of our approach in obtaining a large number of

annotated images in a high-throughput manner with minimal

pathologist intervention.

We then evaluated the performance of the segmentation

models trained using the entire training data (Figure 6A) in

SegPath and tested it on the same part of the test dataset, as

described above. We observed that the overall performance of

the segmentation models was comparable with that of the pa-

thologists (HE-path) assessing the epithelia, smooth muscles,

leukocytes, and lymphocytes, and, surprisingly, more optimized

than that of the pathologists assessing the other tissues or cell

types in terms of the Dice coefficient. Cells that were not identi-

fied by the pathologists but identified by the trained models are
considered statistically significant, as shown by asterisks. See also Figures S4

�) and not identified by multiple pathologists but successfully annotated by the

e representative cell morphologies and sentences describing themorphologies

s from BioRender were used except for the lymphocyte, whose nucleus was

similar to the representative morphology. For the box plot, the lower and upper

er extends from the hinge to the largest value no further than 1.53 interquartile

lest value at 1.53 IQR of the hinge. pGT, ground truth; P, HE-path; M, IF-mask.

(n = 41 cells for pGT+P+M+� and n = 44 cells for pGT+P�M+, two-sided Fisher’s

and n = 25 cells for pGT+P�M+, two-sided Mann-Whitney U test). See also

T+P+M+� and n = 29 cells for pGT+P�M+). ***p < 0.0001, **p < 0.01. See also
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Figure 5. Effect of training sample sizes on segmentation models

Each point represents the Dice coefficient (F1 score) of the segmentation model trained on a randomly selected training dataset. The test dataset is the same for

each tissue/cell type. The lowess smoothed curve with its 95% confidence interval is also shown in each plot. SM, smooth muscle; MF, myofibroblast. See also

Table S6.
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shown in Figure S9. Similar to the IF-masks, plasma cells without

typical cartwheel-shaped nuclei (Figure 6B) and lymphocytes

with thin nuclei were detected using the segmentation models

more often than by the HE-paths (Figures 6C and S10). These re-

sults indicate that the datasets enable the segmentation models

to cover diverse morphologies. As shown in the epithelial cells in

Figure 6D, the segmentation models could identify even small

areas that are difficult to discern. These results may be useful

in cases of solitary cancer cells, such as those in diffuse-type

gastric cancer (Figure S11). As shown in Figure 6D, the segmen-

tation models were able to identify smooth muscle around blood

vessels, which is normally difficult to identify, possibly owing to

the lack of clear boundaries within the surrounding tissue.

To assess the generalization performance of the models

trained on the SegPath dataset, we subsequently applied the

models to the two external datasets, GlaS for the epithelium seg-

mentation and NuCLS for the lymphocyte segmentation, without

any training on the datasets (Figure 6E). Because ground truths

in the datasets were generated by the pathologist solely based

on the H&E images, we selected these two cell types of the

high concordance between the pGT and the pathologists in

our previous experiments (Figure 4A). The GlaS dataset was

scanned using a Zeiss MIRAX MIDI Slide Scanner with a pixel

resolution of 0.465 mm, and the NuCLS dataset was scanned us-
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ing an Aperio Scanner with a pixel resolution of 0.20 mm, both of

which differ from the SegPath dataset. The segmentation results

show accurate segmentation despite the models having been

trained only on the SegPath dataset, and the scanning condi-

tions being different from those of SegPath (Dice coefficient:

GlaS 0.681 ± 0.169; NuCLS 0.646 ± 0.320). The results demon-

strate the generalization potential of the SegPath dataset.

Finally, the segmentation models were applied to external gig-

apixel WSIs from various cancer tissues (Figures S12–S15). To

combine the outputs of the segmentation models for each tissue

or cell type to generate a multi-tissue/cell segmentation result,

we utilized the cell lineage hierarchy (see experimental proced-

ures for details), such that leukocytes included lymphocytes,

myeloid cells, and plasma cells, and the tissue regions not pos-

itive by any models were labeled ‘‘stroma.’’ Therefore, we gener-

ated segmentation results for nine tissues and cell types. The

densities of the predicted smooth muscle/myofibroblast regions

varied; perivascular smooth muscle cells were dense, but other

stromal regions were less dense, as shown in Figure S12. This

reflected the expression of aSMA in smooth muscle cells or

CAFs with myofibroblast phenotypes as discussed above.

Although there is no ground truth for the dataset, the pathologist

verified that the models were likely to capture the characteristic

structures of various tumors, including benign and malignant
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Figure 6. Performance evaluation of the segmentation models trained on the generated annotation masks

(A) Comparison of the annotation accuracies between pathologists and prediction of the segmentation models in terms of the Dice coefficient (F1 score) (n = 10

patches of 217.53 217.5 mm for each tissue or cell type). The optimal segmentation model in terms of validation loss was applied, and each point in the box plots

represents a patch. pGT annotationsweremade by pathologists who evaluated bothH&E and the corresponding IF images. Regions or cells annotated by at least

two of the three pathologists were used. p < 0.05 was considered statistically significant, as shown by asterisks. See also Figure S9 and Table S5.

(B) Distribution of plasma cells with or without typical cartwheel-shaped nuclei (n = 41 cells for pGT+P+S+/� and n = 27 cells for pGT+P�S+).

(C) Nuclear hematoxylin intensity of lymphocytes (n = 63 cells for pGT+P+S+/� and n = 24 cells for pGT+P�S+). For the box plot, the lower and upper hinges

correspond to the 25th and 75th percentiles, respectively; the upper whisker extends from the hinge to the largest value no further than 1.53 IQR from the hinge.

The lower whisker extends from the hinge to the smallest value at 1.53 IQR of the hinge. pGT, ground truth; P, HE-path; S, prediction by the segmentation model.

***p < 0.0001, **p < 0.01. See also Figure S10.

(D) Comparison of pathologist annotations for AE1/3 and SMA.

(E) Samples of the segmentation results based on GlaS and NuCLS for epithelium and lymphocytes, respectively. Note that the segmentation models were

trained using only the SegPath dataset, and no fine-tuning was performed on the target dataset. See also Figures S11–S15.
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salivary gland tumors, which were not included in the training

data. For example, lymphoid structures filled with many lympho-

cytes, vascular wall linings with endothelial cells surrounded by

smooth muscle cells and containing RBCs, and the rich infiltra-

tion of plasma cells around cancer cells were detected (Fig-

ure S12). Additionally, the infiltration of small cancer foci with

no apparent glandular formation was successfully identified in

the gastric cancer specimen (Figure S13A). A dense lymphoid

stroma and double layer of oncocytic epithelia were also

successfully identified in the Warthin’s tumor specimen

(Figure S15A).

DISCUSSION

Owing to its simplicity and accuracy when appropriate anti-

bodies are used, pathologists and biological researchers have

routinely used IHC to identify specific cells or tissues in research

and clinical practice. This study resolved the problem of annota-

tion generation for tissue or cell segmentation by leveraging im-

munostaining with cell-specific or tissue-specific antibodies. We

generated SegPath, an accurate and high-volume dataset for the

tissue or cell segmentation of H&E images based on a workflow

that utilizes IF staining. In SegPath, we targeted eight cell or

tissue types that constitute the major component in the tumor

microenvironment,25 and the granularity in the cell hierarchy

was based on the potential feasibility of segmentation in H&E

images. The advantages of our workflow were that identical sec-

tions were stained with H&E and IF, which enabled the precise

localization of target tissues or cell types. Furthermore, higher

annotation accuracy could be achieved even if the target tissues

or cells presented atypical morphologies. A series of experi-

ments showed that the generated masks and segmentation

models trained on the dataset achieved good performance

with various morphologies. Although each image contained a

mask for only one tissue or cell type, multiple cell types or tissues

may be segmented using the outputs from multiple models, as

shown in the last experiment.

Our experiment revealed that pathologists could miss or mark

incorrect labels with variable extents depending on the cell

type. Furthermore, the annotations of the pathologists were

biased toward typical morphologies. Cells with atypical mor-

phologies and/or surrounding microenvironments may be sub-

types with unique functions or states, as suggested by previous

studies.26,27 The datasets of existing studies based on annota-

tions by pathologists also contained biases toward typical mor-

phologies; therefore, the model trained on the training dataset

had the same inherent bias. Our workflow was able to resolve

these problems; therefore, the model trained on the dataset

can yield more accurate characterization of tumor tissues.

We further showed that the annotation accuracy increased as

the number of annotated cells increased. In most cell types the

accuracy did not saturate, even with a large number of annota-

tions in SegPath. This may be because cell morphology is

more diverse than what is currently known, and our dataset

comprehensively covers diversity. Another possibility is that

the segmentation models had a receptive field that exceeded

the range of cells; therefore, it considered the surrounding envi-

ronment to make comprehensive judgment. Hence, it is impor-

tant to create datasets with various tissues and specimens,
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which was an advantage of our approach when using immuno-

staining TMAs.

There are other experimental methods for identifying multiple

cell types simultaneously in a tissue section, such as highlymulti-

plexed IF,28 imagingmass spectrometry,29 and spatial transcrip-

tomics.30 Such methods are more accurate than our approach

and can identify cells that cannot be detected in H&E-stained

sections. However, these methods are costly, labor intensive,

and require additional equipment and experiments, including

the optimization of experimental conditions.31 Segmentation

from H&E-stained tissues is a complementary approach to

suchmethods because it does not require additional equipment.

More importantly, H&E staining accounts for approximately 80%

of all human tissue staining performed globally,32 and the

method can be applied to the large number of specimens accu-

mulated thus far. Additionally, a high-throughput analysis that

will allow simultaneous comparison of multiple samples can be

achieved by applying TMAs to glass slides containing fragments

of tissues from numerous patients. Such advantages enable

comprehensive pathomics, which can be used to analyze the

correlation between cell or tissue distribution and clinical infor-

mation such as genomics data.33

We have made this large-scale dataset accessible to the

public to enhance pathology-based cancer research and

segmentation algorithm development. We plan to expand the

datasets to include more cell types and facilitate finer segmen-

tation. Our approach will enhance high-throughput computa-

tional pathology by adding information, such as the tissue

context, rather than the image level category, and could lead

to improved diagnostic techniques and drug development for

cancer patients.

Limitations of the study
This study was limited by various errors and inconsistencies in

the dataset owing to uneven IF staining, non-specific staining,

and errors in the cell recognition model. However, according to

a previous study,34 the supervised segmentation method is sen-

sitive to biased errors and robust to unbiased errors. The dataset

generated in our workflow is less biased than those generated by

pathologists in terms ofmorphology. Our results showed that the

model trained on our dataset outperformed the assessments

made by pathologists of several cell types, suggesting that the

model can detect cells with atypical morphologies. Additionally,

emerging techniques for robust learning under random label

noise, such as constrained reweighting, can be used to develop

more accurate segmentation models.35,36 Another limitation of

the study is that the cells with atypical morphology could be

overlooked by the deep-learning model during the training pro-

cess if they are very rare. However, dedicated training tech-

niques, such as hard sample mining, could resolve this problem.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Shumpei Ishikawa (ishum-prm@m.u-tokyo.

ac.jp).

Materials availability

This study did not generate new unique reagents.
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Data and code availability

SegPath datasets for each antibody have been deposited in Zenodo and are

publicly available as of the date of publication. The links to the Zenodo repos-

itory are summarized at https://dakomura.github.io/SegPath.

All original codes for the generation of SegPath have been deposited at gi-

thub under https://doi.org/10.5281/zenodo.7502875 and are publicly available

as of the date of publication.

Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

Sample preparation and image data acquisition

All histopathological specimens used in the generation of SegPath were

obtained from patients who were diagnosed between 1955 and 2018 and

had undergone surgery at the University of Tokyo Hospital. TMAs for various

cancers (including glioma, meningioma, ependymoma, kidney renal clear

cell carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, breast

adenocarcinoma, gastric adenocarcinoma, colon adenocarcinoma, pancre-

atic adenocarcinoma, cholangiocarcinoma, hepatocellular carcinoma, esoph-

ageal squamous cell carcinoma, head and neck squamous cell carcinoma,

urothelial tumors, bladder cancer, prostate adenocarcinoma, sarcoma, mela-

noma, uterine cancer, ovarian tumors, and testicular germ cell tumors) were

constructed from the FFPE tissue blocks used for pathological diagnoses.

Two TMA spots for each patient were included in each TMA block. The TMA

FFPE blocks were cut to obtain 3-mm-thick sections. All histopathological

specimens were anonymized in an unlinkable manner; therefore, the require-

ment for informed consent was waived. This study was approved by the

Institutional Review Board of the University of Tokyo. Information on the histo-

pathological specimens is summarized in Table S2.

To create the SegPath dataset, we obtained histopathological images of

both H&E- and IF-stained sections from the same TMAs as follows. For H&E

staining, the sections were deparaffinized and rehydrated by immersion in

xylene (#241-00091, FUJIFILM Wako Pure Chemical, Osaka, Japan) and

ethanol (#057-00451, FUJIFILMWako Pure Chemical), respectively. Hematox-

ylin (#6187-4P, Sakura Finetek Japan, Tokyo, Japan) and eosin (#8660, Sakura

Finetek Japan) solutions were used for H&E staining following the manufac-

turer’s protocols. The stained sections were dehydrated by immersion in

ethanol followed by xylene. Glass coverslips (Matsunami Glass, Osaka, Japan)

with Marinol (#4197193, Muto Pure Chemicals, Tokyo, Japan) were used to

cover the stained sections. H&E staining, using the same protocol, was also

performed to create WSIs for evaluating multi-cell-type segmentation among

resected specimen sections. WSIs of the H&E-stained sections were captured

using a Hamamatsu Nanozoomer S60 whole-slide scanner (Hamamatsu Pho-

tonics, Shizuoka, Japan) at 403 (0.220818 mm/pixel) resolution. Next, we used

the same sections of H&E-stained TMA sections for IF. The glass coverslips

were removed by immersing the slides in xylene, rehydrating with ethanol,

and washing with distilled water. For the destaining of H&E and antigen

retrieval, the slides were autoclaved for 5 min at 120�C and immersed in citrate

buffer (pH 6.0) (Abcam, Cambridge, UK). Endogenous peroxidase activity was

measured using 0.3% hydrogen peroxide (Sigma-Aldrich, St. Louis, MO, USA)

in methanol (#137-01823, FUJIFILMWako Pure Chemical) for 15 min, followed

by washing with distilled water. Non-specific protein-protein reactions were

blocked by incubating the sections in Antibody Diluent/Block (#ARD1001EA,

PerkinElmer, Waltham, MA, USA) for 15 min at room temperature. The

following primary antibodieswere used, as summarized in Table 1:monoclonal

mouse immunoglobulin G (IgG) anti-pan-cytokeratin, clone AE1/AE3 (without

dilution; IS05330-2J; DAKO, Carpinteria, CA, USA); monoclonal mouse IgG

anti-human aSMA, clone 1A4 (1:200 dilution; M085129-2; DAKO); monoclonal

mouse IgG anti-human CD45RB, leukocyte common antigen, clones 2B11 +

PD7/26 (1:200 dilution; IR75161-2J; DAKO); monoclonal mouse IgG anti-hu-

man N-terminal ERG, clone 9FY (without dilution; PM421AA; Biocare Medical,

Concord, CA, USA); monoclonal mouse IgG anti-glycophorin A, clone JC159

(1:200 dilution; MA5-12484; Thermo Fisher Scientific, Waltham, MA, USA);

polyclonal rabbit anti-human MNDA (1:1,000 dilution; HPA034532-100UL;

Sigma-Aldrich); monoclonal rabbit IgG anti-human MIST1/bHLHa15 protein,

clone D7N4B (1:100 dilution; #14896; Cell Signaling Technology, Beverly,

MA, USA); polyclonal mouse anti-human CD3 (1:200 dilution; IS50330-2J;

DAKO); and monoclonal mouse IgG anti-human CD20cy, clone L26 (1:200

dilution; IS60430-2J; DAKO). IF staining using each of the aforementioned pri-
mary antibodies (AE1/AE3, aSMA, CD45, ERG, glycophorin A, MNDA, MIST1,

and CD3/CD20 mix) was performed for 2 h at 4�C, according to the instruc-

tions of Opal Multiplex IHC Kit (#NEL811001KT; PerkinElmer). Opal Polymer

HRP solution (ARH1001EA; PerkinElmer) was used to enhance the signals

by incubating the sections for 10 min at room temperature. The sections

were then incubated with 100 mL of Opal 690 fluorophore (1:10 dilution;

FP1497001KT; PerkinElmer) at room temperature for 10 min to achieve

690-nm single-color IF staining. Nuclear staining was performed with DAPI so-

lution (FP1490A; PerkinElmer) at room temperature for 5 min. The slides were

then covered with glass coverslips (Matsunami Glass) using Prolong Gold anti-

fade reagent with DAPI (P36931, Thermo Fisher Scientific). WSIs of the IF

staining TMA slides were captured using a Hamamatsu Nanozoomer S60

whole-slide scanner at 403 (0.220818 mm/pixel) resolution.

Whole-slide image pre-processing

Large artifacts (i.e., tissue folds and air bubbles) in each WSI were marked by

pathologists before analysis. In the patch-extraction process, patches over-

lapping the marked regions or heavily blurred regions with a variance of the

Laplacian filter37 <0.0005 in the grayscale image were removed. Additionally,

tissue region candidates were extracted from grayscale H&E slides at zoom

level 4 (1/16 of the 403 resolution) by applying Otsu binarization after Gaussian

blur with an 81 3 81-kernel. Connected regions ranging from 12.8 to 256

million pixels2 in size at 403 resolution were regarded as the tissue regions.

After the rigid registration described below, patches within the tissue regions

of 1,024 3 1,024 pixels with a stride of 1,024 pixels were then extracted.

The patches within 200 pixels at 403 resolution from the edges of the tissue

regions were discarded because non-specific IF staining is often observed

at the edge of the tissue.38

Image registration and patch extraction

To create masks for the deep-learning model of H&E-stained histological im-

ages, each IF image was registered to the H&E-stained image of the same

slide. Image registration was performed using a multi-step procedure that

began with coarse WSI-level registration and proceeded to fined-grained,

patch-level registration. Nuclear regions were considered in the calculation

to accurately align the two images. Specifically, the hematoxylin color compo-

nent extracted using the scikit-image’s ‘‘rgb2hed’’ function in the H&E image

and DAPI channel component in the IF image were used for registration. First,

discrete Fourier transform (DFT)-based rigid registration was performed to es-

timate the optimal vertical and horizontal translation between H&E WSI and

paired IF WSI at zoom level 6 (1/64 of the 403 resolution). After the patch pairs

of 1,024 3 1,024 pixels at zoom level 1 (1/2 of the 403 resolution) had been

extracted from the same position of the aligned WSI pairs, DFT-based rigid

registration was performed again to obtain a finer-grained registration, and

the vertical and horizontal translation levels were recorded. Kernel density esti-

mation usingGaussian kernels was applied to the two-dimensional distribution

of the translations, and the vertical and horizontal translation levels with the

highest densities were used to register all image pairs in the same WSI. Sub-

sequently, 1,024 3 1,024-pixel tiles at 403 resolution were extracted again

from the alignedWSI pairs. After two additional rounds of the sameDFT-based

rigid registrations at zoom levels 1 and 0 at 403 resolution, non-rigid registra-

tion using the Demons algorithm39 was applied after the histogram matching

filter. We used a multi-resolution pyramid with three layers (with shrinkage fac-

tors of 8, 4, and 2 and a smoothing sigma of 12, 8, and 4). A gradient descent

with a learning rate of 1.0 and 20 iterations was used for parameter optimiza-

tion. Finally, 20-pixel margins from the edges were removed, such that the im-

age did not include unregistered regions.

Initial mask generation

For mask generation, it is necessary to determine the cut-off values for positive

IF signals and remove false-positive signals due to artifacts, registration errors,

or non-specific signals from blood cells.

Inconsistencies between the intensities of the DAPI nuclear channel in the IF

image and the hematoxylin component in the H&E-stained image, indicating

the existence of artifacts or registration errors, were detected by calculating

the Pearson’s correlation coefficient between the two signal intensities.

Patches with correlation coefficients below 0.5 were removed for further anal-

ysis. False-positive signals derived from the autofluorescence of RBCs were
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removed by masking the positively predicted regions using the RBC segmen-

tation neural network trained on the anti-CD235a antibody-stained dataset.

Based on visual inspection, an IF signal intensity >50 (epithelium, smoothmus-

cle, and RBCs) or 25 (others) was regarded as a positive signal in the initial

mask generation step.

For the epithelium and smooth muscle, the positive signal area was used

as a segmentation mask without modification. For RBCs, the area that was

positive in the IF image and red in the H&E-stained image (R > 100 and

G < 130, and R > B) was used as a segmentation mask. For leukocytes,

myeloid cells, lymphocytes, plasma cells, and endothelial cells, positive sig-

nals from the target cells were transferred into the nuclei based on the IF

staining pattern to obtain a more consistent result and improve the interpret-

ability of the segmentation model. Cellpose version 0.6.519 was applied to

the DAPI nuclear channel in the IF images to detect the nuclei. We selected

a model with the following parameters: diameter = 30, channels = [3,0],

batch_size = 64, and cellprob_threshold = 0.1. Nuclei were masked if over

40% of them contained positive signals. Finally, one iteration of morpholog-

ical erosion with a 3 3 3 kernel was applied to each region of the nuclei to

prevent multiple cells from sticking together, which could cause an underes-

timation of the cell count.

For deep neural network training during the mask generation process, all

patches were divided into training, validation, or test sets so that all patches

from the same TMA spot belonged to the same set. TMA spots in each TMA

were detected as clusters by applying the DBSCAN clustering algorithm40

implemented in scikit-learn to patches using the x and y coordinates as the

input features, maximum distance set to 3,000 pixels, and min_samples set

to 5. The validation and test sets contained patches from two TMA spots in

each TMA slide, and the rest were placed into the training set. For deep neural

network training after mask generation, we moved the training/validation

patches from the patient in the test set to the test set and training patches

from the patients in the validation set to the validation set, so that the patches

from the same patient did not span the training/validation/test sets.

Training deep neural network for segmentation

The encoder-decoder neural networks were trained for semantic segmenta-

tion. The combination of the encoder and decoder was independently opti-

mized for each cell type or tissue. The backbone of the encoder was a pre-

trained convolutional neural network, such as ResNet41 trained on the 2012

ILSVRC ImageNet dataset, or EfficientNet42 trained on 300 million unlabeled

images from JFT43 using noisy student training.44 The decoder module was

selected from one of three models: U-net,45 U-net++,46 or DeepLabV3+.47

The network was trained using randomly sampled patches with sizes of

9843 984 pixels and batch sizes of 16. During training, the weights in all layers

of the decoders and segmentation head were updated through the RAdam

optimizer with a weight decay of 1 3 10�4, b1 = 0.9, and b2 = 0.999. Data

augmentation and normalization were applied in the following order:

d Random crop to 640 3 640 pixels

d Color, contrast, and brightness augmentation (hue [�0.1, 0.1], satura-

tion [0.9, 1.1], contrast [0.9, 1.1], and brightness [0.9, 1.1])

The data were normalized to mean = [124.0, 116.0, 104.0] and SD = [58.6,

57.3, 57.6].

d Random horizontal and vertical flips

d Random affine transformation with rotation with up to 180�, and scale

with scaling factor ranging from 0.9 to 1.1 with reflection padding

d Random Gaussian blur of a 3 3 3 kernel with probability = 0.3

The backbone and architecture of the deep-learning model and hyperpara-

meters, including the learning rate, were optimized using the tree-structured

Parzen estimator algorithm48 based on the validation Dice score. The valida-

tion Dice score was evaluated across all images at once instead of averaging

the Dice scores of each patch, as the positively stained areas varied drastically

among patches. The hyperparameters optimized in this study are listed in

Table S4. All segmentation models were trained for 25 epochs. At least five tri-

als were tested, and the model with the optimal validation Dice score was

selected for the subsequent analysis. The model architecture and decoder

in the final trial are shown in Table S5.
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Improvement of cut-off intensity and nucleus overlap ratio

The cut-off values of the signal intensities (= 25 or 50) and nucleus overlap rate

(40%) in the initial mask generation may not be optimal. Because we observed

heterogeneity in the signal intensities of some of the sections, a single cut-off

value for the signal intensity across one TMA slide may not be appropriate.

Otsu’s banalization is often applied in similar scenarios, but it is difficult to

differentiate patches with overall low signals because of weak staining of pos-

itive cells or the absence of positive cells, and the latter results in many false-

positive masks.

We observed that the staining strength gradually changed in the section. The

segmentation network could detect positive cells with a certain level of accu-

racy, even if it was trained on the initial mask. Based on this observation, we

iteratively improved the cut-off values. First, linear ridge regression analysis

was carried out to detect patches with positive cells by setting the intercept

to zero, where the explanatory value was the IF intensity. The dependent var-

iable was the cell probability of the trained deep neural network model, both of

which were smoothed by Gaussian blur with an 113 11 kernel. Patches with a

regression coefficient >1 and maximum IF intensity >10 without RBC regions

were considered positive. For each positive patch, the initial cut-off values

were determined by applying Otsu’s binarization to the patch and the nearest

eight positive patches. To avoid extreme cut-off values, they were clipped to a

minimumof 10 and amaximumof 50. For the epithelia, the cut-off was reduced

by 20%as we observed the heterogeneous staining of anti-pan-CK antibodies

between the cytoplasm and nuclei, with weaker signal intensities in the nu-

cleus. Finally, the thresholds for each patch, including the negative patch,

were determined using the weighted average cut-off values of the nearest

16 positive patches. A Gaussian distance weight of 1/3,000 pixel from the

target patch was used for the weight. For leukocytes, myeloid cells, lympho-

cytes, plasma cells, and endothelial cells, the nucleus overlap rate cut-off,

which maximizes Matthew’s correlation coefficient between the prediction

and mask within the range of 10%–80%, was used. In contrast to the signal

intensity cut-off, the same cut-off value was adopted for each cell type. Based

on the new segmentation masks, the segmentation networks were trained

again, and the cut-off intensity and nucleus overlap ratio were optimized.

These processes were repeated twice to verify that the mask remained almost

unchanged after the second optimization.

Annotation by pathologists

For each cell type, except RBCs, ten patches were randomly selected from the

training data. Three trained pathologists independently performed the annota-

tion task for the patches using the Labelbox annotation tool (Labelbox, San

Francisco, CA, USA). Tissue regions were selected with polygonal annota-

tions, whereas cells were selected with point annotations to the center of

the nuclei. In the first round, only H&E images were shown to the pathologists

and annotated. Regions or cells selected by at least two pathologists were

used as the HE-path for subsequent experiments. In the next round, both

H&E and IF images without DAPI overlaid with H&E images were shown to

the same pathologists and annotated again. Regions or cells selected by at

least two pathologists were used as pGT data. For point annotations to the

cells, annotations by two pathologists were regarded as overlapping if they

were within an 8-pixel distance (= 1.77 mm).

Evaluation of masks and predictions

The accuracy of the annotations was evaluated based on the Dice

coefficient between the pGT and HE-path, IF-mask, or prediction. The

pixel- and cell-level Dice coefficients were calculated for tissue and cell

segmentations, respectively. The HE-path and IF-mask or prediction

were regarded as overlapping if any point in the HE-path was on the IF-

mask or predicted region.

Morphological evaluations

We evaluated the morphological parameters of the annotated cells: cart-

wheel-shaped nuclei for plasma cells, nucleus density for lymphocytes,

and distance from the nearest RBC to the endothelial cells. The presence

of typical cartwheel-shaped nuclei in each plasma cell was determined by

a pathologist. For lymphocyte intensity, the nucleus regions were annotated

by a pathologist using Labelbox, and the mean intensity of the hematoxylin

component estimated by the rgb2hed function in the scikit-image was
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used for evaluation. For the distance from the nearest RBC to the endothelial

cells, all RBCs were annotated by a pathologist using Labelbox, and the pixel

distance between each endothelial cell and nearest RBC was used for

evaluation.

Effect of training data size on the segmentation performance

Patches were individually sampled in the training set until the number of

patches or cells reached the pre-determined value, as shown in Table S6.

This process was repeated thrice for each value, except for the entire training

set. Using these datasets, the deep neural network models were trained and

tested on the same test set.

We trained a U-net with a resnet18 backbone pre-trained on ImageNet on

the training dataset using the same procedure for all evaluation datasets.

The network was trained using randomly sampled patches with a size of

9603 960 pixels and batch size of 16. During training, the weights in all layers

of the decoders and the segmentation head were updated using the RAdam

optimizer with a learning rate of 0.01, weight decay of 1 3 10�4, b1 = 0.9,

and b2 = 0.999. The same augmentation and normalization were applied as

described in the previous section. The Dice loss was used as the loss function.

The model was trained for a maximum of 10,000 epochs. If the validation Dice

coefficient did not increase for five consecutive epochs, early stopping was

applied, and the optimal model based on the validation Dice coefficient was

used for testing.

Validation cohort

To test the generalization performance of the SegPath dataset, we applied the

models trained on the SegPath dataset to two external validation datasets: (1)

GlaS dataset8 for epithelium and (2) NuCLS dataset7 for lymphocyte semantic

segmentation. For GlaS, both training and test data, which consisted of 165

images from 74 benign and 91 malignant colon tissue images in total, were

processed with the model with no training on the GlaS dataset. Because our

semantic segmentation model for epithelia is not directly applicable for instant

segmentation, individual gland information is not used in the evaluation. For

the NuCLS dataset, a corrected single raster dataset, which consists of 452

patches with more than five lymphocytes from The Cancer Genome Atlas

cases, was tested. For the GlaS dataset, Dice coefficient of the segmentation

mask was used for the evaluation. In contrast, because NuCLS contains both

segmentation mask for the segmentation and boundary box for detection, ob-

ject-level Dice coefficient was used for the evaluation, where the object in the

prediction is defined as the consecutive positive region, and any overlap be-

tween the contour and the segmentation mask or boundary box in the ground

truth is considered as true positive. The only difference between image pre-

processing and applying the models to the SegPath was scaling based on

the mpp ratio (2.8 for GlaS and 0.9049 for NuCLS). The model ensemble

approach for epithelium and lymphocytes using two or three different models

with optimal validation Dice coefficients during training (Table S5) was used for

the segmentation.

WSIs from two institutes were used for the validation of multi-cell-type seg-

mentations of H&E-stained images. Specimens were obtained from (1) three

patients with gastric adenocarcinoma who underwent surgery and were diag-

nosed at the University of Tokyo Hospital between 1955 and 2018 and (2) four

patients with salivary gland tumors (salivary duct carcinoma, Warthin’s tumor,

and cystadenoma) who underwent surgery and were diagnosed at Tokyo

Medical and Dental University Hospital between 1990 and 2020. Resected

specimens of gastric adenocarcinoma were prepared from the FFPE blocks

and sliced to a thickness of 6 mm. All histopathological specimens were ano-

nymized. This study was approved by the Institutional Review Board of each

university. Throughout these experiments, the multi-cell-type segmentation

strategy described below was used.

Multi-cell-type segmentation

Based on the deep neural network model for the segmentation of each tissue

or cell type, we performed multi-cell-type segmentations of the H&E-stained

images. To consider the lineage hierarchy of cells or tissues, the segmentation

results were merged, beginning with coarse categories and then overwritten

with fine-grained categories. The four groups were defined as follows and

overwritten in the order below. The following layer and label encoding were

adopted:
[layer 0] 0: background; 1: stroma (other than smooth muscle cells)

[layer 1] 2: epithelial cells; 3: smooth muscle cells

[layer 2] 4: leukocytes; 5: endothelial cells; 6: red blood cells

[layer 3] 7: lymphocytes; 8: plasma cells; 9: myeloid cells

xi;j ; c
k
i;j, and pm

i;j denote the pixel intensity after grayscale conversion, pre-

dicted label at the kth layer, and output logit value of the segmentation model

for mth cell type at the (i,j)th pixel in the image, respectively.

c0
i;j =

�
1 if xi;j > t
0 otherwise

;

where t is Otsu’s threshold for the WSI based on the pixel intensity after gray-

scale conversion. The predicted label was updated using the following recur-

sive calculation:

ck
i;j =

8<
:

argmax
m˛Mk

pm
i;j if max

m˛Mk

pm
i;j > 0

ck� 1
i;j otherwise

ðk = 1.3Þ;

whereMk is the set of cell types in the kth layer and c3i;j was used as the predic-

tion label.

We applied the model ensemble approach for each tissue or cell type using

1–3 different models with optimal validation Dice coefficients during training

(Table S5). To obtain the WSI-level segmentation results, inference was

executed for a 7,680 3 7,680-pixel patch from the WSI, and the result of

each patch was assembled into a WSI.

Implementation details

Rigid and non-rigid image registrations were performed using imreg version

2.0.1a (https://github.com/matejak/imreg_dft) and SimpleITK version 2.0.2

Python library, respectively. Kernel density estimation was performed using

SciPy version 1.3.1. The neural networks were trained using Python version

3.8.5, PyTorch Lightning version 1.4.2 (https://www.pytorchlightning.ai/),

and Segmentation Models PyTorch version 0.2.0 (https://github.com/

qubvel/segmentation_models.pytorch). To speed up model training, mixed

precision (16-bit) training implemented in PyTorch Lightning was used. Hyper-

parameter optimization was performed using Optuna version 2.7.0.49 Training

and testing were performed on the NVIDIA DGX-1 server with 8 NVIDIA Tesla

V100 GPUs and 256 GB RAM.
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et al. (2015). Proteomics. Tissue-based map of the human proteome.

Science 347, 1260419. https://doi.org/10.1126/science.1260419.

23. Ross, M.H., and Pawlina, W. (2016). Histology: a text and atlas: with corre-

lated cell and molecular biology, Seventh edition (Wolters Kluwer Health).

24. Campanella, G., Hanna, M.G., Geneslaw, L., Miraflor, A., Werneck Krauss

Silva, V., Busam, K.J., Brogi, E., Reuter, V.E., Klimstra, D.S., and Fuchs,

T.J. (2019). Clinical-grade computational pathology using weakly super-

vised deep learning on whole slide images. Nat. Med. 25, 1301–1309.

https://doi.org/10.1038/s41591-019-0508-1.

25. Giraldo, N.A., Sanchez-Salas, R., Peske, J.D., Vano, Y., Becht, E.,

Petitprez, F., Validire, P., Ingels, A., Cathelineau, X., Fridman, W.H.,

et al. (2019). The clinical role of the TME in solid cancer. Br. J. Cancer

120, 45–53. https://doi.org/10.1038/s41416-018-0327-z.

26. German, Y., Vulliard, L., Kamnev, A., Pfajfer, L., Huemer, J., Mautner,

A.-K., Rubio, A., Kalinichenko, A., Boztug, K., Ferrand, A., et al. (2021).

Morphological profiling of human T and NK lymphocytes by high-content

cell imaging. Cell Rep. 36, 109318. https://doi.org/10.1016/j.celrep.2021.

109318.

27. Noguera-Troise, I., Daly, C., Papadopoulos, N.J., Coetzee, S., Boland, P.,

Gale, N.W., Lin, H.C., Yancopoulos, G.D., and Thurston, G. (2006).

Blockade ofDll4 inhibits tumour growthby promoting non-productive angio-

genesis. Nature 444, 1032–1037. https://doi.org/10.1038/nature05355.

28. Hickey, J.W., Tan, Y., Nolan, G.P., and Goltsev, Y. (2021). Strategies for

accurate cell type identification in CODEX multiplexed imaging data.

Front. Immunol. 12, 727626.
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