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Thyroid hormone excess secondary to global type 3 deiodinase ( DIO3 ) deficiency leads to increased locomotor activity and reduced 
adiposity, but also to concurrent alterations in parameters of the leptin–melanocortin system that would predict obesity. To 
distinguish the underlying contributions to the energy balance phenotype of DIO3 deficiency, we generated mice with thyroid 
hormone excess targeted to pro-opiomelanocortin ( POMC ) -expressing cells via cell-specific DIO3 inactivation. These mice exhibit a 
male-specific phenotype of reduced hypothalamic Pomc expression, hyperphagia, and increased activity in brown adipose tissue, 
with adiposity and serum levels of leptin and thyroid hormones remained normal. These male mice also manifest a marked and 
widespread hypothalamic reduction in the expression of bone morphogenetic receptor 1a ( BMPR1A ) , which has been shown to 
cause similar phenotypes when inactivated in POMC-expressing cells. Our results indicate that developmental overexposure to 
thyroid hormone in POMC-expressing cells programs energy balance mechanisms in a sexually dimorphic manner by suppressing 
adult hypothalamic BMPR1A expression. 
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multiple tissues including the liver, muscle, and white and 
brown adipose tissues ( WAT and BAT, respectively ) . In addi- 
tion, T3 is critical for adequate BAT thermogenesis and Ucp1 
expression ( Christoffolete et al., 2004 ; Ribeiro et al., 2010 ) 
and has also been shown to induce beiging in WAT ( Lin 
et al., 2015 ) . However, T3 also contributes to central reg- 
ulation of energy balance by affecting hypothalamic regula- 
tory circuits ( Zhang et al., 2017 ) . For instance, the admin- 
istration of T3 directly into the hypothalamus causes local 
changes in adenosine monophosphate-activated protein kinase 
and fatty acid metabolism, altering paradigms of energy 
homeostasis ( López et al., 2010 ) . Chronic administration of 
T3 into the paraventricular hypothalamic nucleus leads to 
more limited effects depending on the duration of treatment 
( Zhang et al., 2016 ) . 
Introduction 
Thyroid hormone ( 3,5,3 ′ -triiodothyronine or T3 ) influences

energy balance largely by regulating biochemical processes and
cell physiology in metabolic tissues. Mitochondrial function
( Sinha et al., 2015 ) , glucose homeostasis ( Bauer et al., 2009 ;
Vujovic et al., 2009 ) , and lipid and cholesterol metabolism
( Astapova et al., 2014 ; Domouzoglou et al., 2014 ; Singh
et al., 2017 ) are a few of the processes regulated by T3 in
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However, in normal rodent and human physiology, T3 avail- 
ability and action in the brain is tightly controlled by the 
action of the type 2 and 3 deiodinase enzymes ( DIO2 and DIO3, 
respectively ) ( Alkemade et al., 2008 ; Friesema et al., 2012 ) . 
While DIO2 in astrocytes ( Bocco et al., 2016 ) and hypothalamic 
tanycytes ( Mihaly et al., 2000 ; Kwakkel et al., 2014 ) can convert 
the most abundant hormone thyroxine ( T4 ) into the most active 
hormone T3, neuronal DIO3 ( Tu et al., 1999 ) can transform both 
T4 and T3 into biologically inactive compounds ( Hernandez, 
2005 ) . The paracrine dynamic interplay between DIO2 and DIO3 
provides the brain with a mechanism to maintain T3 action 
within a narrow range, as appropriate to the brain region and 
developmental stage ( Flamant et al., 2015 ; Hernandez et al., 
2021 ) . Additional evidence for a role of local T3 in the central 
regulation of energy balance comes from mice with deiodinase 
deficiency. Studies in Dio2 -null mice reveal a role for local T3 
generation in the activation of orexigenic neurons upon fasting, 
a mechanism that involves UCP2 activation ( Coppola et al., 
2007 ) . 
Further evidence supporting a contribution of endogenous 

hypothalamic T3 in the regulation of energy balance is pro- 
vided by observations in mice lacking a functional DIO3. Due 
to impaired clearance of thyroid hormones, Dio3 –/– mice exhibit 
increased T3 action in the hypothalamus, abnormal energy bal- 
ance ( Wu et al., 2017 ) , and alterations in critical elements of 
the leptin–melanocortin system, an essential component of the 
hypothalamic mechanisms regulating metabolism in peripheral 
tissues ( Bjorbaek and Hollenberg, 2002 ; Seeley et al., 2004 ; 
Krashes et al., 2016 ) . Dio3 –/– mice manifest increased food 
intake and elevated and reduced, respectively, hypothalamic 
expression of Agrp and pro-opiomelanocortin ( Pomc ) , suggest- 
ing a positive energy balance. Intriguingly, these mice also 
exhibit reduced adiposity, an outcome that may be partially 
explained by their increased level of physical activity, possi- 
bly due to elevated T3 action in other regions of the brain 
( Wu et al., 2017 ) . Moreover, Dio3 –/– mice are overexposed 
to T3 during fetal and neonatal life ( Hernandez et al., 2006 ; 
Martinez and Hernandez, 2021 ) , raising the possibility that a 
large proportion of the abnormalities have a developmental 
origin. We have shown that this is the case for the neurobehav- 
ioral phenotype using a model of adult-onset DIO3 deficiency 
( Stohn et al., 2019 ) . 
Thus, the impact of global DIO3 deficiency and subsequent 

T3 excess on energy balance is complex and may affect multiple 
systems. In order to dissect individual mechanisms by which a 
developmental excess of T3 affects energy balance endpoints 
in the adult hypothalamus, we targeted DIO3 inactivation to 
POMC-expressing cells using mice carrying a floxed Dio3 allele 
( Martinez et al., 2019 ; Stohn et al., 2019 ) and a transgene driv- 
ing the expression of cre DNA recombinase from the Pomc pro- 
moter ( Pomc-cre/Dio3 f/f mice ) . Our results reveal a sexually di- 
morphic phenotype, with Pomc-cre/Dio3 f/f male mice exhibiting 
decreased bone morphogenetic protein receptor 1A ( BMPR1A ) 
in most hypothalamic areas in association with hyperphagia, 
decreased hypothalamic expression of Pomc and Ucp2 , and BAT 
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activation. Our results indicate that elevated T3 action in POMC- 
expressing cells during development has long-term and sexually 
dimorphic effects on the programming of hypothalamic BMPR1A 
and energy balance. 

Results 
DIO3 deficiency in POMC cells affects the adrenal axis, but not 
the thyroid axis, in males 
To target DIO3 deficiency to POMC-expressing cells, 

we crossed mice expressing cre from the Pomc promoter 
( Pomc-cre mice ) ( Balthasar et al., 2004 ) with mice carrying 
conditional ( flanked by loxP sites ) Dio3 alleles ( Dio3 f/f mice ) , 
as previously repor ted ( Mar tinez et al., 2019 ; Stohn et al., 
2019 ) . Polymerase chain reaction ( PCR ) of genomic DNA 
extracted from the hypothalamus of Pomc-cre/Dio3 f/f mice 
exhibited a distinctive PCR band specific for cre-recombined 
Dio3 . This band was not present in Dio3 f/f mice ( Figure 1 A, 
left ) . Quantification of Dio3 gene recombination ( the PCR band 
specific for Dio3 recombination ) using quantitative real-time 
PCR ( qPCR ) of the same hypothalamic genomic DNA showed an 
∼60-fold increase in Pomc-cre/Dio3 f/f mice ( Figure 1 A, right ) . 
Since this recombination leads to DIO3 inactivation ( Martinez 
et al., 2019 ; Stohn et al., 2019 ) , these data indicate that DIO3 
is inactivated in the hypothalamus. The anatomic distribution 
of this inactivation was confirmed in adult mice ( 5 months of 
age ) that carried a cre-dependent GFP transgene ( Ai6 ) . The 
latter mice showed GFP expression, i.e. DNA recombination, in 
distinct cells in the hypothalamic arcuate nucleus ( Figure 1 B ) , 
consistent with the known location of POMC-expressing cells 
in this region and previous reports using this cre transgenic 
line. Taken together, these data demonstrate that DIO3 is 
inactivated in cells expressing Pomc. There was no difference in 
the number of hypothalamic cells expressing the GFP transgene 
between control mice and mice with POMC cell-specific DIO3 
deficiency ( Figure 1 B ) . We examined the thyroid and adrenal 
hormonal axes in these mice, given that POMC neurons mediate 
the action of leptin to regulate thyrotropin-releasing hormone 
( TRH ) ( Harris et al., 2001 ) and that adreno-corticotropin 
hormone ( ACTH ) is produced by processing of the POMC 
peptide. Pomc-cre/Dio3 f/f mice did not exhibit abnormalities 
in the serum levels of thyroid hormones or thyrotropin ( TSH ) , 
nor in pituitary Tshb or hypothalamic Trh mRNA expression 
( Figure 1 C ) . In contrast, serum levels of corticosterone and 
pituitary expression of Pomc were significantly elevated in 
Pomc-cre/Dio3 f/f male mice, but not in females ( Figure 1 D ) . 
No significant difference in hypothalamic expression of 
corticotropin-releasing hormone ( Crh ) mRNA was observed 
in mutant mice of either sex ( Figure 1 D ) . 

Alterations in hypothalamic regulators of energy balance 
After weaning and up to 22 weeks of age, the growth of 

Pomc-cre/Dio3 f/f male mice was not significantly different from 

that of controls, although body weight trended lower with 
age ( Figure 2 A ) . Pomc-cre/Dio3 f/f female mice showed slightly 
reduced growth, although a reduction in body weight was 
f 14 
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Figure 1 Dio3 DNA recombination and hormonal profiles in Pomc-cre/Dio3 f/f mice. ( A ) PCR and qPCR results showing the presence ( left ) 
and the abundance ( right ) of the recombinant Dio3 allele. ( B ) GFP-labelled cells showing cre-mediated recombination in the hypothalamic 
arcuate nucleus ( n = 3 ) . ( C ) Serum and pituitary endpoints of the hypothalamic–pituitary–thyroid axis. ( D ) Serum and pituitary endpoints of 
the hypothalamic–pituitary–adrenal axis. * P < 0.05 as determined by unpaired Student’s t-test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

statistically significant only for 3 weeks after weaning and at
later ages ( Figure 2 B ) . At 18 weeks of age, we observed no dif-
ferences in body weight, lean mass, or fat mass ( Figure 2 C ) . We
then subjected these animals to studies in metabolic cages. The
results revealed no significant differences in physical activity,
total energy expenditure ( Figure 2 D; Supplementary Table S1 ) ,
or rectal temperature ( 36.8 ± 0.442 vs. 36.8 ± 0.319 in control
male mice, n = 7 and 8, respectively ) in experimental mice
of either sex. Pomc-cre/Dio3 f/f males still showed decreased
energy expenditure during the day time period of lower activity
( Supplementary Figure S1A ) . However, we observed a sexually
dimorphic effect on substrate fuel utilization where the night-
time and 24-h average resting respiratory exchange ratios ( RER )
were closer to 0.8 in Pomc-cre/Dio3 f/f male mice, indicative of
oxidation of a mix of protein, carbohydrates, and fat. In females,
RER values were closer to 0.7 ( P = 0.06–0.1 ) , suggesting fatty
Page 3 of
acid oxidation as the primary fuel source ( Supplementary
Figure S1B ) . Food intake was significantly elevated in
Pomc-cre/Dio3 f/f males, but not in females ( Figure 2 E ) . This
increase in food intake was observed during both the light
and dark cycles, consistent with increased food intake per
feeding event ( Figure 2 E ) . The hyperphagia in mutant males
was associated with elevated water intake, although the latter
did not reach statistical significance ( P = 0.07 ) ( Figure 2 F ) .
We also found that hypothalamic parameters of relevance to
energy balance were altered in males. Pomc-cre/Dio3 f/f males
exhibited reductions in the expression of Pomc, Lepr, Ucp2 ,
and peptide convertase genes Pcsk1 and Pcsk2 ( Figure 2 G ) ,
while immunofluorescence ( IF ) of POMC fiber projections
did not exhibit any notable abnormality ( data not shown ) .
Hypothalamic epression of Agrp , Npy, and Mc4r was unchanged
( Figure 2 G ) . Expression of the T3-dependent gene Hr was
 14 
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Figure 2 Growth, metabolism, and hypothalamic markers in Pomc-cre/Dio3 f/f mice. ( A ) Growth of male mice. ( B ) Growth of female mice. 
( C ) Weight and body composition of Pomc-cre/Dio3 f/f and control mice. ( D ) Physical activity and energy expenditure. ( E ) Food intake in 
Pomc-cre/Dio3 f/f and control mice. ( F ) Water intake in Pomc-cre/Dio3 f/f and control mice. ( G ) Hypothalamic gene expression in male mice. 
( H ) Serum leptin. ( I ) Leptin mRNA expression in WAT. * P < 0.05 as determined by unpaired Student’s t-test ( n = 7–14 ) . 
not altered, suggesting no changes in the average levels of 
T3 signaling across the hypothalamus. To further confirm 

this point, we measured the hypothalamic expression of 
additional eight genes that are among the top genes more 
consistently regulated by thyroid hormone in brain tissue, 
according to a recent compendium ( Chatonnet et al., 2015 ) . 
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We did not observe significant changes in the expression of 
any of them ( Supplementary Figure S1C ) . Also, no significant 
changes in gene expression related to energy balance were 
observed in the hypothalamus of females ( Supplementary 
Figure S1D ) . The alterations in male hypothalamic markers 
occurred in the absence of significant changes in serum 
f 14 
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A

C D

B

Figure 3 Hypothalamic expression of BMPR1A in 5-month-old Pomc-cre/Dio3 f/f mice. ( A ) Bmpr1a mRNA expression in the overall hypothala- 
mus. ( B ) BMPR1A IF in the median eminence, arcuate nucleus, and VMH of male mice. ( C ) BMPR1A IF in the VMH and tanycytes of male mice. 
( D ) BMPR1A IF in the hypothalamic tanycytes lining the third ventricle of male mice. ** P < 0.01 as determined by unpaired Student’s t-test. 
Images are representative of 2 or 3 mice per genotype. Arc, arcuate nucleus; ME, median eminence; 3v, third ventricle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

leptin ( Figure 2 H ) or leptin mRNA expression levels in WAT
( Figure 2 I ) . However, both parameters trended lower in
Pomc-cre/Dio3 f/f females. 

Decreased hypothalamic BMPR1A expression in 
Pomc-cre/Dio3 f/f male mice 
An important hypothalamic determinant of energy balance

is BMPR1A, which has been shown to play a role in the
development of hypothalamic circuits affecting food intake
Page 5 of
( Peng et al., 2012 ) . Of particular relevance to our present
studies, BMPR1A has been shown to regulate food intake and
enhance the activity of BAT when it is depleted specifically
in POMC-expressing cells ( Townsend et al., 2017 ) . In this
regard, qPCR experiments showed a significant decrease
in Bmpr1a mRNA expression in the hypothalamus of adult
( 5 months old ) Pomc-cre/Dio3 f/f male mice but not in
females, while the expression of Bmp7 , the BMPR1A
endogenous ligand, was not affected in either sex ( Figure 3 A ) .
 14 
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Figure 4 BMPR1A IF in 3-week-old mice. Decreased BMPR1A IF is observed in several hypothalamic regions ( arrows ) , including the arcuate 
nucleus, the median eminence, and tanycytes lining the third ventricle. First and third rows: control mice; second and fourth rows: mice 
with POMC neuron-specific DIO3 deficiency. Quantification showed no significant difference in the number of POMC neurons between 
experimental groups ( not shown ) . Quantification of BMPR1A IF was performed in three sections of four different mice. * P < 0.05 and 
** P < 0.01 as determined by the Student’s t-test ( n = 4 ) . Arc, arcuate nucleus; ME, median eminence; Ta, tanycytes; 3v, third ventricle. 
Hypothalamic BMPR1A IF largely co-localized to POMC- 
expressing cells and revealed marked reductions in BMPR1A 
in the arcuate nucleus of Pomc-cre/Dio3 f/f male mice ( Figure 
3 B ) . Interestingly, reductions in BMPR1A IF extended to other 
hypothalamic areas where POMC neurons are not normally 
present, including the ventromedial hypothalamus ( VMH ) 
( Figure 3 B ) , the median eminence, and tanycytes lining the 
dorsal region of the third ventricle ( Figure 3 C and D ) . Reduced 
BMPR1A IF in median eminence, arcuate nucleus, and tanycytes 
Page 6 o
was already observed at weaning age in Pomc-cre/Dio3 f/f 

male mice ( Figure 4 ) , suggesting a developmental origin. 
Intriguingly, we also observed at this age increased number 
of POMC-expressing cells and elevated BMPR1A IF in the 
medial preoptic area of Pomc-cre/Dio3 f/f male mice ( Figure 5 ) , 
suggesting mislocalization of some POMC-expressing cells. 
BMPR1A IF co-localized to POMC-expressing cells ( Figure 5 ) . 
In Pomc-cre/Dio3 f/f females, we did not observe changes 

in hypothalamic BMPR1A IF at 10 months of age ( Figure 6 ) . 
f 14 
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Figure 5 Hypothalamic BMPR1A IF in 3-week-old mice. The medial preoptic area of Pomc-cre/Ai6/Dio3 f/f mice ( bottom row ) exhibits elevated 
BMPR1A IF and increased number of POMC-expressing cells compared to that of control mice ( top row ) . Substantial co-localization of BMPR1A 
and POMC is also observed in many cells within this hypothalamic region. Quantification of BMPR1A IF was performed in two sections of three 
and five different mice, respectively. *** P < 0.001 as determined by the Student’s t-test ( n = 3 and 5 ) . MPA, medial preoptic area; 3v, third 
ventricle. 

 

 

 

 

 

 

 

 

 

 

However, in contrast to what was observed in male weanlings
( Figure 4 ) , 15-day-old Pomc-cre/Dio3 f/f females exhibited in-
creased BMPR1A expression in cells in the arcuate nucleus and
median eminence ( Figure 7 A ) as well as in tanycytes ( Figure 7 B ) .
We detected increased BMPR1A IF in the paraventricular region
Page 7 of
( Figure 7 B ) . In addition, strong BMPR1A expression was noted
at this age in the subcommissural organ and the expression
also appeared higher in Pomc-cre/Dio3 f/f females ( Figure 7 B ) .
No apparent differences in BMPR1A IF between genotypes were
noted in cells lining the dorsal third ventricle. Interestingly,
 14 
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Figure 6 BMPR1A IF in 10-month-old female mice. As in younger adult females, no appreciable difference in BMPR1A IF is observed in 
tanycytes lining the third ventricle or in the arcuate nucleus. Arc, arcuate nucleus; 3v, third ventricle. 

 

some POMC-expressing cells were observed in the region of 
the precommissural nucleus ( Figure 7 C ) only in Pomc-cre/Dio3 f/f 

females but not in controls, suggesting a mislocalization of 
POMC-expressing cells. 

Activated BAT in Pomc-cre/Dio3 f/f male mice 
Consistent with the male-specific decreased hypothalamic 

BMPR1A expression, an activation of BAT in Pomc-cre/Dio3 f/f 

male mice, but not in females, was observed. Hematoxylin and 
eosin ( H&E ) staining of Pomc-cre/Dio3 f/f BAT showed smaller 
brown adipocytes and reduced lipid content in male mice, but 
not in females ( Figure 8 A ) , suggesting BAT activation in male 
mice with POMC cell-specific DIO3 deficiency. This was con- 
firmed by BAT data showing elevated expression of genes re- 
lated to adrenergic stimulation and thermogenesis, including 
Ucp1 , Lpl , Dio2 , Pgc1a , Adipoq , and Elovl3 ( Figure 8 B ) . The 
BAT activation signature of Pomc-cre/Dio3 f/f males was associ- 
ated with increased expression of genes related to BAT recruit- 
ment, including Irf4 , Ncoa2 , Nr1h3 , Nirp1 , Prdm16 , and Pparg 
( Figure 8 C ) . 

Discussion 
The important role of thyroid hormone in regulating cell 

metabolism in most organs has long been known, but their 
function in the central regulation of energy balance has also 
been increasingly appreciated ( Coppola et al., 2007 ; López 
et al., 2010 ) . The observation in rodents that exogenous T3 
administration into the hypothalamus impacts local and pe- 
ripheral metabolism ( López et al., 2010 ) raised the possibility 
that endogenous factors regulating T3 availability in this brain 
region may also influence metabolic phenotypes. We previously 
observed that lacking one of these factors, DIO3, results in 
decreased adiposity and abnormalities in serum leptin and hy- 
Page 8 o
pothalamic expression of Pomc and other genes of metabolic 
relevance ( Wu et al., 2017 ) . However, global DIO3 deficiency 
causes a complex developmental syndrome affecting multiple 
endocrine systems ( Hernandez et al., 2007 ; Medina et al., 2011 ) 
and physical activity ( Wu et al., 2017 ) , confounding the distinct 
effects of T3 excess during early life on developing hypothalamic 
circuitries that will regulate energy balance in adulthood. 
Here, we used a genetic approach of conditional DIO3 inac- 

tivation to achieve T3 excess specifically in POMC-expressing 
cells. Mature POMC neurons are key to rely the anorexigenic 
effects of leptin to other hypothalamic circuitries ( Ahima and 
Osei, 2004 ) . These effects include the activation of the thyroid 
axis through induction of TRH in the paraventricular nucleus 
( Harris et al., 2001 ; Guo et al., 2004 ) . However, we observed that
Pomc-cre/Dio3 f/f mice do not exhibit any alterations in thyroid 
hormone status at least at baseline, suggesting that metabolic 
phenotypes in Pomc-cre/Dio3 f/f mice are not resulting from ab- 
normal thyroid hormone action in peripheral tissues. Metabolic 
studies in these mice indicate no major alterations in growth, 
adiposity, or energy expenditure. Still, the thyroid axis and adi- 
posity outcomes of these animals may be abnormal in response 
to specific physiological challenges, and this susceptibility will 
need to be investigated. Consistent with the normal levels of 
circulating thyroid hormones, T3 action in the hypothalamus is 
also unaltered in Pomc-cre/Dio3 f/f mice, as determined by aver- 
age expression levels of T3 target genes. This is not surprising 
considering that most hypothalamic cells are targets of thyroid 
hormone, but POMC neurons, where T3 clearance is impaired, 
represent a very small proportion of total hypothalamic cells. 
However, similar to that described in Dio3 –/– mice ( Wu 

et al., 2017 ) , Pomc-cre/Dio3 f/f male mice are hyperphagic 
and manifest abnormalities in hypothalamic gene expression. 
Pomc mRNA expression is decreased, further supporting this 
f 14 
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A

B

C

Figure 7 BMPR1A IF in 15-day-old female mice. ( A ) Increased BMPR1A IF and BMPR1A cell number ( yellow arrows, left ) in Pomc-cre/Ai6/Dio3 f/f 

female mice compared to controls, with partial co-localization with POMC-expressing cells ( yellow arrow, right ) . ( B ) Increased BMPR1A IF 
( yellow arrows, left ) in the paraventricular region. POMC-expressing cells are indicated by white arrows ( center ) . ( C ) Strong BMPR1A IF in the 
subcommissural organ and in cells lining the third and dorsal third ventricles, with Pomc-cre/Ai6/Dio3 f/f female mice showing a few POMC- 
expressing cells in the precommissural nucleus area ( white arrows, center ) , while none is observed in control mice. Arc, arcuate nucleus; ME, 
median eminence; 3v, third ventricle; D3v, dorsal third ventricle; pc, posterior commissure; SCO, subcommissural organ; Prc, precommissural 
nucleus. 
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A

B

C

Figure 8 BAT activation in Pomc-cre/Dio3 f/f male mice. ( A ) H&E 
staining and lipid content of BAT from male and female 
Pomc-cre/Dio3 f/f mice compared to controls. ( B ) Expression of 
genes related to BAT activation in male mice. ( C ) Expression of genes 
related to BAT recruitment in male mice. * P < 0.05, ** P < 0.01, and 
*** P < 0.001 as determined by unpaired Student’s t-test. Images 
are representative of 2 or 3 mice per genotype. 
phenotype as a distinct outcome of hypothalamic T3 excess dur- 
ing development. Hypothalamic expression of Ucp2 and peptide 
convertase genes Pcsk1 and Pcsk2 are also decreased. In the 
face of increased food intake, we do not note elevated expres- 
sion of Npy or Agrp , although it is possible that the activity 
of AGRP neurons is increased . Considering that null mice for 
Page 10 o
Pcsk1 and Pcsk2 do not exhibit adiposity phenotypes ( Shakya 
et al., 2021 ) , it is unlikely that the observed reductions in 
their expression contribute to an energy balance phenotype. 
On the other hand, reduced expression of Pomc ( Bjorbaek and 
Hollenberg, 2002 ) and Ucp2 ( Coppola et al., 2007 ) as well as 
hyperphagia would predict, together with the slight decrease in 
leptin receptor expression, a positive energy balance and obe- 
sity, possibly due to partial leptin resistance. However, although 
the latter possibility needs to be directly studied, no obesity 
phenotype is observed, suggesting a compensatory mechanism 

that promotes energy expenditure. 
Since there is no significant difference in physical activity 

between control and Pomc-cre/Dio3 f/f mice, decreased hypotha- 
lamic expression of BMPR1A may be a part of such compensatory 
mechanism. Townsend et al. ( 2017 ) recently described that 
BMPR1A deficiency specifically in POMC neurons leads to the 
increased adrenergic tone and BAT activation. Likewise, we 
also observed a marked decrease in BMPR1A expression in the 
hypothalamus of Pomc-cre/Dio3 f/f male mice, and this deficit 
also affects POMC neurons. Furthermore, this is associated with 
a robust profile of increased BAT activity based on histological 
and specific gene expression data, mimicking the results from 

the POMC cell-specific model of BMPR1A deficiency ( Townsend 
et al., 2017 ) . Interestingly, we observed that the BMPR1A 
deficiency of Pomc-cre/Dio3 f/f mice not only affects POMC 
neurons but also extends to multiple areas of the hypothalamus 
including tanycytes, arcuate nucleus, and median eminence, 
which may influence neuroendocrine function and energy 
balance. Thus, in our model, other hypothalamic circuitries 
impacting energy balance and dependent on BMPR1A signaling 
may also be affected. For instance, we observed reduced 
BMPR1A expression in the VMH, a nucleus involved in several 
hypothalamic circuitries that regulate glucose homeostasis 
( Sejling et al., 2021 ; Sutton et al., 2021 ) , food intake 
( Nguyen et al., 2020 ; Zhang et al., 2020 ) , and leptin sensitivity 
( Berger et al., 2016 ) . BMPR1A also has a role in the development 
of orexigenic neurons in the hypothalamus, including their 
projections to the VMH ( Peng et al., 2012 ) . Moreover, a reduction 
in thyroid hormone signaling in the VMH by knockdown of 
the thyroid hormone beta receptor leads to hyperphagia, 
reduced energy expenditure, and obesity ( Hameed et al., 
2017 ) . Thus, it is likely that the abnormal BMPR1A signaling 
during development leads to aberrant programming of the 
VMH, with subsequent consequences for multiple mechanisms 
of energy balance regulation. Lastly, the apparent ectopic 
localization of some POMC cells in the medial preoptic area 
and the subcommissural organ raises the possibility that DIO3 
deficiency affects the migration and ultimate anatomic location 
of a subset of these cells, with unknown functional implications. 
Although energy expenditure is higher in Pomc-cre/Dio3 f/f 

male mice than in controls, the difference is not statistically 
significant, as one would predict as a result of hyperphagia and 
BAT activation. It is possible that alterations in other central 
mechanisms have compensatory effects on energy expenditure 
that need to be identified. For example, alterations in leptin 
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signaling in vagal afferent neurons ( Cakir et al., 2007 ; Huang
et al., 2021 ) or in the melanocortin receptors in the vagus nerve
( Liu et al., 2003 ) may be of consequence for the regulation of the
gastro-intestinal tract ( Browning and Carson, 2021 ; Clyburn and
Browning, 2021 ) . This raises the possibility that vagus nerve al-
terations may diminish nutrient absorption ( Mourad and Saadé,
2011 ; Huang et al., 2021 ) . This diminished effective calorie
intake may lead to reduced energy expenditure in other tissues
that would compensate for BAT activation. 
The alterations in Pomc-cre/Dio3 f/f mice discussed above are

sexually dimorphic and affect males, but not females. These
alterations appear to be present already at weaning age, indi-
cating that the result of malprogramming occurs earlier in life,
possibly affecting neonatal hypothalamic sexual differentiation
( Tobet, 2002 ) . Most sexual dimorphisms in the brain, including
the hypothalamus, arise as a result of the neonatal peak in
testosterone and subsequent action of this hormone in the male
brain, largely after it is locally converted to estradiol ( Balthazart
and Ball, 1998 ; Schwarz and McCarthy, 2008 ) . Considering the
marked neonatal peak of Dio3 expression in the rodent hypotha-
lamus ( Kaplan and Yaskoski, 1981 ; Hernandez et al., 2006 ) , it
is possible that sexually dimorphic processes involving POMC-
expressing cells are affected by loss of DIO3 function and the
subsequent increase in T3 action, as T3 has been reported
to cross-talk with hypothalamic estradiol signaling ( Dellovade
et al., 1999 , 2000 ; Vasudevan et al., 2001 , 2002 ; Faustino
et al., 2015 ) . 
It is also important to note that cells that express POMC

during development not only give rise to adult POMC neurons
but also to other types of hypothalamic neurons ( Padilla et
al., 2010 ) , raising the possibility that thyroid hormone excess
in POMC cells early in development leads to abnormalities
in the adult hypothalamus not restricted to POMC neurons.
This is also consistent with our observations here suggesting
anomalies in the anatomic localization of some POMC cells in
Pomc-cre/Dio3 f/f mice. 
Although Dio3 is expressed in neural progenitors and ma-

ture neurons ( Escamez et al., 1999 ; Tu et al., 1999 ) , it is
also expressed in other tissues, especially during development
( Hernandez et al., 2021 ) . Likewise, Pomc is also expressed in
other mouse tissues. It is unknown whether significant Dio3
expression is present in other types of POMC-expressing cells,
but this possible limitation needs to be considered. DIO3 loss
of function in non-hypothalamic tissues may influence the phe-
notype of the mouse model studied here. In this regard, the
case of the pituitary is particularly relevant. Pituitary processing
of POMC generates ACTH, a pituitary hormone critical for the
regulation of corticosteroid production in the adrenal gland.
It is not known whether Dio3 is expressed in ACTH-producing
pituitary cells but, if this were the case, thyroid hormone excess
in ACTH-producing cells of Pomc-cre/Dio3 f/f pituitaries may lead
to abnormalities in the adrenal axis. This is a likely possibility
considering our observation of a sexually dimorphic phenotype
in adult serum corticosterone, with males exhibiting a significant
increase over controls, while female values trending lower than
Page 11 o
controls. It is also possible that altered levels of corticosterone
affect the metabolism of peripheral tissues and overall energy
balance. 
In summary, we show that lack of T3 clearance in developing

POMC-expressing cells leads to sex-specific alterations in the
programming of multiple hypothalamic systems. Some of these
alterations remain to be elucidated, but here we report BMPR1A
deficiency in most hypothalamic regions and reduced Pomc
expression that manifest as BAT activation and hyperphagia.
Considering the relatively high prevalence of thyroid disease in
women of reproductive age, our results shed some light on how
POMC cells might be affected by developmental thyrotoxicosis,
with long-term consequences for energy balance regulation and
susceptibility or resistance to obesity. 

Materials and methods 
Mouse models 
Experimental Dio3 f/f mice used in these studies were gen-

erated and genotyped as previously described ( Hernandez
et al., 2006 ) . Dio3 f/f mice on a C57Bl/6J genetic background
were crossed with mice carrying a transgene expressing cre DNA
recombinase under the control of the Pomc promoter ( Stock no:
010714, Jackson Lab ) to obtain Pomc-cre/Dio3 f/ + mice. Since
original Pomc-cre mice were on an FVB genetic background, the
latter animals were then crossed with Dio3 f/f mates for three
generations before generating experimental animals for study,
Pomc-cre/Dio3 f/f mice. We used Dio3 f/f mouse littermates as
controls. Both males and females were used, and the animals
studied belonged to litters that were 7–9 in size. The main
studies were performed in adult animals at ∼4.5–5 months of
age. Animals were kept under a 12-h light cycle, fed ad libitum,
and euthanized by asphyxiation with CO 2 . Blood was taken from
the inferior vena cava, and serum was obtained by centrifugation
and stored at −70°C until use. Likewise, fresh tissues were
harvested, frozen on dry ice, and stored at −70°C until use. All
animal procedures were approved by the Maine Medical Center
Research Institute Institutional Animal Care and Use Committee.

Serum determinations 
Serum total T4 and T3 concentrations were determined us-

ing the total T4 and T3 Coat-a-Count RIA kits from Diagnostics
Products Corp. according to the manufacturer’s instructions.
Serum corticosterone was determined using the AssayMax TM

ELISA Kit from Assaypro according to the manufacturer’s instruc-
tions. Serum TSH was determined in the laboratory of Samuel
Refetoff at the University of Chicago, as previously described
( Pohlenz et al., 1999 ) . 

H&E staining of WAT and BAT 
WAT and BAT were fixed in 4% paraformaldehyde ( PFA ) and

embedded in paraffin. Sections were visualized by H&E staining.
Nuclear staining in brown fat was quantified in seven consecu-
tive sections spanning the areas depicted from three different
mice ( 21 sections per group in total ) ( Hernandez et al., 2010 ) . 
f 14 
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RNA preparation and qPCR 
Tissues were harvested and subsequently frozen on dry ice, 

and total RNA was extracted using the RNeasy kit from Qiagen. 
Total RNA ( 1 μg ) was reverse-transcribed with M-MLV reverse 
transcriptase in the presence of random decamers ( both from 

Thermo Fisher Scientific ) at 65°C for 5 min and then 37°C for 
50 min. The 20- μl reverse transcription reactions were diluted 
by adding 230 μl DNase and RNase-free water. An aliquot of 
each sample was mixed together for an internal standard and di- 
luted 4-fold. qPCR reactions were set up in duplicate with gene- 
s pecific primer s and SYBR Sel ect M as t er Mix ( Thermo Fisher 
Scientific ) and run on the CFX Connect from BioRad, where they 
underwent an initial 10 min denaturing step, followed by 36 
cycles of a denaturing step ( 94°C for 30 sec ) and an anneal- 
ing/extension step ( 60°C for 1 min ) . For each individual sample, 
expression was corrected by the expression of control house- 
keeping genes ( Gapdh , Actb , or Rn18s ) , which did not exhibit 
any significant difference in expression between genotypes. 
Expression data are shown in arbitrary units and represented 
as fold-increase over the mean value in the control group un- 
less otherwise stated. Primers used are listed in Supplementary 
Table S2. 

Body composition and metabolic determinations 
Fat mass and lean mass were measured in isoflurane- 

anesthetized mice using a Lunar PIXImus II DEXA Densitometer. 
For metabolic determinations, we utilized a Promethion 
metabolic cage system ( Sable Systems ) . A standard 
12-h light/dark cycle was maintained throughout the calorimetry 
studies and all animals had ad libitum access to standard rodent 
chow and water throughout the study. Prior to data collection, 
animals were acclimated to the cages for 24 h. The calorimetry 
system consisted of 16 metabolic cages ( identical to home 
cages with bedding ) equipped with water bottles, food hoppers, 
and home shelters connected to load cells for food and water 
intake as well as body weight monitoring throughout the study. 
All cages contained running wheels ( 4.5 ′′ ( 11.5 cm ) diameter, 
MiniMitter ) wired to record revolutions/second continuously 
using a magnetic reed switch and standard XYZ beambreak
assembly to monitor cage activity. Data were acquired with 
Metascreen v2.3.15.11 and analyzed using Expedata v1.9.27 
( Sable Systems ) as previously described ( DeMambro et al., 
2015 ) . ANCOVA analysis between body composition and energy 
expenditure parameters was performed. No significant effects 
of body composition were found between energy expenditure 
and any of the variables. Thus, energy expenditure is reported 
in kcal/h. 

IF 
Male mice at 3 weeks and 2 months of age were anesthetized 

with an intraperitoneal injection of 2.5% avertin ( Sigma-Aldrich ) 
phosphate-buffered saline ( PBS ) solution ( 250 mg/kg ) . Mice 
were then perfused with ice-cold PBS and 4% PFA through the 
heart left ventricle. The perfused brains were removed, fixed 
overnight in 4% PFA at 4°C, transferred to a 30% sucrose PBS
Page 12 o
solution, and stored at 4°C. Once the brains sank to the bottom 

of the vials, they were frozen, embedded in OCT, and stored 
at −70°C. The 20 μm sections were prepared using a Leica 
cryostat and BMPR1A IF was performed as previously described 
by Townsend et al. ( 2017 ) . IF signal in confocal images was 
analyzed with NIH-developed open software package ImageJ 
V1.53q. Signals in subareas were manually selected and quan- 
tified with the software in 2–3 tissue sections from 3–5 different 
animals per experimental group. 

Statistics 
Statistical significance between groups was determined by 

the two-tailed Student’s t-test ( two groups ) or one-way ANOVA 
( multi-groups ) using GraphPad Prism 6 ( GraphPad Software 
Inc. ) . Regression analysis was performed using JMP 11.0 ( SAS 
Institute Inc. ) . Significance was established at P ≤ 0.05 ( two- 
tailed ) . Correlations are reported as Pearson r values ( Kaiyala 
et al., 2010 ; Kaiyala and Schwartz, 2011 ) . 

Supplementary material 
Supplementary material is available at Journal of Molecular 

Cell Biology online. 
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