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Summary
African populations are vastly underrepresented in genetic studies but have the most genetic variation and face wide-ranging environ-

mental exposures globally. Because systematic evaluations of genetic prediction had not yet been conducted in ancestries that span

African diversity, we calculated polygenic risk scores (PRSs) in simulations across Africa and in empirical data from South Africa, Uganda,

and the United Kingdom to better understand the generalizability of genetic studies. PRS accuracy improves with ancestry-matched dis-

covery cohorts more than from ancestry-mismatched studies. Within ancestrally and ethnically diverse South African individuals, we

find that PRS accuracy is low for all traits but varies across groups. Differences in African ancestries contribute more to variability in

PRS accuracy than other large cohort differences considered between individuals in the United Kingdom versus Uganda. We computed

PRS in African ancestry populations using existing European-only versus ancestrally diverse genetic studies; the increased diversity

produced the largest accuracy gains for hemoglobin concentration and white blood cell count, reflecting large-effect ancestry-enriched

variants in genes known to influence sickle cell anemia and the allergic response, respectively. Differences in PRS accuracy across

African ancestries originating from diverse regions are as large as across out-of-Africa continental ancestries, requiring commensurate

nuance.
Introduction

Genome-wide association studies (GWASs) have yielded

important biological insights into the heritable basis of

many complex traits and diseases.1 However, the vast

majority of studies have been conducted in populations

of European descent, potentially limiting generalizability

across diverse populations.2–6 Genome-wide significant

SNP associations with phenotypes spanning a wide range

of genetic architectures have consistently replicated across

populations in both direction and effect size, with few ex-

amples of heterogeneous effect sizes.7–9 However, previous

studies that have compared the association between genet-

ically predicted versus measured phenotypes in diverse

populations using polygenic risk scores (PRSs) have found

that PRS accuracy decreases with increasing genetic

distance between the GWAS discovery and PRS target co-

horts.4,10,11 This seeming paradox highlights that while
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variant-level associations consistently replicate across pop-

ulations, genome-wide aggregate measures are more

predictive but less generalizable.12 Since the earliest appli-

cations of PRS in human genetics, these concepts—

coupled with Eurocentric study biases—have resulted in

PRSs that are most accurate in European ancestry popula-

tions and least accurate in African ancestry populations.13

These study biases and phenomena continue to replicate a

decade later, with several-fold differences in prediction

accuracy of many traits between European and non-Euro-

pean ancestry populations.4

Quantifying PRS generalizability within and among

African populations requires considerable nuance, as

they represent the most genetically diverse populations

globally, with more than a million more genetic vari-

ants per person than out-of-Africa populations.14 Popula-

tions collected even within the same geographic regions

of Africa have complex demographic histories with
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complicated patterns of admixture and population struc-

ture.15–18 Further, African ancestry populations experience

vastly different environments within versus outside conti-

nental Africa as well as more locally among diverse com-

munities, countries, and regions of Africa. These differ-

ences provide unique epidemiological opportunities to

query the impacts of vastly differing environments on

PRS accuracy. Previous empirical analyses and theoretical

work fundamentally informs how demographic history

and environmental variation interplay to produce PRS het-

erogeneity in traditionally underserved populations.19–23

The inclusion of African ancestry participants in large-

scale genetic studies is uniquely important formany reasons.

They have the lowest life expectancies globally,24,25 receive

the lowest access to andquality ofmedical care in theUnited

States,26 and are the most underserved by genetic technolo-

gies.6,27 A more nuanced understanding of PRS transfer-

ability will critically informwhich populations are currently

the most underserved and thus where building genetic

studies and resources will have the biggest benefits globally.

There are also clear benefits to including African popu-

lations in statistical genetics efforts. Because humans

originated in Africa, populations from Africa have the

most genetic diversity among global populations,14,28,29

such that more genotype-phenotype associations are ex-

pected in Africa than can be found elsewhere. African

American individuals have been shown to contribute

disproportionately to GWAS findings,2 making up 2.8%

of GWAS participants but contributing 7% of trait associ-

ations. African ancestry populations also have shorter

blocks of linkage disequilibrium, which improves resolu-

tion to fine-map causal variants.30 PRS accuracy is lowest

in African ancestry populations due to GWAS study

biases,4 but when GWASs include these and other diverse

populations, PRS predict traits such as schizophrenia

more accurately across all populations compared with

single-ancestry GWASs.31

In this study, we have investigated how PRSs generalize

within and among diverse African populations in simula-

tions and with empirical genotype-phenotype data for

dozens of quantitative traits. We first simulated genetic

effects and computed genetic risk prediction accuracy us-

ing data from two African datasets: the African Genome

Variation Project (AGVP) and the Africa Wits-INDEPTH

partnership for Genomic Studies (AWI-Gen) project. We

then calculated PRS using publicly available GWAS sum-

mary statistics from predominantly European ancestry

populations to (1) quantify PRS accuracy for five physical

and psychosocial traits among populations in the Draken-

stein Child Health Study (DCHS) of South Africa, a birth

cohort study; and (2) compare PRS accuracy for 34 quanti-

tative traits across the Ugandan General Population

Cohort (GPC) versus ancestrally diverse UK Biobank partic-

ipants. Our results highlight the disproportionate benefits

of genetic studies in diverse African populations to

improve trait prediction. Further, while PRSs hold promise

as biomarkers in precision medicine, a critical prerequisite
2 Human Genetics and Genomics Advances 4, 100184, April 13, 202
is equitable accuracy in diverse populations to avoid exac-

erbating existing health disparities.
Materials and methods

Genetic and phenotypic data
Total counts of individuals by population and/or study are shown

in Table S2.

1000 Genomes Project

1000 Genomes Project data from the phase 3 integrated call set

were accessed and used as a reference panel and for phasing and

imputation.14

Human Genome Diversity Project

Genotype data for samples from the Human Genome Diversity

Project (HGDP) was publicly available on the Illumina

HumanHap650K GWAS array on hg18.32 We lifted over the geno-

type data to the hg19 genome build using hail (http://hail.is).

African Genome Variation Project

Asdescribed previously,33 theAGVPdata consist of dense genotype

data from 1,481 individuals from 18 ethnolinguistic groups from

Eastern, Western, and Southern Africa when including the Luhya

and Yoruba from the 1000 Genomes Project.14 When accessed

from the European Genome-Phenome Archive (EGA:E-

GAD00010001047), ‘‘Ethiopian’’ is the provided population label

encompassing the Oromo, Amhara, and Somali groups. After

collapsing these groups and counting the 1000Genomesdata sepa-

rately, 1,307 individuals from 14 populations are uniquely repre-

sented in the AGVP, and 2,504 individuals from 26 populations

are represented in the 1000 Genomes Project data (661 individuals

from seven populations are in the AFR super population grouping).

Africa Wits-INDEPTH partnership for genomic studies

AWI-Gen is a study that investigates the relationship between ge-

netics and the environment in causing cardiometabolic disease in

sub-Saharan Africa with study participants from Burkina Faso,

Ghana, Kenya, and South Africa.34,35 It is a partnership between

the University of Witwatersrand (Wits) in Johannesburg, South

and the International Network for the Demographic Evaluation

of Populations and Their Health (INDEPTH). Ethical approval

was obtained from the Human Research Ethics Committee of

the University of the Witwatersrand (Protocol Number:

M121029 and from the institutions of the respective centres that

are in the international network.

Drakenstein Child Health Study in South Africa

The DCHS is an ongoing, multidisciplinary population-based

birth cohort study in the Drakenstein area in Paarl (outside Cape

Town, South Africa), that obtained ethical approval from the Fac-

ulty of Health Sciences Research Ethics Committee at the Univer-

sity of Cape Town (401/2009) and the Western Cape Provincial

Research committee.36–38 After providing informed consent, preg-

nant women were enrolled during their second trimester (20–

28 weeks’ gestation); maternal-child dyads were then followed

through childbirth and longitudinally thereafter. Enrollment

occurred from March 2012 to March 2015 at two primary health

care clinics: TCNewman (serving a predominantly mixed ancestry

population) and Mbekweni (serving a predominantly Black Afri-

can population). Women were eligible to participate in the

DCHS if they attended one of the study clinics, were at least 18

years of age, and intended to remain residing in the study area.

Ancestral diversity computed using PCA with genetic data is

shown in Figure S5 with corresponding self-reported ethnicity

(‘‘Mixed’’ versus ‘‘Black/African’’).
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Uganda General Population Cohort

The rural Uganda GPC of MRC/UVRI & LSHTM Uganda Research

Unitwas set up in1989 initially tomonitor theHIVepidemic among

adults, children, and adolescents, after obtaining ethical approval

the Uganda Virus Research Institute Science and Ethics committe

and the Ugandan National Council of Science and Technology. It’s

mandate has since expanded to include othermedical conditions.39

The ‘‘original GPC’’ is located in the sub-county of Kyamulibwa in

rural southwestern Uganda with activities having recently been

expandedto theneighboring twoperi-urbantownshipsofLwabenge

and Lukaya. The ‘‘original GPC’’ includes about 10,000 adults and

about 10,000 children and adolescents. In 2011, genotype data

weregeneratedonmore than5,000adultparticipants fromnine eth-

nolinguistic groupsusing the IlluminaHumanOmni2.5BeadChipat

the SangerWellcome Trust Institute.39,40

UK Biobank

The UK Biobank enrolled 500,000 people aged between 40 and 69

years in 2006–2010 from across the country, as described previ-

ously.41 A more detailed description of the cohort is available on

their website: https://www.ukbiobank.ac.uk/.We analyzed pheno-

types that overlapped with those studied in the Uganda GPC.
Ancestry analysis in the UK Biobank
As described previously,41 the UK Biobank consists of approxi-

mately 500,000 participants of primarily European ancestry who

have thousands of measured or reported phenotypes. To assess

polygenic score accuracy across diverse ancestries, we identified

populations of ancestral groups at two levels: (1) among continen-

tal groups, and (2) among regions in Africa. To define continental

ancestries, we first combined reference data from the 1000 Ge-

nomes Project and HGDP. We combined these reference datasets

into continental ancestries according to their corresponding

meta-data (Table S5). We then ran PCA on unrelated individuals

from the reference dataset. To partition individuals in the UK Bio-

bank based on their continental ancestry, we used the PC loadings

from the reference dataset to project UK Biobank individuals into

the same PC space.We trained a random forest classifier given con-

tinental ancestry meta-data (AFR ¼ African, AMR ¼ admixed

American, CSA ¼ Central/South Asian, EAS ¼ East Asian, EUR ¼
European, and MID ¼ Middle Eastern) based on the top six PCs

from the reference training data. We applied this random forest

to the projected UK Biobank PCA data and assigned initial ances-

tries if the random forest probability was >50% (similar results ob-

tained for p > 0.9), otherwise individuals were dropped from

further analysis.

Next, we further partitioned African ancestry individuals using

the same random forest approach as above but without further

probability thresholding using African ancestry reference data

fromAGVP, HGDP, and the 1000Genomes Project.We partitioned

these reference data into UN regional codes with an additional re-

gion for Ethiopian populations given their unique population his-

tory and collapsing in AGVP data (Admixed, Central, East,

Ethiopia, South, and West Africa), as shown in Table S5. PCA

with reference data at the continental and subcontinental level

within Africa are shown in Figures S10 and S11.
Phasing and imputation
We used the Ricopili pipeline to conduct pre-imputation quality

control (QC) and perform phasing and imputation for AGVP

and the Uganda GPC.42 This pipeline was also used on the

DCHS data, as described previously.43 Briefly, we phased the data
Hum
using Eagle 2.3.5 and imputed variants using minimac3 in chunks

R3 Mb. The 1000 Genomes phase 3 haplotypes were used as the

reference panel for phasing and imputation. For the AGVP, we

used strict best guess genotypes where a variant was called if it

had a probability of p > 0.8 and a missing rate less than 0.01

and MAF >5%. Then, variants with MAF <0.001 were excluded

from the dataset. For Uganda GPC, we used combined best guess

genotypes where a variant was called if it had a probability

p > 0.8 or set to missing otherwise. Then, SNPs were filtered to

keep sites with missingness <0.01 and MAF >0.05. We used geno-

type dosages when computed PRS.

PCA
Only SNPs with high imputation quality (INFO>0.8) were consid-

ered for principal-component analysis. We computed the first 20

principal components using plink with the –pca flag for autosomal

SNPs MAF >0.05 and individual missingness <0.05.

Simulation setup
We used two independent simulation strategies for two African da-

tasets: AGVP and AWI-Gen. The choice of simulation strategy was

informed by the sample size of each dataset. We used the simula-

tion strategy previously used by Scutari et al.11 for AGVP, and the

infinitesimal model for simulations in AWI-Gen. To test the PRS

prediction accuracy within and across African populations, we

simulated four quantitative traits while varying heritabilities

(h2¼ 0.1, 0.2, 0.4 and 0.8) for both AGVP and AWI-Gen as follows.

AGVP

We randomly assigned an effect size to 5, 20, 100, 2,000, 10,000,

and 50,000 causal variants, respectively. We then calculated an in-

dividual’s ‘‘true’’ polygenic risk as the sumof all causal effects using

the –score flag in PLINK v1.07B.44 True polygenic scores were stan-

dardized to a mean of zero and standard deviation of 1. To account

for the contribution of environmental risk factors, we assigned

environmental effects from a normal random distribution

(mean ¼ 0 and SD ¼ 1). The phenotype was generated according

to its heritability as the weighted sum of the true polygenic risk

and a random environmental effect as below:

phenotype ¼ h2 3 true polygenic riskþ �
1 � h2

�

3 environmental effect

We then conducted GWAS for the simulated phenotypes by

splitting the AGVP dataset into three groups broadly representing

the three geographical areas from which samples were obtained:

East (n¼ 589),West (n¼ 517), and South Africa (n¼ 186, Figure 1).

To allow for the quantification of PRS prediction accuracy across

the geographical regions, each group was further split into discov-

ery and target cohorts. The size of the target cohorts was

maintained at n ¼ 186 across all groups, while the discovery

cohort consisted of all remaining individuals (East n ¼ 403, West

n¼ 331, and no South Africans). We conducted a linear regression

for all the simulated traits for the East andWest discovery datasets,

controlling for the first 20 principal components.

AWI-Gen

We assigned genetic effects to variants based on their minor allele

frequency. The effectswere calculated basedon the relationship be-

tween effect size and minor allele frequency as shown by Schoech

et al.45 The ‘‘true’’ individual’s polygenic risk was calculated in the

same way as it was for AGVP, so was the environmental risk factor

and the phenotypes. To be able to conduct GWAS, we split AWI-

Gen into discovery and target sets such that each discovery set
an Genetics and Genomics Advances 4, 100184, April 13, 2023 3
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Figure 1. Simulation strategy overview
(A)WeusedAGVP for simulations inWest, East, and SouthAfricanpopulations thatwere groupedbasedon theUnitedNations geoscheme
groupings. Each group was divided into discovery and target subgroups. GWAS discovery cohorts included East (n ¼ 403) andWest (n ¼
331) African individuals, which were independent of each target cohort (n¼ 186 individuals per region). South African individuals were
excluded from the discovery population due to the limited total sample size (two populations and 186 individuals total).
(B) We used AWI-Gen for simulations in Burkina Faso (n ¼ 1703), Ghana (n ¼ 1,661), Kenya (n ¼ 1,701), and South Africa (n ¼ 4,455).
For these simulations we withheld 500 individuals from each of the groups, which were used as the target cohort. The GWAS discovery
cohort included the 9,020 individuals who were not in the target cohort. Each figure represents roughly 500 individuals. BF, Burkina
Faso; SA, South Africa.
had 9,020 samples and each target 500 (Figure 1). For each discov-

ery-target split, we alternately withheld 500 samples from one of

the four countries (Burkina Faso, Ghana, Kenya, and South Africa).

We then conducted GWAS for each of the discovery datasets.

For each discovery cohort in AGVP and AWI-Gen, we obtained

independent SNP sets by clumping SNPs from corresponding sum-

mary statistics files with an r2 value greater than 0.1 using in-sam-

ple linkage disequilibrium (LD) and within 500 kb of each other in

n PLINK v1.07, were obtained for each discovery cohort. The effect

sizes from these SNP sets were used as weights to compute PRSs for

all corresponding target datasets for a range of p values (5e-08,

1e-06, 1e-04, 1e-03, 1e-02, 0.05, 0.1, 0.2, 0.5, and all). PRS was

calculated as the sum of all SNPs multiplied by their effect sizes.

Heritability estimation
For the first set of heritability estimation analyses, we relied on her-

itability estimates of 34 quantitative traits computed previously for

theUgandanGPCdataset.46 For theUKBiobank,we computedher-

itability estimates for the same traits using LD score regressionwith
4 Human Genetics and Genomics Advances 4, 100184, April 13, 202
the default model (i.e., without any functional annotations)47 and

usingpopulation-matchedLDscore references fromEuropeanpop-

ulations downloaded from the authors’ website (https://data.

broadinstitute.org/alkesgroup/LDSCORE/). Due to the difference

in study design and heritability estimation methods used for UK

Biobank andUgandaGPC,we couldnot directly compareheritabil-

ity estimates between the two cohorts. For more comparable

estimates, we computedheritability estimates across the 34 quanti-

tative traits in both the UgandanGPC andUK Biobank using a ran-

domizedmulti-component Haseman-Elston estimator (RHE-mc48)

over unrelated individuals. This method offers improved power

over summary statistic methods (e.g., LD score regression), which

show very large standard errors with small sample sizes, with

improved computational tractability when operating at biobank

scale over GREML-based approaches.

To improve comparability across cohorts, we used parallel

QC approaches in both cohorts after restricting to unrelated indi-

viduals (N¼ 2,234 in GPC). Namely, in UK Biobank, we filtered ge-

notypes to those outside the MHC region that were defined with
3
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MAF R0.01 for which we did not observe significant deviation

from Hardy-Weinberg equilibrium (p_hwe R 1e-7) and only

used genotypes that passed these criteria across all ancestry

groups. For the Ugandan GPC analysis, we applied the same filters

as above (i.e., variants outside MHCwith MAFR0.01 and without

significant deviation from Hardy-Weinberg equilibrium). We also

restricted the analysis to SNPs with imputation INFO score >0.3

to match the approach taken for the GWAS conducted by Gurda-

sani et al.,46 resulting in 3,627,507 SNPs passing QC.

To account for differences in heritability as a function of LD

and MAF, we performed multi-component analyses with a 4 3

2 grid of LD and MAF bins defined in Ugandan GPC and per-pop-

ulation in UK Biobank. LD scores in the Ugandan GPC were

computed in LD score regression using all imputed SNPs with

MAF >0.005 from unrelated samples, while those in the UK Bio-

bank were computed using SNPs with INFO >0.8, MAC >20 with

subsequent covariate correction for age, sex, age*sex, age2, age2

*sex, and the first 20 genotype PCs in each population. LD score

bins in both cohorts were computed as membership in quartiles

of the LD score distribution. MAF bins in both cohorts were

defined as MAF %0.05 and MAF >0.05.

We included standardGWAScovariates as fixed-effects covariates

for heritability estimation in both Ugandan GPC and UK Biobank,

namely age, sex, age*sex, age2, age2 *sex, and the first 20 genotype

PCs in each cohort and in each population in the UK Biobank. We

ranRHE-mcwith50 randomvectors and100 jackknifeblocks in the

Uganda GPC and among UK Biobank non-EUR populations; and

used 10 random vectors with UK Biobank European samples due

to high computational complexity.
Polygenic score calculation
Pruning and thresholding

All PRSswere calculated in plink2 or in hail using custom scripts. For

pruning and thresholding approaches, all clumping was done in

plink2 using an LD threshold of r2 ¼ 0.1 and a window size of 500

kb with discovery cohort population-specific reference panels. We

calculated PRS using plink2 with the –score and –q-score-range flags

for AGVP simulations and DCHS. We wrote custom scripts in hail

(http://hail.is) to calculate PRS in the Uganda GPC and UK Biobank

data due to the larger sample sizes (see web resources). For imputed

genotypes, we used SNP dosages in PRS calculations. We computed

10 PRSs for each analysis using the following p-value thresholds: 1,

0.5, 0.2, 0.1, 0.05, 0.01, 1e-3, 1e-4, 1e-6, 5e-8. The PRS that explained

the most phenotypic variance is shown in most figures.

We calculated PRS accuracy for continuous traits computed with

custom scripts in R (Web resources). For AGVP simulations and

DCHS (because all participants were mothers of a similar age),

we included the first 10 PCs as covariates when computing the par-

tial R2 specifically attributable to the PRS. For Uganda GPC data,

we included age, sex, and the first 10 PCs when computing partial

R2 of the PRS. For consistency with the GWAS that were run in UK

Biobank previously49 and here with a holdout target set, we

included, age, sex, age2, age*sex, age2*sex, and the first 10 PCs as

covariates when computing the PRS partial R2. (The UK Biobank

European GWAS included 20 PCs, but fewer were used here due

to the particularly small sample sizes of some other target ancestry

groups, Table S5, coupled with minimal population structure

observed in PCs lower than PC10.) As described in Table S5, we

included up to 351,194 European ancestry participants in a

GWAS, withholding up to 9,947 European ancestry participants

as a target cohort as well as up to the following numbers of partic-
Hum
ipants with corresponding ancestries: 8,426 African, 1,099 Ad-

mixed American, 10,084 Central/South Asian, 2,753 East Asian,

and 1,553 Middle Eastern individuals. Other participants in the

UK Biobank but not included in these analyses had either sec-

ond-degree relatives or closer with participants included in anal-

ysis or were ancestry outliers.

PRS accuracy evaluation (incremental R2)

To evaluate prediction accuracy, we calculated incremental R2.

Specifically, we compared two models:

H0: Phenotype � covariates.

H1: Phenotype � PRS þ covariates.

The incremental R2 calculates the change in R2 between H1 and

H0, indicating the change in model accuracy attributable to the

PRS. We used adjusted R2, which ensures that the model that in-

cludes PRS does not outperform the model without PRS simply

because more terms were included. All error bars show 95% confi-

dence intervals calculated from bootstrapping. Specifically, for

each iteration of 100 bootstrap replicates, we resampled with

replacement each individual’s full set of phenotypes, covariates,

and polygenic scores, then ran the same models described above.

The 95% confidence interval was determined by the 2.5% and

97.5% quantiles.

Relative comparisons of PRS across populations

We compared PRS accuracy across populations by computing rela-

tive accuracies (RAs) with respect to a baseline European ancestry

PRS. For pruning and thresholding PRS, we computed RA as the ra-

tio between the maximum R2 in the population of interest versus

the maximum R2 in the European baseline comparison (i.e., for

the same phenotype). Across traits, we computed median absolute

deviation (MAD), i.e., the median of the absolute deviations from

the median.

PRS-CS versus pruning and thresholding

We compared the prediction accuracy of the pruning and thresh-

oldingmethod to that of PRS-CS, a Bayesianmethod that has been

shown to improve PRS prediction accuracy across diverse popula-

tions.50 To do this, we applied PRS-CS-auto to generate scores for

the same 34 quantitative traits that were evaluated using pruning

and thresholding. We maintained the same discovery cohort from

the UK Biobank, i.e., 351,194 European ancestry individuals and

evaluated prediction accuracy in two target cohorts: (1) continen-

tal ancestry groups from the UK Biobank comprising 9,947 Euro-

pean ancestry holdout sample, as well as �24,000 non-European

ancestry individuals, and (2) the Ugandan GPC. We used Euro-

pean ancestry from the UK Biobank as the reference panel. Rela-

tive accuracy was calculated as the ratio between the maximum

R2 for pruning and thresholding or R2 for PRS-CS versus the

maximum R2 in the European population for each trait.

Observed versus predicted PRS accuracy

To evaluate the efficacy of PRS accuracy given the varying genetic

architecture of the quantitative traits we assessed here, we

compared the PRS accuracy we observed with the accuracy that

would be predicted from theoretical models.51,52 We calculated

the predicted PRS accuracy for the European ancestry individuals

from the UK Biobank according to the Daetwyler equation below,

where E is the predicted accuracy, h2 is the heritability estimates,

M is the number of independent SNPs (i.e., total number of trait-

associated SNPs from LD clumping with p-value <1), and N is

the sample size (�350,000 individuals).

E
�
R2

�
z

h2
M

1þ M
Nh2

M
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Meta-analysis

We used plink2 to conduct inverse variance-weighted meta-anal-

ysis across GWAS summary statistics with the –meta-analysis

option.

LD reference panels and clumping

All PRS calculations required an LD panel for clumping. Our ana-

lyses used in-sample LD where feasible and reference panel data as

a proxy with ancestry matching from the 1000 Genomes Project

phase 3 data when individual-level data were unavailable. We

weighted the ancestral representation of each population per trait

matching at the continental level. We matched individuals as

follows.
Cohort
1000 Genomes phase 3
reference data

BBJ East Asian (EAS)

UK Biobank European (EUR)

Uganda Genome
Resource (UGR)

African (AFR)

PAGE Proportional weighting of AFR, EAS,
AMR (depending on trait, see Table S6
description for more detail)
We then used the maximal number of individuals available when

weighting proportionally to construct this reference panel. For

example, in the meta-analysis of height across the UK Biobank,

Biobank Japan (BBJ), and Population Architecture Using Geno-

mics and Epidemiology (PAGE) cohorts, UK Biobank has the

largest sample size in the discovery cohort (n¼ 350,353), so all Eu-

ropeans from 1000 Genomes were included in the reference panel

(n¼ 503), then a random sampling of EAS, AFR, and AMR individ-

uals were included proportionally to the overall diversity of the

discovery cohorts in the meta-analysis.
Results

Our study uses both simulation-based and empirical ap-

proaches to evaluate the generalizability of PRS across

diverse African ancestry populations. Abbreviations are in

Table S1, and a summary of datasets used in this study is

shown in Table S2.

Simulated generalizability within and across diverse

African populations

We used two separate simulation strategies for AGVP and

AWI-Gen depending on their sample sizes (Figure 1). Given

the limited sample size of the AGVP dataset, we opted to

use the strategy previously used by Scutari et al.11We simu-

lated several quantitative traits with varying numbers of

causal variants (n ¼ 5; 20; 100; 2,000; 10,000; and

50,000) and heritability rates (h2 ¼ 0.1, 0.2, 0.4, and 0.8),

then conducted independent GWASs for each scenario in

East and West African ancestry populations (materials

and methods, Figures S1–S4). We calculated the prediction

accuracy for PRSs derived from the GWAS summary statis-

tics considering 10 different p-value thresholds within and
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across independent target populations from East, West,

and South Africa. In general, ancestry-matched results

with the sparsest and most heritable genetic architectures

produced the highest prediction accuracy. As expected,

prediction accuracy was highest with trait h2 ¼ 0.8 and

fewer than 100 causal variants (Figure 2A), as indicated

by the highest R2 and the identification of genome-wide

significant associations. Conversely, when the number of

causal variants exceeded 100, prediction accuracy was

negligible (Figure S4), as evidenced by no variants meeting

the genome-wide significance threshold (i.e., p < 5e08).

Prediction accuracy was highest with 5 and 20 causal vari-

ants (Figure 2A). The within-ancestry prediction at p-value

threshold < 5e-08 and five causal variants were as follows:

R2 ¼ 0.86, p ¼ 1.74 3 10�74 for East discovery - East target

scores; R2 ¼ 0.85, p ¼ 9.9e-74 for West discovery - West

target scores. We observed lower prediction accuracy with

ancestry-mismatched discovery versus target cohorts at

five causal variants and p-value threshold ¼ 1e-6 (R2 ¼
0.66, p ¼ 1.79e-42 for West discovery - West target scores,

compared with R2 ¼ 0.53, p ¼ 1.29e-74 for East discovery -

West target scores). The scores in the South target sample

were comparable when using East- or West-derived sum-

mary statistics (R2 ¼ 0.86, p ¼ 5.19e-84 for West-derived

summary statistics, and R2 ¼ 0.86, p ¼ 1.35e-83 for East-

derived summary statistics).

For AWI-Gen, we used the commonly used infinitesimal

simulation strategy for quantitative traits. We simulated

quantitative traits by assigning genetic variant effects

based on their minor allele frequency in accordance

with the relationship between effects and minor allele fre-

quency established by Schoech et al.45 We varied the trait

heritability rates similar to the analysis done with AGVP

and conducted GWASs for each trait (materials and

methods, Figure 1). We calculated the prediction accuracy

for PRS derived from the GWAS summary statistics consid-

ering 10 different p-value thresholds, as before, across in-

dependent target populations from Burkina Faso, Ghana,

Kenya, and South Africa. Across heritability rates and

target datasets, the PRS prediction accuracy was low and

had confidence intervals that included zero (Figure 2B).

The lack of PRS transferability in AGVP and AWI-Gen

for traits with a polygenic architecture using two indepen-

dent simulation strategies highlights that large-scale ge-

netic studies in African populations are required to accu-

rately predict phenotypes using genetic data and

facilitate a better understanding of how PRS might trans-

fer across African populations given the genetic diversity

on the continent.

PRS accuracies in South African populations

While our simulations have shown that PRSs generalize

poorly across Africa due to substantial genetic diversity

and differences across the continent, there is also consider-

able genetic and environmental diversity within regions

and countries. We quantified PRS accuracy for a range of

measured phenotypes in mothers genotyped in the
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Figure 2. Simulated GWAS and polygenic scores indicate differential prediction accuracy across diverse regions of Africa
(A) Predictive accuracy of the simulated quantitative trait in AGVP at the heritability of 0.8. The predictive accuracywas calculated for six
categories of causal variants for the West and East discovery cohorts, across 10 p-value thresholds. Only the top three categories are
shown here, the rest can be found in Figures S1–S4.
(B) Predictive accuracy of simulated quantitative traits in AWI-Gen for various trait heritability rates across 10 p-value thresholds. The
error bars represent the lower and upper limits of 95% confidence interval.
DCHS cohort in South Africa, including several sociode-

mographic, physical/biomedical, and psychosocial risk

traits (Table S3). The DCHS cohort consists of participants

with multiple ancestry groups that include an admixed

population with ancestry from multiple continents as

well as a population with almost exclusively African popu-

lation. These ancestry groups correlate with self-reported

‘‘Mixed’’ and ‘‘Black/African’’ ethnicities, respectively

(Figure S5). We computed PRS for maternal height, depres-

sion, psychological distress, alcohol consumption, and

smoking in DCHS overall, by ethnic group, and by

ancestry within the Mixed ethnic group (materials and

methods).

Across all genetically predicted phenotypes, only height

was significantly predicted (Figure S6).We predicted height

more accurately in the Mixed versus Black/African ethnic

groups (R2 ¼ 0.099, 95% bootstrapped CI ¼ 0.012–0.18,

p ¼ 1.5e-7 versus R2 ¼ 0.021, 95% CI ¼ �0.031 to 0.043,

p ¼ 5.27e-3, respectively). We also expect that PRS accu-

racy increases with decreasing African ancestry within

the Mixed ethnic group as has been shown previously in

admixed African populations53; we find suggestive evi-

dence consistent with this trend when partitioning the

Mixed group into two bins along PC1 (R2 ¼ 0.091, 95%

CI ¼ �0.04 to 0.17, p ¼ 6.4e-4 in lower half of PC1 with

more African ancestry versus R2 ¼ 0.12, 95% CI ¼ �9.0e-

4 to 0.21, p ¼ 5.7e-5 with more out-of-Africa ancestry),

although small sample sizes limit definitive comparisons

(n ¼ 137 in each PC1 bin). Our results are consistent

with variable prediction accuracy among diverse African

ancestry groups within South Africa and insignificant pre-
Hum
diction in African populations for all but the most herita-

ble and accurately predicted traits elsewhere. Notwith-

standing these findings, the sample used for these

analyses is relatively small and does not represent the

larger South African population and some of the traits

are greatly impacted by pregnancy, for example, pregnant

women are less likely to drink and smoke than the general

public. In addition, in contrast to the discovery datasets

that include males and females, DCHS is a female-only

cohort that has both a lower and narrower age range,

which could impact PRS accuracy for the traits where age

plays a key role.
Variable phenotypic and genetic similarities across the

Uganda GPC and UK Biobank

Lower phenotypic correlations in the Uganda GPC suggest

higher contributing environmental effects

We next investigated phenotypic similarities within and

across the Uganda GPC and UK Biobank participants

because these are two of the largest cohorts with dozens

of traits measured in African ancestry individuals. We first

considered overall cohort differences between these co-

horts: the Uganda GPC enrolled participants using a

house-to-house study design and generated genetic data

on 5,000 adults from rural villages in southwestern

Uganda,39 while the UK Biobank enrolled 500,000 people

aged between 40 and 69 years in 2006–2010 from across

the country (materials and methods41). Previous studies

have reported higher rates of infectious diseases (e.g.,

HIV, hepatitis B and C) in the Uganda GPC than would

be expected in the UK Biobank.39 There are many
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Figure 3. Phenotype correlations among 33 quantitative traits measured in the Uganda GPC data and the UK Biobank
(A) Phenotypic correlations measured in traits in the Uganda GPC among unrelated individuals.
(B) Phenotypic correlations in the unrelated UK Biobank European ancestry individuals. (A and B) Phenotypes were mean centered and
adjusted for age and sex within each cohort prior to correlation analysis. The order of each phenotype correlation is determined by hi-
erarchical clustering in the Uganda GPC.
additional potential environmental explanations for mean

shifts in phenotypes, such as dietary, food security, and age

differences contributing to considerable BMI differences

across cohorts (m ¼ 21.3 and s ¼ 3.8 in Uganda GPC versus

m ¼ 27.4 and s ¼ 4.8 in the UK Biobank, p < 2.2e-16). To

quantify comparisons while controlling for demographic

differences for each of the 34 quantitative traits measured

in both cohorts, we first mean centered each phenotype

and regressed out the effects of age and sex within each

cohort. Next, we then compared the distributions and var-

iances of each phenotype across cohorts via Kolmogorov-

Smirnov and F-tests, respectively (Table S4). Given the

large sample sizes, all K-S tests were significantly different,

with several phenotypes showing distributional and vari-

ance differences of considerable magnitude (Figure S7

and Table S4, e.g., Bilirubin, BASO, HbA1c, ALP, EOS, TG,

and NEU).

We next analyzed how similar the relationships are be-

tween phenotypes across datasets. Similar trends emerge

overall, with distances across variance-covariance matrices

for these cohorts showing evidence of significant correla-

tion (Mantel test Z statistic ¼ 0.73, p < 1e-4). The correla-

tions among phenotypes are slightly higher overall in the

Uganda GPC than in UK Biobank, both among related and

unrelated individuals (Figures 3B and S8). These findings

are expected because of shared genetics and/or shared

household environments contributing to more similar

phenotypes.54 More specifically, we see consistent correla-

tions among combinations of phenotypes including SBP

and DBP; RBC, Hb, and HCT; Cholesterol and LDL; WC,

BMI, WT, and HC; MCHC, MCH, and MCV; GGT, ALT,

AST, and ALP; andMONO, NEU, andWBC with high over-
8 Human Genetics and Genomics Advances 4, 100184, April 13, 202
all correlations across these datasets for these traits

(Figures 3A and 3B, see abbreviations in Table S1). Some

pairs of traits, however, have significantly different correla-

tions across datasets. The largest difference in phenotypic

correlations across datasets is between ALP and WT (r ¼
0.11, p < 2.2e-16 in UK Biobank versus r ¼ �0.36,

p < 2.2e-16 in Uganda GPC).

Our next goal was to compare trait heritability estimates

in the UK Biobank versus Uganda GPC data (materials and

methods); however, the sample size and study design dif-

ferences between these cohorts limited comparability

using standard scalable approaches. Specifically, the house-

hold design of Uganda GPC included smaller sample sizes

with more relatives in which family-based heritability esti-

mates are most appropriate, whereas the large sample size

and volunteer design in the UK Biobank makes SNP-based

heritability estimates from unrelated individuals more

appropriate. Figure S9 compares heritability estimates

across traits in the UK Biobank versus Uganda GPC using

these disparate approaches.46 As expected from the differ-

ences in the methods, study designs, and sample sizes,

we find higher but noisier estimates in Uganda GPC for

most traits, consistent with expectation from family-based

versus unrelated heritability estimates across these two

studies. While all of these factors fundamentally limit

comparability of heritability estimates across these co-

horts, we have also estimated heritability in both cohorts

in unrelated individuals with consistent methodology

using multi-component Haseman-Elston regression imple-

mented in RHE-mc to improve comparability.48 These re-

sults showed higher heritability estimates in the Uganda

GPC dataset that were not significantly correlated with
3



heritability estimates from any ancestry group in the Pan-

UK Biobank Project, consistent with a wide range of differ-

ences influencing these phenotypes across cohorts

(Table S7, Figure S10). With these heritability estimates,

we also estimated observed versus predicted PRS accuracy

and find that predicted R2 tends to be higher than observed

R2 (Figure S11).

African genetic risk predictions from European ancestry GWAS

data are remarkably inaccurate

To understand baseline trans-ancestry PRS accuracy using

a typical approach, we predicted 32 traits in the Uganda

GPC using GWAS summary statistics from the UK Bio-

bank European ancestry individuals. While several traits

were significantly predicted across ancestries, prediction

accuracy was low for most traits (Figure S12); the most ac-

curate PRS was for MPV (R2 ¼ 0.036, 95% CI ¼ 0.0069–

0.063, p ¼ 5.73e-7), while the average variance explained

across all traits was less than 1% (mean R2 ¼ 0.007). To

assess the relative effects of ancestry versus cohort differ-

ences on decreases in prediction accuracy across popula-

tions, we next withheld 10,000 European ancestry

individuals from UK Biobank for use as a target cohort,

reran all GWASs, then used individuals with diverse con-

tinental ancestries in the UK Biobank as target popula-

tions (EUR ¼ Europeans withheld from the GWAS,

AMR ¼ admixed American, MID ¼ Middle Eastern,

CSA ¼ Central/South Asian, EAS ¼ East Asian, and

AFR ¼ African, Figure S13), subcontinental African ances-

tries in the UK Biobank (Ethiopian, Admixed, South, East,

West African ancestries, Figure S14), as well as the Uganda

GPC (Figure 4A, Table S5).

Among continental ancestries, we computed R2 and 95%

CIs for each trait (Figure S15), then computed median RA

compared with Europeans and MAD across all traits (mate-

rials and methods). We predict these traits most accurately

in EUR (RA ¼ 1, MAD ¼ 0), followed by AMR (RA ¼ 0.784,

MAD ¼ 0.023), MID (RA ¼ 0.643, MAD ¼ 0.034), CSA

(RA ¼ 0.621, MAD ¼ 0.031), EAS (RA ¼ 0.477, MAD ¼
0.024), and AFR (RA ¼ 0.219, MAD ¼ 0.014) (Figure 4A).

Because different PRS methodologies can improve overall

prediction accuracy for some traits, we also compared our

results using pruning and thresholding with PRS-CS; as

described previously, different PRS methods may perform

better for some phenotypes than others, but do not gener-

ally improve the relative loss of accuracy19,55 (Figure S16).

We next compared prediction accuracy within African

ancestry populations. Because some PRS accuracy esti-

mates were noisy due to small sample sizes in UK Biobank

Africans (especially Ethiopian and South African ancestry

individuals, Table S5), we restricted analyses to those traits

predicted with a 95%CI<0.08. Among these traits, we pre-

dicted most accurately those with Ethiopian ancestry

(RA ¼ 0.511, MAD ¼ 0.059), followed by recently admixed

individuals with West African and European ancestry

(RA ¼ 0.276, MAD ¼ 0.016), East African ancestry (RA ¼
0.193, MAD ¼ 0.023), West African ancestry (RA ¼ 0.150,

MAD ¼ 0.012), and South African ancestry (RA ¼ 0.083,
Hum
MAD ¼ 0.014) (Figure 4A). These results track with genetic

distance as measured by FST (Table S8) and population his-

tory; the highest prediction accuracy identified in Ethio-

pians is expected given closer genetic proximity to

European populations relative to other Africans due to

back-to-Africa migrations influencing population structure

there.17,56,57 The lowest prediction accuracy is in popula-

tions with southern African ancestry, consistent also with

higher genetic divergence from European populations

and more genetic diversity overall.16,18,58

Next, we quantified the proportion of loss of prediction

accuracy (LOA, calculated as (1 � RA) * 100%) due to MAF

and LD in the subcontinental African ancestry groups in

the UK Biobank. As expected, LOA followed an inverse

trend to prediction accuracy, i.e., LOA increased with ge-

netic distance between the discovery and target cohort

(Figure S17). LOA was lowest in the Ethiopian group (me-

dian LOA ¼ 26.22) and highest in the West group (median

LOA ¼ 40.11).

Lower prediction accuracy across ancestries than across co-

horts

To compare prediction accuracy among similar ancestry

participants from different cohorts, we next computed

PRSs for 34 traits using GWAS summary statistics from

UK Biobank Europeans in two target populations: UK Bio-

bank participants with East African ancestry versus

Uganda GPC. As expected, prediction accuracy in these

populations is very low across all traits in both cohorts

and only slightly higher in the UK East African ancestry

individuals than in the Uganda GPC individuals (mean

R2 ¼ 0.017, SD ¼ 0.013 versus mean R2 ¼ 0.012, SD ¼
0.010, respectively, Figure S18). Across traits, the differ-

ences in PRS accuracy across cohorts but within the

same ancestry (Figure S18A) are much smaller than

the differences across ancestries but within the UK

Biobank (Figure 4A, left and middle panels), indicating

that ancestry has a larger impact on genetic risk predic-

tion than cross-cohort differences analyzed here. Smaller

effects on genetic prediction accuracy differences across

cohorts may be attributable to environmental differ-

ences, such as higher rates of malnutrition and infectious

diseases previously reported in Uganda and in the

GPC.39,59

Improved African genetic risk prediction accuracy with multi-

ethnic GWAS summary statistics

We next maintained the target populations but varied the

discovery cohort to determine how more diverse GWAS

impacts PRS accuracy for these phenotypes in diverse pop-

ulations. Specifically, we computed PRS accuracy in diverse

target populations in the UK Biobank (Table S5) using one

of two discovery cohorts: the UK Biobank European-only

cohort versus diverse discovery cohorts combined via

meta-analysis (Table S6). Meta-analyzed GWAS summary

statistics come from several cohorts, including the UK Bio-

bank, BBJ,60 PAGE Consortium,61 and Uganda Genome

Resource (UGR).46 For each trait, discovery cohort, and

target cohort combination, we normalized the PRS R2
an Genetics and Genomics Advances 4, 100184, April 13, 2023 9



Figure 4. PRS accuracy and correspond-
ing genetic variant contributions for up
to 34 traits within and across diverse an-
cestries
(A) PRS accuracy relative to European
ancestry individuals in diverse target
ancestries. Discovery data consisted of
GWAS summary statistics from UK Bio-
bank (UKB) European ancestry data. Target
data consisted of globally diverse continen-
tal ancestries (including withheld Euro-
pean target individuals) and regional Afri-
can ancestry participants from UKB, or
unrelated individuals from the Uganda
GPC cohort. Traits were filtered to those
with a 95% confidence interval range in
PRS accuracy <0.08.
(B) PRS accuracy from a homogeneous
versus multi-ancestry discovery dataset.
GWAS discovery data consisted of sum-
mary statistics from UKB European
ancestry data only or from the meta-anal-
ysis of UKB, BioBank Japan (BBJ), and Pop-
ulation Architecture using Genomics and
Epidemiology (PAGE). Target populations
are from the UKB. Lines connect the 10
traits available in both discovery cohorts
to indicate how accuracy changed for the
same trait in the UKB only versus meta-
analyzed discovery data, while half violin
plots show the distribution across all phe-
notypes in each discovery cohort. When
lines are missing, the trait is absent in
PAGE. Trait outliers are labeled in text
and with solid lines. (A and B) Relative
PRS accuracies are compared to the
maximum for each trait in target samples
withheld from discovery consisting of
UKB European ancestry individuals. To
simplify comparisons, only the polygenic
scores with the highest prediction accuracy
are shown here. Colors in these two panels
correspond to the same continental ances-
tries.
(C and D) Trait-specific genetic outlier
plots. QQ-like plot showing p values in
UKB only versus multi-cohort meta-anal-
ysis of UKB, BBJ, and PAGE. The 10 regions
that are genome-wide significant in both
dataset and show the most significant dif-
ferences are colored and labeled for (C)
MCHC, and (D) WBC.
values from the p-value threshold that explained the

maximum phenotypic variance with respect to the predic-

tion accuracy in the European target cohort using UK Bio-

bank summary statistics only, then computed RAs as

before.

We find that prediction accuracy improves the most

across populations when using a discovery cohort consist-

ing of GWAS summary statistics meta-analyzed across the

UK Biobank, BBJ, and PAGE cohorts (Figure 4B). To deter-
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mine whether the improvement in prediction accuracy

was due to the increase in sample size or the diversification

of the GWAS discovery, we compared prediction accuracy

across three discovery cohorts: 100,000 EUR individuals

from GWAS summary statistics acquired from Martin

et al., 2019a10, 350,000 EUR individuals, and multi-

ancestry GWAS comprising UK Biobank, BBJ, and PAGE

(Figure S19). We observe that the increase in discovery

sample size from 100,000 to 350,000 EUR improves
23
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Figure 5. Relative PRS accuracy using the same target individuals and varying discovery cohorts
All relative comparisons are with respect to accuracy in withheld EUR when predicting with UKB European GWAS summary statistics
alone as the discovery cohort.
prediction accuracy differentially across populations

(Figure S19A). When comparing prediction accuracy across

the three discovery cohorts, the results show that

increasing the sample size improves prediction accuracy

across all ancestries, but more so for the EUR population.

The multi-ancestry discovery cohort seemed to improve

prediction accuracy in the non-EUR populations more

than the increase in sample size in general, with the largest

improvement in prediction accuracy observed for BMI in

AMR and EAS populations and MCHC and WBC for the

AFR population (Figure S19B).

Surprisingly, meta-analyzing the UGR data with UK Bio-

bank did not improve prediction accuracy for any popula-

tion and most notably decreased accuracy in African

ancestry target populations (discovery UK Biobankmedian

RA¼ 0.22, UGRþUK Biobankmedian RA¼ 0.15, Figures 5

and S20). We hypothesize that (1) the relatively small sam-

ple size of UGR adds more noise than signal as indicated by

the large error bars, and (2) the difference in effect sizes

between UGR and UK Biobank, particularly for the less

polygenic traits such as LDL (Figure S21) contributes to

the noise. When predicting traits using the UK Biobank,
Hum
BBJ, and PAGE meta-analysis as a discovery cohort, we

find that prediction accuracy increases most for the AMR,

EAS, and AFR target populations, which more closely

resemble the ancestry patterns of PAGE and BBJ

(Figure 4B). The meta-analysis conflates two factors that

are known to improve prediction accuracy: increase in

sample size and diversity in the discovery cohort. To deter-

mine which of these factors drove the gains in prediction

accuracy in Figure 4B, we compared the prediction

accuracy from 100K EUR individuals from UK Biobank,

downsampled to match the size of BBJ, to that of the

350k EUR (for 17 overlapping phenotypes) and the

multi-ancestry discovery (for five overlapping pheno-

types). This comparison indicates that indeed increasing

the discovery sample size generally improves prediction ac-

curacy; however, it is the inclusion of diverse samples in

the discovery cohort that improves prediction accuracy,

especially for the populations represented in that

cohort (Figure S19). These findings are consistent

with ancestry-matched discovery data disproportionately

improving prediction accuracy in the corresponding target

population.4,8,31
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Large-effect population-enriched genetic variants drive het-

erogeneity in polygenic score accuracy for blood panel traits

We find that PRS accuracy improvements from higher di-

versity in the discovery cohorts vary across traits, with

the largest increases seen in MCHC and WBC particularly

in AMR and AFR populations (Figure 4B). We searched

for specific genetic loci that could explain this pattern by

comparing the significance of genetic associations in UK

Biobank alone versus the meta-analysis of UK Biobank,

BBJ, and PAGE (Table S6). For MCHC and WBC in partic-

ular, the genetic variants contributing to these improved

PRSs consist of several well-known population-enriched

variants (Figures 4C and 4D). For example, genetic variants

that disproportionately explain population-specific risk for

MCHC include variants previously associated with hemo-

globin concentration, including rs9399137 upstream of

HBS1L and MYB in a study of sickle cell anemia (p ¼
5.24e-249 and b ¼ 0.0783 in the meta-analysis),62

rs855791 in TMPRSS6 (p ¼ 3.49e-241, b ¼ 0.0692),63,64

and rs551118 upstream of PIEZO1 and CDT1 (p ¼ 5.18e-

100, b ¼ �0.0451)65 (Table S9). Associations with WBC

tend to show more population-enriched associations as

shown in the meta-analysis (Figure 4D), including

rs3936197 in MED24 (p ¼ 5.18e-289, b ¼ �0.0772),

rs58650325 near the high affinity immunoglobulin (Ig)E

receptor FCER1A that initiates the allergic response

(1.57e-163, b ¼ �0.097, also close to OR10J3), and

rs11533993 in CDK6 (p ¼ 1.55e-84, b ¼ �0.0799). Thus,

genetic architecture and population genetic considerations

are important to bear inmind when considering the gener-

alizability of polygenic scores.
Discussion

PRSs have been proposed as genetic biomarkers for use in

preventive medicine,66,67 but are currently limited by low

accuracy across populations especially in African ancestry

populations.4,6 Through simulations and empirical work,

this study has enabled unique insights into PRS transfer-

ability within and among diverse continental African pop-

ulations as well as among African ancestry populations

living in considerably different environments. Simulations

will continue to play a crucial role in understanding and

mitigating biases, but the small sample size of existing

genetic studies in African populations have limited the

simulation designs that are even possible with realistic

population structure across the African continent in this

study. The AGVP dataset used for the first set of simula-

tions was too small to use a typical infinitesimal simulation

strategy. As a result, we simulated phenotypes with vari-

ants with large effects—a scenario that is inconsistent

with the genetic architecture of most polygenic traits.

While the simulation done with the AWI-Gen dataset rep-

resents a scenario that is more realistic for complex traits,

the findings re-emphasize that the paucity of large genetic

samples in non-European ancestry populations limits
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simulation designs. Future studies could simulate new in-

dividuals from observed allele frequencies or from larger

scale genetic datasets as they are made available. Despite

these limitations, the simulation work done here provides

a framework for simulation designs within the current

sample size confines and what can be expected from these

simulations in African populations.

We demonstrate looming challenges for applying

current PRS in African ancestry populations—because

relatively few genetic studies have been conducted in Af-

rican populations coupled with the lack of out-of-Africa

population bottlenecks, PRS accuracy is low but widely

variable. Differences in PRS accuracy across diverse Afri-

can ancestries from different regions can be larger than

across out-of-Africa continents. This is particularly prob-

lematic, as widely used algorithms that guide health deci-

sions already have ingrained racial biases,68 warning of

compounding challenges with implementation. We

demonstrate that there are clear steps the field can take

to work against these biases. Specifically, including ances-

trally diverse populations in GWASs at considerably larger

sample sizes, discovery cohorts improve accuracy for all

populations and especially underrepresented populations

more than conducting similarly sized studies with only

European ancestry cohorts.

Another advantage of usingGWASs from globally diverse

populations to compute PRS is the routine inclusionof pop-

ulation-enriched variants. Clear examples such as African-

enriched variants in APOL1 and G6PD have been shown

to contribute to especially high risk of chronic kidney dis-

ease and to missed diabetes diagnosis, respectively.69,70

These examples highlight the importance of studying

diverse populations to predict genetic risk of disease equi-

tably by aggregating variants across the spectrum of allele

frequencies and effect sizes in different populations. Rele-

vant to the traits studied in genetic analyses here, hemato-

logical differences such as anemia are more common in

lower income countries in Africa and in African ancestry

populations elsewhere compared with European ancestry

populations in high-income countries, particularly among

older individuals. These hematological differences poten-

tially arise in part due to genetic variation as well as the

higher prevalence of infectious diseases and pathogens,

poorer nutritional status, and altitude.71,72 Here, we show

that variants influencing risk of beta thalassemia dispropor-

tionately increase PRS accuracy for hemoglobin variation

particularly in African ancestry populations. The inclusion

of population-enriched variants in PRS could eliminate

genetic justifications for race-based medicine, which prob-

lematically reinforces implicit racial biases by overempha-

sizing the link between genetics and race despite the fact

that there is more genetic variation within than between

ancestral populations.73 However, for this to be possible,

genetic data would have to be available for all populations

at scale—an ideal that is still a ways off.

In addition to reduced PRS accuracy with ancestral dis-

tance from GWAS cohorts, genetic nurture, social genetic,
23



and environmental effects can also contribute to low

portability of PRS across populations,23,74 with some inter-

ventions modulating health along PRS strata.75 In this

study, however, ancestry appears to have a larger effect

on portability than cohort differences overall. An impor-

tant distinction when comparing the magnitude of these

and other non-genetic effects in other studies is that the

traits most accurately genetically predicted here were pri-

marily anthropometric and blood panel traits. When

analyzing traits with more sociodemographic influences

in increasingly diverse populations, population stratifica-

tion, confounding, and study design considerations are

thornier issues.22,76,77 PRS accuracy comparisons across

ancestrally similar but environmentally diverse popula-

tions are especially important for medically actionable

traits. For example, particularly low PRS portability for tri-

glycerides (TG) from European to the Uganda GPC resulted

at least in part from effect size heterogeneity that has

previously been connected to pleiotropic and gene * envi-

ronment effects; specifically, most non-transferable

genome-wide significant associations with TG showed

pleiotropic associations with BMI in European but not

Ugandan individuals.78

While PRSs currently have limited portability, increased

diversity in genetic studies is already decreasing prediction

accuracy gaps across populations.31,78,79 This is consistent

with causal genetic effects tending to be similar across pop-

ulations but with LD and allele frequency differencesmodi-

fying marginal effect size estimates.4,7,8 This is also consis-

tent with trans-ethnic genetic correlations tending to be

close to or not significantly different from 1.80,81 The most

rapid path to closing gaps in PRS transferability is to increase

the inclusion of GWAS participants from populations most

divergent from those already routinely studied. As empiri-

cally demonstrated here, when comparing PRS accuracy

calculated from diverse cohort meta-analysis versus data

from Europeans only, large-scale GWASs with diverse Afri-

can populations will rapidly reduce portability gaps across

global populations because they have the most genetic di-

versity, most rapid linkage disequilibrium decay, and high-

est genetic divergence from the best studied populations.

Major efforts under way, such as the Human Hereditary

and Health in Africa Initiative, PAGE, All of Us, and

NeuroGAP programs,61,82–85 are especially promising for

rectifying current PRS gaps and missed scientific opportu-

nities by increasing inclusionofdiverseAfricanparticipants.

Beyond expanding on diversity by increasing the num-

ber of study participants in large-scale studies, it is equally

important to diversify researchers working on genomics

studies. Currently, the vast majority of researchers in geno-

mics studies are of European ancestry,86–88 paralleling the

over-representation of European ancestry individuals in

genomic studies. The exclusion of African researchers leads

to the disparity in research leadership and reduced scienti-

fic output from African researchers.89 Efforts such as

the Global Initiative for Neuropsychiatric Genetics Educa-
Hum
tion and Research (GINGER) program,90 which provides

mentorship and training for early-career investigators on

the African continent (particularly in Uganda, Kenya,

Ethiopia, and South Africa, including several of this study’s

authors), are important in moving toward a more inclusive

and representative research community.

Conclusion

Previous studies that have examined PRS accuracy across

globally diverse ancestry groups have demonstrated that

accuracy is lowest in African ancestry samples. However,

the extent to which this accuracy varies within African

ancestry populations has not been previously investigated.

Our findings that prediction accuracy varies by African

ancestry populations is a clear reflection of the vast genetic

diversity of the continent. It is therefore critically impor-

tant to create well-powered GWASs that reflect the full

range of diversity within Africa.
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