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Abstract 

Background  Selenium, an essential trace element, has previously been investigated as a pro-apoptotic and DNA 
demethylation agent. It sensitizes the response to chemotherapy in patients who were refractory to cytotoxic agents. 
Meanwhile, ferroptosis is a novel approach to cancer treatment by triggering cell death and reversing drug resistance. 
The role of selenium in treating cancer cells harboring druggable oncogenic alterations and its underlying mecha-
nism are largely unknown.

Results  We treated lung adenocarcinoma cell lines—EGFR-mutant H1975 (H1975 EGFR p.L858R and p.T790M) and KRAS-
mutant H358 (H358 KRAS p.G12C), with sodium selenite to examine its effect on cell apoptosis, ferroptosis, and DNA 
methylation, as well as its interaction with existing targeted therapy, osimertinib, and adagrasib. We observed selenite 
to be a dual apoptotic and ferroptotic agent on lung cancer cells, associated with the activation of p38-ATF4-DDIT3 
axis in the unfolded protein response. Ferroptosis induction was more remarkable in H1975 than H358. Selenite also 
altered cellular DNA methylation machinery through downregulating DNMT1 and upregulating TET1, though not as 
a major mechanism of its activity. Low-dose selenite synergized with osimertinib in EGFR-mutant H1975, and with 
adagrasib in KRAS-mutant H358, with stronger synergism observed in H1975.

Conclusion  These results suggest that selenite is a potential apoptotic and ferroptotic drug candidate for the treat-
ment of especially EGFR- and potentially KRAS-mutant lung cancer.
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Background
Lung cancer is a leading cause of cancer death worldwide. 
Targeted therapy is well established as the first- or sec-
ond-line treatment for patients with metastatic lung ade-
nocarcinoma (LUAD) harboring actionable oncogenic 

alterations. Sensitizing EGFR mutations, such as exon 
19 deletion and exon 21L858R mutation, are found in 
15% of Caucasians and up to 50% of Asians with LUAD 
[1, 2]. Meanwhile, KRAS G12C mutation, the recently 
and only approved druggable KRAS target, accounts for 
15% of Caucasians with LUAD [3]. The presence of such 
mutations predicts treatment benefit with tyrosine kinase 
inhibitors (TKI) like osimertinib in EGFR mutations [4], 
and KRAS inhibitors such as adagrasib in KRAS muta-
tion [5].

Selenium is an essential trace element for the synthesis 
of selenoproteins, including five glutathione peroxidases 
(GSH) and three thioredoxin reductases, which protect 
cells from oxidative stress and cell death [6]. Moreover, 
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at pharmacological doses, selenium compounds, such as 
sodium selenite, were demonstrated to possess multiple 
antineoplastic properties. In vitro, selenium compounds 
induced reactive oxidative species (ROS)-dependent 
endoplasmic reticulum (ER) stress-mediated cell death, 
including normal endothelial, liver and testis cells, and 
colorectal, prostate and oral squamous cell carcinoma 
[7–13].

As a novel form of programmed cell death, ferroptosis 
is distinct from apoptosis, necroptosis, and autophagy. 
The hallmark of ferroptosis is the accumulation of lipid 
peroxides. The process is often initiated by impaired 
removal of ROS by defense systems like the glutathione/
GSH system, increased ROS generation, or altered iron 
metabolism [14]. In particular, GSH utilizes glutathione 
as a substrate to remove ROS, while glutathione synthesis 
involves the conjugation of cysteine and glutamate and 
then the addition of glycine [15]. Therefore, cytoplasmic 
levels of these amino acids are essential for cellular redox 
balance. Currently, ferroptosis inducers are classified by 
their mechanism of action, including the inhibition of 
SLC7A11, which constitutes the cysteine/glutamate anti-
porter, to cause depletion of intracellular cysteine and 
glutathione, direct inhibition of GPX4 catalytic activ-
ity, depletion of GPX4 and ubiquinone, as well as by the 
oxidation of iron and subsequent indirect GPX4 inacti-
vation [16]. Meanwhile, there is an intricate relationship 
between ER stress and ferroptosis. Redox imbalance 
can lead to misfolding of proteins and elicit an unfolded 
protein response (UPR) [17]. Upon the inhibition of cys-
tine/glutamate antiporter, upregulation of CHAC1 has 
been observed [18]. Other studies showed that CHAC1 
degrades GSH to further enhance the ferroptotic effect 
[19]. Meanwhile, ATF4, a transcription factor that binds 
the cAMP response elements, is expressed in different 
cellular stresses to regulate UPR [20, 21]. Lastly, DDIT3/
CHOP is a pro-apoptotic transcription factor controlled 
by ATF4 that promotes the expression of BH3-only pro-
teins including PUMA, NOXA, and BIM, to promote 
apoptosis as well as CHAC1 to reinforce the ferroptotic 
process [19, 22, 23].

Selenite also induces cell cycle arrest and apoptosis in 
multiple tumors [24, 25]. Additionally, selenite downreg-
ulates DNMT1, causing re-expression of certain tumor 
suppressor genes (TSGs) by promoter demethylation 
[26–28], such as restoration of GSTP1, APC, and CSR1 in 
prostate cancer, and VHL in colon cancer [29, 30]. How-
ever, there has been little focus on both lung cancer and 
tumors harboring driver oncogene mutations. Therefore, 
the anti-tumor effect of selenium in oncogenic mutant 
LUAD cells and its underlying mechanisms remain 
unclear.

Clinically, in vivo data have shown that low selenium 
status is associated with multiple cancers [31]. Indeed, 
selenium has failed to prevent secondary primary tumors 
in patients with resected stage I non-small cell lung can-
cer and demonstrated an insignificant chemopreventive 
effect on lung cancer [32–35]. However, in the phase 1 
SECAR trial, the addition of selenium to chemotherapy 
was tolerable and resensitized the tumor to chemother-
apy in patients who developed chemotherapy resistance 
[36], suggesting a potential role of selenium in cancer 
treatment instead of chemoprevention. However, the 
synergism between selenite and targeted therapy has 
not been well understood when compared with that of 
chemotherapy.

In this study, we sought to elucidate the antineoplas-
tic properties of selenium on EGFR- and KRAS-mutant 
LUAD cells, by exploring its effect on apoptosis, DNA 
methylation machinery, transcriptomic landscape, and 
ferroptosis. We also explored its potential to synergize 
EGFR TKI and KRAS inhibitors.

Results
Selenite inhibited growth and induced apoptosis in LUAD 
cells
To evaluate the anti-tumor effect of selenite on oncogene 
mutant LUAD cell lines, H1975 harboring EGFRL858R/

T790M mutation and H358 harboring KRASG12C muta-
tion were used. We first examined cell viability under sel-
enite treatment at 24, 48, and 72 h by MTS assay. Over 
90% anti-viability was achieved in both cells at all time 
points. The IC50 values in selenite at 48  h were H1975: 
15.62 ± 2.21, H358: 15.62 ± 4.86 and at 72  h H1975: 
9.65 ± 2.09 and H358: 5.52 ± 1.79 (Fig. 1A).

We next determined the effect of selenite on cell cycle 
using propidium iodide staining. The proportion of cells 
in G2/M phase increased from 14.5 to 16.7% (2.5 µM) to 
23.5% (5.0 µM) and from 8.9 to 12.8% (2.5 µM) to 13.8% 
(5.0 µM), respectively, in H1975 and H358, accompanied 
by a decrease in cells in the G0/G1 phase (Fig. 1B). These 
data are indicative of a G2/M arrest although further 
molecular evidence is warranted.

We further investigated whether selenite could induce 
apoptosis in EGFR- and KRAS-mutant LUAD cells. 72-h 
selenite treatment produced a dose-dependent increase 
in cleaved PARP in both cells, as well as a dose-depend-
ent but mild increase in cleaved caspase 3 in H1975 but 
not H358 (Fig. 1C). We further tested the expression of 
components of the intrinsic apoptosis pathway. Upregu-
lation of cytochrome C, BIM, and NOXA in both cells 
confirmed that the pro-apoptotic function of selenite 
was via the intrinsic mitochondrial pathway (Fig.  1D). 
Selenite treatment did not alter the cleavage of caspase 
8, suggesting that the extrinsic pathway was no involved 
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Fig. 1  Selenite-induced cell cycle arrest and cell death. A Cell viability and IC50 of H1975 and H358 treated with selenite at 24, 48, and 72 h were 
assessed by MTS assay. B Flow cytometry revealed cell cycle arrest induced by sodium selenite at 72 h. C Western blot analysis of cleaved PARP and 
cleaved caspase 3 in 72-h selenite-treated cells demonstrated apoptosis. D Western blot analysis showed upregulation of cytochrome C, BIM, and 
NOXA, representative markers of the intrinsic pathway of apoptosis caused by 72-h selenite treatment
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(Additional file 1: Fig. S1A). These data suggest that sele-
nium triggered apoptosis via the intrinsic pathway.

Effect of sodium selenite on DNA methylation machinery 
and transcriptome
Selenite has been suggested to be a potential demeth-
ylation agent in some tumor cells. We next examined its 
effects on the mRNA expression and protein levels of 
DNA methylases and demethylase in EGFR- and KRAS-
mutant LUAD cells. At the mRNA level, 5.0 µM selenite 
caused upregulation in the mRNA expression of DNMT1, 
DNMT3a, and TET1 in H1975, but both 2.5  µM and 
5.0 µM selenite failed to cause any significant change in 
the expression of DNMT1, DNMT3A, DNMT3B, and 
TET1 in H358 (Fig. 2A). Protein expression of DNMT1 
after selenite treatment was further studied, and down-
regulation of DNMT1 occurred at 2.5  µM in H358 and 
5.0 µM in H1975 (Fig. 2B). TET1 protein expression was 
detectable only at 5.0 µM in H1975 and was upregulated 
at 2.5 µM and 5.0 µM in H358.

As epigenetic agents can reprogram cell transcrip-
tome, RNA sequencing (RNA-seq) was performed to 
determine the effect of selenite on genome-wide cellular 
gene expression changes. H1975 and H358 were treated 
at 5.0  µM and 2.5  µM selenite, respectively, at which 

DNMT1 was downregulated. Significance was deter-
mined by an absolute value of log2 fold change greater 
than 0.5 and a q-value of less than or equal to 0.05. At 
transcript resolution, there were 4,548 and 1745 differ-
entially expressed genes (DEGs) identified in H1975 and 
H358, respectively (Additional file  1: Fig.  S1B). Selenite 
altered the transcriptomic landscape of both cell lines 
(Fig. 2C). Gene enrichment in cell cycle checkpoints and 
ATR signaling using the Reactome database echoed our 
previous findings of cell cycle arrest (Additional file  1: 
Fig. S1C).

Selenite altered mRNA expression of genes involved 
in MAPK Signaling
To further analyze the transcriptomic landscape changes 
of the two cell lines, we performed KEGG pathway 
enrichment analysis on the DEGs and representative 
pathways were identified (Fig. 3A). MAPK signaling and 
several metabolic pathways were dysregulated in both 
cells. Further analysis was performed on MAPK signal-
ing because it constitutes the downstream EGFR and 
RAS signaling pathway and drives oncogenesis. Anno-
tated heatmap illustrated that MAPK-related genes were 
more dysregulated in H1975 than H358 after selenite 
treatment. The dysregulation took place in both classical 

Fig. 2  Selenite treatment altered DNA methylation machinery mainly at the protein level and altered the transcriptomic landscape. A The mRNA 
levels of DNA methylation machinery treated for 72 h were assessed by RT-qPCR and demonstrated upregulation in DNMT1 and TET1 in H1975 
only. B Western blot analysis of H1975 and H358 cell lysate treated for 72 h demonstrated downregulation in DNMT1 and upregulation in TET1. C 
Heatmap of the differentially expressed genes
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MAPK, or ERK, signaling, and non-classical MAPK sign-
aling, which includes the p38 MAPK signaling (Fig. 3B). 
Western blot revealed only minor downregulation in 
phospho-ERK1 levels in H1975 (Fig. 3C). For p38 MAPK, 
an increase in phosphorylation level was observed in 
both cells, suggesting the presence of cell stress (Fig. 3C). 
Therefore, the cytotoxicity of selenite could be attributed 
more to cell stress and only less to its inhibitory effect on 
cell survival pathways like ERK1/2.

Selenite is associated with oxidative stress in H1975 
and DNA damage in H358
To better characterize the type of cellular stress, enrich-
ment analyses based on the gene ontology (GO) terms 

were performed for DEGs with a higher absolute log2 
fold change of greater than or equal to 1.5. Enrichment 
of GO biological processes showed that in EGFR-mutant 
H1975, apoptosis and many metabolic processes, includ-
ing glutathione synthesis, glutamate, and cysteine meta-
bolic processes, were affected (Fig.  4A). In particular, 
dysregulated metabolic processes in H1975 were highly 
related to glutathione synthesis. Not only is glutathione 
synthesized from cysteine and glutamate [15], the enrich-
ment of intrinsic apoptotic signaling pathway in response 
to nitrosative stress reflected the disturbed redox bal-
ance and subsequent apoptosis (Fig.  4A). This was con-
sistent with previous data where the intrinsic apoptotic 
pathway was activated in selenite-treated cells (Fig. 1D). 

Fig. 3  Selenite treatment was associated with dysregulated classical and non-classical MAPK signaling. A KEGG enrichment of the differentially 
expressed genes at the transcript resolution of H1975 treated with or without 5.0 µM selenite and H358 treated with or without 2.5 µM selenite 
for 72 h. B Heatmap of the sequencing data revealed dysregulated classical and non-classical MAPK pathways mainly in H1975 treated with 72 h 
5.0 µM selenite. C Western blot analysis of H975 and H358 on ERK and p38 signaling treated for 72 h



Page 6 of 14Chan et al. Clinical Epigenetics           (2023) 15:36 

Fig. 4  Selenite treatment was associated with enriched gene ontology (GO) terms related to ER stress and glutathione synthesis in H1975. GO 
enrichment analysis of the term A GO: biological process, B cellular components, and C molecular function of H1975 treated with or without 5.0 µM 
selenite and H358 treated with or without 2.5 µM selenite for 72 h
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In H358, these findings were not observed. Instead, pro-
cesses involved in DNA damage and repair were more 
pronounced (Fig.  4A). For enrichment using GO cellu-
lar component terms, DDIT3 complexes and microtu-
bule-related components were highly enriched in H1975 
and H358, respectively (Fig.  4B). Enrichment of GO 
molecular function demonstrated dysregulation of the 
cysteine/glutamate antiporter in H1975, which echoed 
the enriched biological processes involving glutathione 
synthesis (Fig.  4C). Oxidoreductase activities were also 
enriched in both cell lines (Fig. 4C). In summary, selenite 
appeared to act as a traditional chemotherapeutic agent 
such as by causing DNA damage or affecting the micro-
tubules in H358, whereas it was highly associated with 
redox balance and ER stress in H1975.

Lastly, gene enrichment of both KEGG and GO terms 
revealed no significant enrichment in pathways or bio-
logical process involving DNA methylation, cellular com-
ponent involving maintenance of DNA methylation, or 
molecular function of DNA methylase (Fig.  3A, 4A–C). 
Interestingly, H3K36 and H3K27 methylation appeared 
dysregulated in H358 (Fig.  4C). Thus, the limited data 
hinted a less significant role of epigenetics than cellular 
stress in selenite-treated oncogenic mutant LUAD.

Selenite‑induced unfolded protein response 
and ferroptosis
Given that the ER stress was likely involved in H1975, we 
wanted to better characterize its nature by performing 
a gene set enrichment analysis on the RNA-seq data at 
gene resolution. The analysis revealed significant upreg-
ulation in genes related to unfolded protein response 
(UPR) in H1975, but such upregulation was not statisti-
cally significant in H358 (Fig. 5A). This might be due to 
the difference in selenite concentration, so we verified the 
expression of representative genes which are highly asso-
ciated with both ER stress and ferroptosis using 2.5 µM 
and 5.0 µM selenite in both two cell lines.

We detected mRNA expression after selenite treat-
ment by RT-qPCR. A significant upregulation of the 
ATF4-DDIT3 axis and their downstream genes, namely 
CHAC1 and NOXA, as well as the anticipated compen-
satory upregulation of SLC7A11 in ferroptosis [37], were 
observed in H1975 (Fig.  5B). However, such response 
was not statistically significant in H358; instead, GPX4 

downregulation and SLC7A11 downregulation were 
observed at 2.5  µM and 5.0  µM, respectively (Fig.  5B). 
Western blot further confirmed the activation of UPR. 
In H1975, selenite treatment upregulated BiP, ATF4, 
and DDIT3 in a dose-dependent manner. In H358, apart 
from these mediators, selenite treatment also upregu-
lated ERN1. However, CHAC1 expression remained 
unchanged in H1975 and downregulated in H358 when 
treated with 5  µM selenite (Fig.  5C). This suggested 
that any ferroptotic response would be independent of 
CHAC1-mediated degradation of GSH.

Showing a strong association with ferroptosis, the 
RNA-seq data were plotted to the validated genes in the 
FerrDb, a database of ferroptosis regulators and mark-
ers [38]. The annotation of the heatmap denoted the 
expected gene expression changes during ferroptosis 
[38]. Both cells showed a similar pattern of dysregulated 
transcriptome related to ferroptosis (Fig. 5D). Lastly, we 
examined the level of lipid peroxidation as a measure-
ment of ferroptosis. 72-h selenite treatment produced 
a dose-dependent increase in lipid peroxidation levels 
in both H1975 and H358. Lipid peroxidation was nearly 
doubled in 5.0  µM treatment in H1975 (Fig.  5E). These 
data confirmed that selenite induced ferroptosis and 
UPR in both H1975 and H358 but more markedly in the 
EGFR-mutant H1975.

Interaction between sodium selenite and targeted therapy
Our findings confirmed that selenite serves as dual apop-
tosis and ferroptotic agent, best seen in H1975; we thus 
explore its potential as a drug candidate to synergize with 
drugs of the current standard of care, EGFR TKI and 
KRAS inhibitors. Loewe synergy scores for interaction 
between selenite with osimertinib in H1975 cells were 
5.82 at a high dose and 19.13 when limited at a low dose 
(Fig. 6A). Cell viability when treated with 1 µM selenite 
and 10 nM osimertinib was lower than that of the single 
agents (Fig. 6B). The most synergistic area with a synergy 
score of 25.53 corresponded to 1–100  nM osimertinib 
and 0.1–10 µM selenite. The same score between selenite 
and adagrasib in H358 was 5.55 at a high dose and 11.2 
at a low dose (Fig.  6C). Cell viability when treated with 
1 µM selenite and 1 nM adagrasib was lower than that of 
the single agents (Fig. 6D).The most synergistic area had 

(See figure on next page.)
Fig. 5  Selenite treatment caused unfolded protein response (UPR) and lipid peroxidation-associated ferroptosis. A GSEA analysis of the RNA-seq 
data at the gene resolution revealed significant UPR in H1975 treated with 5 µM selenite but not in H358 treated with 2.5 µM selenite. B RT-qPCR 
results of both cell lines treated for 72 h at 2.5 µM or 5.0 µM selenite confirmed the findings in transcriptome sequencing related to enriched 
UPR and ferroptosis pathway. C Western blot analysis of representative protein markers of UPR confirmed its activation after selenite treatment 
of 72 h. D Heatmap of the DEGs that was documented to show expression changes in the validated database of FerrDB demonstrated alteration 
in ferroptosis-related gene mRNA expression 38. E C-11 BODIPY staining in cells after 72-h selenite treatment showed an increased level of lipid 
peroxidation in H1975 and H358
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Fig. 5  (See legend on previous page.)
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a score of 11.9 and corresponded to 0.1–10 nM adagrasib 
and 0.1–10  µM selenite. In summary, low-dose selenite 
at 0.1–10 µM concentration synergizes with osimertinib 
and adagrasib, but the synergism is again more marked in 
EGFR-mutant H1975.

Discussion
Selenite, an essential trace element, has been proposed to 
be an antineoplastic agent through multiple mechanisms. 
Only recently, selenite in combination with chemother-
apy demonstrated clinical response at a tolerable dose in 
phase 1 SECAR trial in patients refractory to up to four 
established treatments [36]. However, its role in targeted 
therapy for LUAD carrying different oncogenic signa-
tures remained uncertain. Meanwhile, specifically for 
LUAD, the underlying mechanisms of selenite to apopto-
sis, demethylation, and ferroptosis are largely unknown. 

To the best of our understanding, this study is the first 
to identify the role of selenium in LUAD cells harboring 
oncogenic driver mutations.

We confirmed that selenite acted as a dual apopto-
sis and ferroptotic agent in EGFRL858R/T790M H1975 and 
KRASG12C H358 cells, through RNA-sequencing, RT-
qPCR, western blot, and flow cytometry. For apoptosis, 
selenite treatment resulted in phosphorylation of p38 
MAPK and upregulation of the ATF4-DDIT3 axis in UPR 
(Figs.  3C, 5C). Our result of selenite-induced ER stress 
remained consistent with other studies on normal tis-
sues and malignant tissues [7–13]. The UPR is caused by 
abnormal protein folding in ER and can result in apop-
totic cell death [39]. ATF4 initiates the transcription of 
DDIT3, another pro-apoptotic transcription factor, to 
induce the expression of BH3-only proteins, including 
BIM and NOXA [19, 22, 23]. Meanwhile, the phospho-
rylation of p38 MAPK was shown to be essential for the 

Fig. 6  Low-dose selenite treatment synergizes with targeted therapy. A Loewe synergy scores and maps of selenite and osimertinib in H1975. The 
rectangles represented the most synergistic area. B % viability of single-agent 1 µM Se, 10 nM osimertinib, and their combination. C Loewe synergy 
scores and maps of selenite and adagrasib in H358. The rectangles represented the most synergistic areas. D % viability of single-agent 1 µM Se, 
1 nM adagrasib and their combination
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switch of cell fate with activated UPR, from autophagy 
to apoptosis, by enhancing the docking of ATF4 to the 
promoter of DDIT3 [40]. These findings explained how 
selenite induced apoptosis as demonstrated by increased 
cleavage of PARP, caspase 3, and upregulation of 
cytochrome C and BH3-only proteins (Fig. 1C, D).

For ferroptosis, both H1975 and H358 displayed dys-
regulated transcriptome seen in ferroptosis, despite the 
lower dose of selenite in H358. However, the magni-
tude of increase in lipid peroxidation was more marked 
in H1975 than that of H358 at both 2.5 µM and 5.0 µM 
selenite (Fig.  5D, E). In addition, enrichment analy-
sis under the GO terms showed that enriched terms in 
H1975 were highly related to glutathione synthesis and 
ER stress, while that seen in H358 remained inconsist-
ent. We hypothesized that selenite acted more like a 
traditional chemotherapeutic agent than a ferroptosis 
inducer in H358 as seen with perturbed DNA repair bio-
logical processes or microtubules-related cellular com-
ponents (Fig.  4A, B). Indeed, KRAS-driven lung cancer 
has a greater resistance to ferroptosis owing to a repro-
grammed lipid metabolism by a higher level of acyl-coen-
zyme A synthetase long-chain family member 3 (ACSL3) 
expression [16]. In this study, the level of ACSL3 mRNA 
expression in H358 was significantly higher than that in 
H1975 before and after selenite treatment, although its 
expression also decreased slightly after the introduction 
of selenite (Additional file 1: Fig. S1D) [41]. In contrast, 
EGFR mutations in non-small cell lung cancer cells ren-
der them more susceptible to SLC7A11 inhibition or 
cysteine deprivation because intracellular cysteine pro-
moted survival EGFR-mutant cells independent of GSH-
relater redox balance [42]. The inhibition of SLC7A11 
removes this favorable metabolic signature while intro-
ducing additional oxidative stress. Therefore, ER stress 
and ferroptosis-related signature were significantly 
enriched in H1975, but other antineoplastic effects of 
selenite, such as causing DNA damages, dominated the 
transcriptomic landscape in H358.

Our data also showed that low-dose selenite of 
0.1–10  nM range synergized with osimertinib, a third-
generation EGFR TKI, and adagrasib, a KRAS G12C 
inhibitor. Because the synergism was more marked in 
EGFR-mutant H1975 than the KRAS-mutant H358, we 
found it consistent with the ferroptotic effect of selenite 
in the two cell lines. Theoretically, EGFR inhibition disfa-
vors ferroptosis because MAPK signaling is required for 
ferroptosis, while its inhibition by EGFR or ERK inhibi-
tors aborts the process of ferroptosis in lung cancer cells 
[42, 43]. However, ROS, such as that in ferroptosis, dis-
favors the emergence of resistance to osimertinib, while 
the addition of ROS scavenger, N-acetylcysteine, to osi-
mertinib increases the proportion of cycling persister 

cells [44]. In our multiple-dose drug combination stud-
ies, maximal single-agent inhibition of only around 60% 
demonstrated a subgroup of osimertinib-resistant cells 
in our culture, likely owing to heterogeneity (Additional 
file  1: Fig.  S1E). We hypothesize that selenite acts on 
these resistant cells where MAPK signaling was insuffi-
ciently or was not inhibited by osimertinib to enhance its 
therapeutic effect. Therefore, it would be interesting to 
know if the oxidative stress exerted by selenite can reduce 
the emergence of osimertinib resistance in a long run.

In terms of its epigenetic property, only being synergis-
tic at low doses, selenite resembles the dose-dependent 
therapeutic profile of other DNA-demethylating agents, 
such as azacytidine and decitabine [45, 46]. In our study, 
while the expression of DNA methylation machinery was 
altered, we did not observe significant enrichment in 
related processes after RNA sequencing, reflecting that 
the DNA demethylation property of selenite was not its 
predominant mechanism of action in LUAD cells harbor-
ing oncogenic mutations (Fig. 4). However, our treatment 
duration was limited to 72 h only in contrast to the sig-
nificantly longer duration of 7–14  days in most studies 
demonstrating the demethylating effect of selenite [26–
30]. This finding suggests that selenite is a less potent 
DNA demethylator than traditional demethylating agents 
because it can only achieve demethylation at a much 
longer duration of treatment. Meanwhile, UPR alone can 
lead to diverse cellular outcome, including recovery from 
cellular stress or as in the case of selenite, cell death [47]. 
It is unlikely that UPR alone is sufficient to trigger cellu-
lar death and epigenetic interference should contribute to 
the antineoplastic effect of selenite.

Lastly, it would be intriguing to know whether selenite 
provides a greater benefit as an adjunctive or neoadjuvant 
treatment to targeted therapy. The ex vivo experiment in 
the SECAR trial demonstrated that selenite sensitiza-
tion with subsequent chemotherapy of carboplatin alone, 
gemcitabine alone, or a combination of carboplatin and 
gemcitabine induced greater cytotoxicity than that of 
chemotherapy alone [36].

In summary, selenite is a potent dual apoptotic and fer-
roptotic agent against LUAD along with the activation of 
UPR. Our data demonstrated that EGFR-mutant H1975 
was more susceptible to selenite-induced H358. Selenite 
also synergized osimertinib better in H1975 than adag-
rasib in H358. These data provided preclinical evidence 
that selenite is a potential drug candidate for the treat-
ment of especially EGFR mutation-positive lung cancer. 
Further work is warranted to explore the long-term effect 
of selenite and its combination with TKI on EGFR muta-
tion-positive lung cancer.
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Materials and methods
Reagents
Sodium selenite (Sigma Chemical Co., St Louis, MO) 
was dissolved in phosphate-buffered solution (PBS) at 
200  mM, aliquoted, and stored at − 30  °C. Adagrasib 
(MedChemExpress, Monmouth Junction, NJ) was dis-
solved in DMSO at 20  mM, aliquoted, and stored at − 
80  °C. Osimertinib (Selleck Chemicals, Houston, TX) 
was dissolved in DMSO at 50 mM, aliquoted, and stored 
at − 80 °C.

Cell culture
LUAD cell lines (H358, H1975) were obtained from 
ATCC, cultured in RPMI 1640 media, containing 10% 
heat-inactivated fetal bovine serum, 100  g/mL strepto-
mycin and 100 units/mL penicillin (Gibco, Waltham, 
MA). Cells were maintained at 37  °C in humidified, 5% 
CO2 atmosphere.

Cell viability assay
The effects of selenite on the proliferation of LUAD cell 
lines were evaluated by an MTS assay (Promega Co., 
Madison, WI). 5000 cells per well were seeded in 96-well 
microtiter plates. Cells were treated after 24 h with fresh 
growth media with different concentrations of selenite 
(0–1000  μM) in triplicates. Cell proliferation at 24, 48, 
and 72 h was then examined as manufacturer protocol.

Cell cycle analysis
Cells were treated in three biological repeats for 72  h, 
collected using 0.25% trypsin in EDTA and washed twice 
in PBS. Cells were fixed in ice-cold 70% ethanol, washed 
in ice-cold PBS, and stained in 500 µL PI/Triton X-100 
solution, containing 100  µg/mL DNAase-free RNAse 
A (Sigma Chemical Co.), 50  µg/mL propidium iodide 
(Sigma Chemical Co.), and 0.25% (v/v) Triton X-100 
(Sigma Chemical Co.) in PBS, for 1.5 h at room tempera-
ture in dark. Cells are then washed in cold PBS and ana-
lyzed by a flow cytometer (BD Accuri C6, BD Biosciences, 
Franklin Lakes, NJ). Data from at least 10,000 events per 
sample were collected and presented as proportions of 
the cells in G0/G1, S, and G2/M phases using ModFit 
LT 5.0 software (Verity Software House, Topsham, ME). 
Experiments were repeated in three triplicates.

Western blot
Cell pellets were collected using 0.25% trypsin in EDTA 
and stored at − 80 °C until used. They were lysed in RIPA 
buffer supplemented with protease and phosphatase 
inhibitors and stored at − 80  °C until analysis by west-
ern blot. Protein concentration was measured by Pierce™ 
BCA Protein Assay Kit (Thermo Fisher Scientific, 
Waltham, MA) using the manufacturer’s protocol. The 

lysate was electrophoresed in SDS-PAGE and then trans-
ferred onto nitrocellulose membranes (GE Healthcare, 
Chicago, IL). After transfer, the membrane was incubated 
in freshly prepared 5% non-fat dry milk (BioRad, Hercu-
les, CA) for 1 h and then incubated against the primary 
antibodies listed in Additional file 2: Table S1a, diluted in 
5% non-fat dry milk, overnight at 4  °C. The membranes 
were then incubated in secondary antibodies, listed in 
Additional file  2: Table  S1b, and then developed using 
the ECL method (GE Healthcare) and visualized using 
ChemiDoc MP image visualizer (BioRad). Quantification 
was performed using Image J.

Reverse transcription‑polymerase chain reaction (qRT‑PCR)
Total RNA was extracted using AllPrep DNA/RNA 
Mini Kit (Qiagen, Hilden, Germany). Reverse tran-
scription was performed using the GeneAmp system. 
Subsequent qPCR was carried out according to the 
manufacturer’s protocol (StepOne™ system; Applied Bio-
systems, Waltham, MA) using SYBR Green master mix 
(Applied Biosystems) and GAPDH as an internal control. 
The primers used are listed in Additional file 2: Table S2. 
Means and standard deviations were obtained from three 
triplicates.

RNA‑sequencing
H1975 and H358 were treated in 5.0  µM and 2.5  µM 
in triplicate for 72  h, respectively, to achieve DNMT1 
downregulation. Total RNA was extracted using AllPrep 
DNA/RNA Mini Kit (Qiagen). RNA was analyzed by Bio-
analyzer (Agilent 2100). RNA integrity number of ana-
lyzed samples and ribosomal RNA 28S-18S ratio spanned 
from 8.4 to 9.7 and 1.8 to 2.0, respectively. mRNA library 
was prepared following standard BGI protocol. Samples 
are then sequenced on the DNBseq™ platform at BGI 
(Shenzhen, China) to produce around 40–50 total clean 
reads of 150  bp and around 6.0 -7.5  GB of total clean 
bases, whose clean reads Q20 and Q30 are above 95% 
and 85%, respectively. SOAPnuke (v1.5.2) was adopted 
for filtering. RefSeq Assembly GRCh38.p12 was the ref-
erence transcriptome where alignment was performed 
using Hierarchical Indexing for Spliced Alignment of 
Transcripts (v2.0.4) and mapping of the clean reads was 
performed using Bowtie2 (v2.2.5) for mapping the clean 
reads. Differentially expressed gene was detected using 
DEseq2 method with q-value <  = 0.05. Genes at the tran-
script resolution with |log2FC value|> = 0.5 were plotted 
in a cluster heatmap using pheatmap standardized by 
z-score using default parameters. The phyper function in 
R software was used to perform the enrichment analysis 
according to the kegg_pathway annotation, and DEGs 
with |log2FC value|> = 1.5 were selected for go_f, go_p, 
and go_c enrichment. Representative KEGG pathways 
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with q-value < 0.10 were presented in bubble charts. 
Gene set enrichment analysis was performed using 
GSEA software at the gene resolution because transcript-
level annotations are not available [48, 49]. Validated fer-
roptosis inducers, suppressors, and markers on FerrDb 
were matched to sequencing results at the gene resolu-
tion [38].

Measurement of lipid peroxidation
Cells were probed with C11-BODIPY at a final concen-
tration of 1.5 μmol/L for 30 min and then analyzed using 
a flow cytometer.

Multiple‑dose drug combination studies
The drug interactions were evaluated by an MTS assay 
(Promega Co.). 5000 cells per well were seeded in 96-well 
microtiter plates. After 24 h, cells were treated with vary-
ing drug dosages in triplicates. Cell proliferation at 72 h 
was examined as manufacturer protocol. Data from at 
least three replicates were then analyzed in Synergy-
Finder 2.0 [50].

Statistical Analysis
Two-way ANOVA was performed using Graphpad 
Prism with p < 0.05 considered as statistical significance 
(*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001). For 
RT-qPCR, two-way ANOVA was performed based on 
ddCT values.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​023-​01454-4.

Additional file 1: Fig. S1 A Western blot analysis showed that selenite did 
not alter the cleavage of caspase 8. B Volcano plots of the transcriptome 
of H1975 treated with or without 5µM selenite and H358 treated with 
or without 2.5µM Se at the transcript resolution. C GSEA analysis of the 
upregulated DEGs at a gene resolution of both cell lines revealed altera-
tion in cell cycle checkpoints and ATR signaling. D ASCL3 expression in 
transcript per million from RNA-seq data was higher in H358 than H1975 
before and after selenite treatment. E Dose-response curve of single-
agent osimertinib in H1975 showed maximal inhibition of around 60%.

Additional file 2: Table S1 Antibodies used in this study. Table S2 Prim-
ers for RT-qPCR.
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