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Abstract

Introduction: Traumatic brain injuries (TBIs) impact the breadth of society and remain without 

any approved pharmacological treatments. Despite successful Phase II clinical trials, the failure 

of many Phase III clinical trials may be explained by insufficient drug targeting and retention, 

preventing the proper attainment of an observable dosage threshold. To address this challenge, 

nanoparticles can be functionalized to protect pharmacological payloads, improve targeted drug 

delivery to sites of injury, and can be combined with supportive scaffolding to improve secondary 

outcomes.

Areas covered: This review briefly covers the pathophysiology of TBIs and their subtypes, the 

current pre-clinical and clinical management strategies, explores the common models of focal, 

diffuse, and mixed traumatic brain injury employed in experimental animals, and surveys the 

existing literature on nanoparticles developed to treat TBIs.

Expert opinion: Nanoparticles are well suited to improve secondary outcomes as their 

multifunctionality and customizability enhance their potential for efficient targeted delivery, 

payload protection, increased brain penetration, low off-target toxicity, and biocompatibility in 

both acute and chronic timescales.
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1. Introduction

Traumatic brain injuries (TBIs) are a leading cause of death and disability worldwide 

[1]. Without accounting for TBI cases that are left untreated, seen in outpatient care, and 
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in federal facilities [2], there are still 69 million people who reportedly experience TBIs 

each year globally [3]. The incidence of TBIs spans all ages and affects particularly racial 

and ethnic minorities [4], military and public service members [5], people experiencing 

houselessness [6], and victims of assault and motor vehicle crashes [7]. TBIs in extreme 

conditions like in space travel will also require attention in the future. In a recent 

longitudinal study, blood samples from cosmonauts who spent, on average, 169 days on 

the International Space Station, saw significant elevations of neurofilament light chain, a 

biomarker of TBI and other neurodegenerative disease [8, 9].

TBIs constitute both closed head injuries (CHI) and, less common, penetrating injuries. 

CHIs are caused by blunt trauma, rapid acceleration, or deceleration forces [10] whereas 

in penetrating injuries, an object perforates the skull, breaches the meninges, and injures 

the brain [11]. To categorize the severity of TBIs and triage patients, the Glasgow Coma 

Scale (GCS), a physiologic measure of injury for all types of acute medical and trauma 

patients, is often employed in the clinical setting [12]. Typically, GCS scores between 

13-15 are classified as mild TBI, 9-12 for moderate TBI, and 3-8 for severe TBI. Though 

useful, the GCS is weakly correlated with survival and functional outcomes [13, 14], thus, 

physicians also use imaging tools such as computerized tomography (CT) scans [15, 16] and 

magnetic resonance imaging (MRI) to determine injury severity [17]. Evidence has shown 

that employing additional anatomical measurements in combination with the GCS can 

improve the correlation with Glasgow Outcome Scale Extended (GOS-E) scores, a common 

tool used to assess global disability and recovery after a TBI [18]. For example, combining 

the GCS with the Injury Severity Score (ISS) and the Abbreviated Injury Score (AIS) 

has shown to improve the correlation with GOS-E scores, R=.335, p<.001 and R=.275, 

p<.001 respectively [19]. Other studies point to measuring a combination of biomarkers of 

injury to improve outcome correlation, including neuroendocrine hormones, micro-RNA, 

and brain-specific proteins [20].

TBIs begin with a primary injury as a result of the immediate impact. This event is 

not treatable and can be characterized by intra- and extraparenchymal hemorrhage, focal 

contusions, cerebral edema, and focal and/or diffuse axonal injury (DAI), due to the 

biomechanical shearing, tearing, or stretching of white matter tracts [21]. Concurrently 

initiated with the primary injury, the secondary injury sequelae can evolve over minutes to 

days and even months [22], providing a window for intervention. During this period, cellular 

and neurochemical mechanisms can result in an inflammatory response characterized by 

ischemia, hypotension, hypoxia, increased intracranial pressure (ICP), decreased cerebral 

perfusion pressure, and edema [21]. Glutamate excitotoxicity, the generation of reactive 

oxygen species (ROS), mitochondrial dysfunction, DAI, apoptosis, and the eventual death 

of neuronal, endothelial, and glial cells may also occur [23, 24]. These delayed deleterious 

processes can lead to acute and chronic sensorimotor [25, 26] and cognitive impairments 

[27-29].

Clinical management to reduce secondary damage and improve the prognosis of motor and 

cognitive functioning remains a challenge as no pharmacologic agents that have succeeded 

in Phase III clinical trials to treat TBIs. For instance, progesterone initially showed promise 

in pre-clinical studies by reducing inflammatory cytokines [30], stimulating neurogenesis, 
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and synaptogenesis [31], and enhancing functional recovery of sensory, cognitive, and motor 

tasks [32-34]. Phase II clinical trials even proved moderately successful, but two Phase 

III trials, ProTECT III in the USA and SyNAPSe in China, failed to meet their primary 

outcome of improving scores on the GOS-E [35]. Though there may have been flaws in the 

experimental design [36], it is noteworthy that the mode of drug delivery and location of 

administration were problematic for efficient targeted treatment and determining an effective 

dosage. As another example, dexanabinol also failed to see a difference in GOS-E score 

at 6 months, despite being able to show improved ICP in Phase II trials [37]. Researchers 

of these trials noted that the distribution of drug volume may have varied in patients, 

necessitating a more targeted delivery mechanism.

2. Pathophysiology of TBI

The pathophysiology of a TBI is biphasic, beginning with the primary injury, a direct 

consequence of the mechanophysical forces responsible for the insult. This phase can 

not be treated and only preventative measures can be taken to avoid the incident [38]. 

Upon immediate impact, the resulting damage can be focally concentrated, diffuse, or 

a combination of both. Focal brain injuries stem from collision forces acting on the 

skull, resulting in epidural, subdural, and intraparenchymal hematomas, compression, and 

contusion of the underlying brain tissue at either the site of impact (coup), opposite 

the site of impact (contrecoup) or both [39]. Such physical changes restrict blood flow 

and often produce necrotic areas near the site(s) of impact. Diffuse injuries occur when 

rapid acceleration-deceleration or rotational forces shift the brain inside the skull causing 

dynamic shear, tension, and compressive forces that impact the brain. These processes elicit 

DAIs predominantly in subcortical and deep white matter tissue such as the brain stem 

and corpus callosum [40] and result in traumatic axonal damage, diffuse vascular injury, 

hypoxic-ischemic injury, and edema [41].

The secondary injury phase represents the body’s attempt to limit the extent of damage, 

repair consequences of the primary injury, and restore the brain’s structural and functional 

integrity. The physical, cellular, and biochemical processes that occur during the primary 

injury progress into secondary injury mechanisms on a time scale of hours to years, resulting 

in cerebral swelling, herniation phenomena, and neurodegeneration, which can lead to 

cognitive and motor impairment [42]. This secondary phase reveals the only window for 

pharmacological intervention to reduce injury progression and improve outcome severity. 

For example, delayed Wallerian degeneration, a phenomenon where severed axons maintain 

independent function for weeks after the initial impact event, has revealed a special window 

for TBI treatment and has been a topic of interest in studies aimed to improve functional 

recovery [43, 44].

The blood-brain barrier (BBB) is a selectively permeable microvasculature system that 

shields the brain from toxic substances in the blood, provides nutrients to brain tissue, 

and relinquishes harmful substances in the brain to the bloodstream. At the moment 

of impact, the BBB is often compromised, triggering the downregulation of the platelet-

derived growth factor (PDGF)-B/ PDGF receptor-β signaling pathway, impairing pericyte-

endothelium interactions and resulting in pericyte loss near the BBB, further compromising 
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the BBB’s integrity (see Figure 1) [45]. This dysfunction of BBB dynamics is followed by 

an increased permeability to water, marked by a significant increase in aquaporin4 (AQP4) 

expression and possibly edema [45]. Also contributing to brain swelling, a ruptured BBB 

can encourage vasogenic edema, where protein-rich fluid from circulating blood enters 

the brain’s interstitial fluid [46]. Cytotoxic edema can also form, where the dysregulation 

of homeostatic ion channels and pumps disrupt the ionic gradient leading to intracellular 

swelling of astrocytes and glial cells. Both cytotoxic and vasogenic edema can elevate ICP, 

worsening functional outcome [47].

Evidence has shown that prolonged neuroinflammation recruits macrophages, activates 

microglia, and promotes astrogliosis [48]. In response to the injury microenvironment, 

microglial polarization allows for a phenotypic response to surrounding biochemical cues 

which alter microglia function accordingly. Infiltrating microglia/macrophages can assume 

either two main terminally defined states: M1, which is pro-inflammatory/neurotoxic, or 

M2, which is anti-inflammatory/neuroprotective [49]. Research has shown that early after 

a TBI, both M1- and M2-like phenotypic markers are expressed followed by a transient 

up-regulation of the M2-like phenotype, which is soon replaced by a predominant M1-

like phenotype associated with neurodegeneration up to 7 days post-injury [50]. During 

astrogliosis, activated astrocytes undergo hypertrophy and intermingle their processes 

with oligodendrocytes, meningeal cells, microglia, and fibroblasts to develop scar-like 

structures in an attempt to limit the injured area. Such mechanisms curtail the potential 

for axonal regeneration [51], though, some investigators believe that glial scarring provides 

perineuronal nets for both synaptic maturation and plasticity [52].

Synchronous with the processes described, a TBI insult also signals the release of damage-

associated molecular patterns (DAMPs) as a response to cellular stress from injured 

tissue and are recognized by macrophages and pattern recognition receptors such as toll-

like receptors and inflammasomes of the innate immune system [53]. DAMPs trigger 

inflammatory responses through multiple pathways which create a positive feedback loop 

of DAMPs production and inflammation (see Figure 2). A pathway of popular research 

interest, the nuclear factor-κB (NF-κB) inflammatory pathway, is a central mediator in 

pro-inflammatory gene induction [54] and plays a large role in edema [55] and neuronal 

apoptosis [56].

DAMPs also guide the extravasation of activated leukocytes into the brain parenchyma 

which, in concert with microglia and astrocytes, produce ROS and inflammatory molecules 

including cytokines such as IL-1β, IL-6, and TNF-α, and chemokines such as MIP-α, 

MCP-1, and IL-8, recruiting more leukocytes to the injury site [57, 58]. These inflammatory 

biomolecules that follow leukocyte invasion encourage the demyelination and degradation of 

axonal cytoskeletons, resulting in axonal swelling and the accumulation of transport proteins 

at the synaptic terminals, compromising neuronal activity [59, 60]. Neurotransmitters can 

also accumulate in the synaptic space due to release from sheared neurons, glutamate-

induced aggravated release from pre-synaptic terminals, and impaired reuptake mechanisms 

of the ischemic brain and activate both ionotropic and metabotropic receptors on the 

post-synaptic membranes fostering an influx of calcium ions, inducing excitotoxicity 

[61]. Furthermore, the activation of mitogen-activated protein kinases (MAPK), protein 
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phosphatases, ROS, nitric oxide, calcineurin, calpain, and caspases follow, which induce 

apoptosis and increase ROS-mediated lipid peroxidation [62]. These processes impair 

mitochondrial function by depolarizing the membrane, reducing ATP production, and 

increasing oxidative stress, further exacerbating the secondary injury [61, 62].

3. Current management of TBI

Management of TBIs includes preventative measures to avoid TBIs, pre-hospital strategies, 

and clinical interventions to manage injuries. Primary prevention aims to circumvent brain 

trauma events by transforming social behavior through an array of mechanisms from public 

policy reforms [63], such as revising speed limits [64], improving road engineering [65], and 

enforcing helmet use [66], to altering cultural practices, such as creating programs to address 

alcohol abuse [67] and teaching athletes proper tackling techniques while playing rugby 

[68]. Secondary prevention focuses on minimizing the biological injury sequelae [63]. These 

efforts include addressing systemic issues through blood-pressure management, choice of 

fluid for resuscitation, temperature management, ICP management, monitoring cerebral 

oxygenation, and improving ventilation techniques [63]. As mentioned, clinical strategies to 

reduce secondary injury progression from a subcellular approach have not resulted in any 

successful Phase III clinical trials. Lastly, tertiary prevention, which is now often seen as a 

part of secondary prevention, aims to maximize the patient’s functional abilities and restore 

their quality of daily life after injury [63]. Such efforts include neuro-rehabilitation and 

understanding the relationships between imaging, function, and the underlying pathology to 

administer the most effective treatment for all injury types. The Centers for Disease Control 

and Prevention has recently published guidelines on tertiary prevention techniques for mild 

TBI in children which include symptoms scales, proper sleep methods, and assistance with 

the time given to complete assignments, all of which can aid in recovery [69].

The clinical management of TBIs aims to categorize the severity of the injury, relieve 

cerebral swelling and mass effect through medical and surgical strategies, and provide 

treatment to improve cognitive and functional outcomes. After an impact, patients may 

experience physical symptoms such as headache, fatigue, anxiety, light sensitivity, and 

confusion for mild TBIs. With moderate to severe TBIs, patients can experience seizures, 

loss of consciousness, and significant cognitive, motor, and sensory deficits alongside the 

previously mentioned symptoms [70]. Clinicians commonly use the GCS or extended GCS 

[71] which measures impaired consciousness based on the eye-opening, motor, and verbal 

responsiveness to categorize injury extent as either mild, moderate, or severe and predict 

prognosis. As mentioned the correlation between outcome and GCS is weak therefore, 

clinicians often employ various imaging techniques to improve the accuracy of the prognosis 

[15-17].

Once injury severity is determined, clinicians focus on relieving the cerebral mass effect, 

a phenomenon in which a focal lesion, such as a blood clot or a contusion, compresses 

the surrounding brain tissue [72]. Understanding of the mass effect is, in part, driven by 

the Monro-Kellie doctrine, a hypothesis that posits that the sum of the volumes of brain 

tissue, cerebrospinal fluid, and intracranial blood is constant [73]. Therefore, alternations 

in one will elicit opposite fluctuations in one or both of the remaining two variables. This 
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behavior, in combination with principles of cerebral blood flow, accounts for many of the 

pathophysiological changes that occur after TBI. Depending on the extent of the acute focal 

mass effect, brain swelling, and increased ICP, physicians commonly administer mannitol 

and preferably hypertonic saline, since evidence has shown that this osmotic diuretic may 

increase pressure in the skull with excessive administration and present detrimental effects 

on mortality when compared to the latter [74]. In cases where herniation persists, surgeons 

are prompted to perform a decompressive craniectomy (DC) to relieve focal mass effect 

or high ICP. Early DC reduces mortality in patients with TBI but the clinical outcome 

compared to the standard medical management remains the same and determining the 

most optimal time frame for performing DCs still requires further investigation [75]. 

Unfortunately, there are still no proven treatment strategies to relieve the progressive 

secondary injury effects of TBI.

4. Modeling TBI

To investigate TBI treatment strategies and therapeutics, researchers are faced with the 

challenge of choosing an appropriate model organism and injury model to investigate the 

heterogeneous nature of TBIs in vivo. While larger mammals and non-human primates 

phylogenetically closer to humans may more accurately reflect the human biological 

response to TBIs, rodent models are often preferred due to their accessibility, comparatively 

lower cost, ease of handling, cheap post-surgical care, and existent standardized outcome 

measurements. For instance, to measure motor function in rodents there are many 

assessments including the rotarod test [76], beam walking [76], and cylinder test [77]. To 

assess cognition, there are also varied experimental apparatuses such as the Morris Water 

Maze [78] and Y maze [79]. Comparatively, large animals lack such a span of outcome 

measurements and models of delivering TBIs, though investigations are underway to bridge 

this gap [80, 81].

When choosing an appropriate TBI model, researchers must consider the type of injury 

that is to be modeled. There is no established guideline to measure injury severity in 

experimental TBI thus, investigators must tune mechanical parameters such as impact 

speed, depth, and dwell time [82]. Reasearchers can also note neurological changes, 

such as righting time [83], physiological changes, like weight loss [84], histological 

changes, including infarct volume and neuronal loss [85], and observe motor and cognitive 

performance [76-79]. It should be noted that there are limitations to using animal models. 

For example, although severe TBIs in rodents often reveal extensive tissue degeneration 

and motor dysfunction, these animals rarely mimic the state of coma often seen in diffuse 

TBI patients [86-88]. Furthermore, many TBI models require anesthesia prior to injury 

which can confer cerebral metabolic and physiological effects [89]. For instance, isoflurane, 

a commonly inhaled anesthetic used during surgical procedures, has been evidenced to 

attenuate functional deficits and elicit some neuroprotective action on the injured brain [90, 

91]. Propofol, an anesthetic used in the clinic, has been associated with poor outcomes in rat 

focal TBI models [92]. For these reasons, it is important to have a sham animal group when 

designing TBI studies.
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Broadly, animal models of TBI are classified as either mainly focal, diffuse, or mixed 

injuries. Mixed injuries represent a combination of focal and diffuse injuries, reflecting 

falls or sports-related injuries in humans. Details of commonly employed animal models 

to administer TBIs are discussed in Table 1. Ideally, when designing an experiment, the 

model should be tunable (commensurate with the desired injury severity), quantifiable, 

reproducible, and have some clinically relevant correlation. Common methods to mimic 

a focal brain injury include weight drop injury models (WDI), the open skull controlled 

cortical impact (CCI) model, and penetrating ballistic-like brain injury models. Diffuse 

injuries are commonly modeled using blast-wave models and mixed injuries can be modeled 

by some WDI, acceleration-deceleration models, and fluid percussion injuries. Though 

much of the current literature describes most injury models as being developed to represent 

a binary classification of TBI, mainly focal or diffuse, a large percentage of TBIs are of the 

mixed type. A recent MRI study revealed both focal lesions and diffuse injuries in 50% of 

patients studied with moderate and severe TBI [93].

In general, WDI models take advantage of the gravitational force elicited by a free-falling 

weight to generate the desired injury severity. The Feeney weight-drop model represents 

a focal injury model and generates reproducible graded cortical contusions using a 40 cm 

stainless steel tube attached to a circular footplate. A craniotomy is performed and the 

footplate is positioned above the exposed dura. The weight is then released, dislodging 

the footplate and impacting the region of interest [94]. This impact results in a cortical 

contusion characterized by edema [95], hemorrhaging [96], and damage to the BBB [97]. 

The subsequent inflammatory processes [94, 96] which activate microglia, astrocytes, the 

complement system [98], as well as the infiltration of neutrophils and macrophages, are 

commensurate with the weight falling height and consequentially, the injury severity [99]. 

The Shohami WDI model is a similar model except that the focal injury is created over one 

side of an intact skull using a flat silicone tip fixed at the end of an impacting rod [100]. The 

animal in both models is often fixed to a hard surface to minimize the dissipation of energy 

and avoid diffuse injury.

This practice is in contrast to the Marmarou weight drop model, often employed to mimic 

motor vehicle injuries and induce diffuse axonal injuries, where a rotational acceleration 

follows a linear acceleration injury [88, 101]. In this model, the animal is strapped to 

a spongiose material, such as a foam-covered platform, which serves to decelerate the 

head after impact [102]. A segmented brass weight then free-falls through a Plexiglass 

tube striking a metal disk affixed to its skull which allows for widespread axonal damage 

while reducing the chances of cranial fracture and the appearance of focal injuries. In a 

graded manner, dependent upon the release height of the weight, characteristics of diffuse 

injury are apparent such as bilateral hemorrhaging, cell loss, DAI, activated microglia, and 

astrogliosis. While these WDI models are similar to the mechanism of human TBI, can 

undergo neuroscoring post-injury using the Neurological Severity Score (NSS) [103], and 

are easy, cheap, and convenient, these models have high mortality rates due to apnea and 

skull fractures, can sometimes produce rebound injuries, often have varied impact velocities, 

and thus present inaccuracies with brain tissue deformation and injury severity.
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A more reproducible TBI model is the CCI model which generates a mainly focal TBI 

and has been used in many animals including rodents [82, 104-106], swine [107-110], and 

non-human primates [111]. A craniectomy is first performed, leaving the dura intact over the 

targeted area. Using an electromagnetic or pneumatic impactor, investigators can precisely 

control quantifiable mechanical parameters such as the velocity of impact, dwell time, and 

cortical depth penetration to achieve the desired severity of injury [104, 106]. While there is 

no consensus regarding the behavioral or histological criteria that constitute mild, moderate, 

or severe injuries as seen in patients, research is actively trying to standardize the CCI 

model injury severity. Recently, one study recommends injury severity to be determined by 

a multifactorial approach including the extent of tissue loss, NSS, and cognitive deficits in 

addition to the surgical parameters previously mentioned [82].

Similar to humans with injury-induced epilepsy, rodents with CCI-induced TBIs may 

experience post-traumatic seizure activity [112]. Furthermore, the CCI model may inflict 

cytotoxic and vasogenic brain edema, often seen in the clinical human pathophysiology 

of TBI [46, 105]. Dependent upon the severity, the neuropathology of rodent CCIs 

often includes a cortical contusion proximal to the impact site, subdural hematoma, BBB 

disruption, hypoperfusion, cavitation, and neurodegeneration. Upregulated inflammatory 

cascades lead to excitotoxicity, neuronal cell death, astrogliosis, microglial activation, axonal 

damage, and cortical spreading depressions [96, 107]. Weaknesses of this model include 

the lack of brainstem deformation resulting in minimal mortality, as well as the lack of 

post-injury neuroscoring though, implementation of an NSS could improve this. Other focal 

injury models such as cryogenic injury models [113-115] and penetrating injury models, the 

only one in use today is the balloon inflation technique [116], can mimic some aspects of 

human TBI pathology but their clinical relevance is limited. For instance, in the cryogenic 

models, the focal traumas often lack the contrecoup injury and DAI often associated with 

human cerebral injuries.

Blast-like injury models, apart from open field designs, represent another tunable and highly 

reproducible set of TBI models. The penetrating ballistic brain injury model represents the 

focal damage shrapnel from an explosion can cause where a cavity forms corresponding to 

the penetration location [117]. Most other blast injury models reflect mechanisms of diffuse 

and mixed injuries. Blast tube models employ the detonation of an explosive to simulate 

a shock wave and blast wind without reflected shock fronts from the ground and other 

surfaces. When designing these experiments researchers must consider accommodations for 

the model organism, intended placement of the organisms within or away from the tubes/

subject standoff, and plan for specialized testing locations and personnel training for the safe 

use of explosives. Common models include the Parks tube, often used in swine models[118, 

119], and the Clemedson tube[120] which can be used to study blast injury in rats [121, 

122]. Shock-wave primary blast injury models are similar except that they use compressed 

gas instead of explosives, though the physics of gas-driven shock waves may differ from 

explosive shock waves and the resulting pathology may not accurately reflect that of the 

human condition [123].

Fluid percussion injury (FPI) models represent another mixed injury model where both 

cerebral and focal concussions are produced, similar to sports-related injuries such as 
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boxing. A pendulum first strikes a piston at the end of a tube filled with fluid and the fluid 

pressure impulse rapidly injects the exposed dura directly through a Luer-Lock surgically 

implanted onto the intact dural surface exposed via craniotomy which is usually made either 

centrally [124], over the sagittal suture midway between the bregma and lambda, or laterally 

over the parietal cortex [125]. The implant is connected to an FPI device fluid impulse outlet 

and fluid pressure detector which accurately measures the impact pressure. Injury severity 

is determined by adjusting the force of the fluid pressure pulse. Weaknesses of this model 

include the need for a craniectomy and like WDI and other models, FPI models demonstrate 

a high mortality rate due to apnea and lack immediate post-injury neuroscoring.

5. Nanoparticles address the challenges of treating TBI

The failure of many Phase III clinical trials [35-37, 126, 127] has revealed to investigators 

that to successfully improve TBI outcomes, novel pharmacological interventions must 

efficiently deliver therapeutics to the targeted injured area(s) and be retained in the brain 

long enough to confer its therapeutic effect while avoiding off-target toxicity. Successful 

therapies will also need to specifically address the dysfunction of the neurovascular unit 

(NVU) during a TBI, which includes the cellular and extracellular components of the brain 

and its vasculature such as neurons, perivascular astrocytes, microglia, pericytes, endothelial 

cells, and the basement membrane [128]. Drugs that can mediate the immune trauma 

response without needing to penetrate the cerebral tissue, such as a free radical scavenger, 

would not necessarily require NVU targeting, but those which must cross the BBB, such as 

ion channel blockers, calcium channel antagonists, trophic factors, and cell-specific targets 

should focus on increasing delivery efficiency when designing therapies [127]. Addressing 

these challenges will lower the barriers to establishing dosage thresholds, or the minimum 

amount of drug below which a biological effect does not occur, and enhance the potential of 

meeting the set endpoints of clinical trials.

NP-based drug delivery systems have the potential to meet the requirements that can 

increase the efficiency and efficacy of TBI therapies. Their customizable size, stealthy 

chemistry, and multifunctionality allow NPs to be optimized for stable targeted drug delivery 

systemically and to the brain [129, 130]. Modifications can also include functionalizing NPs 

with target-appropriate charges. To illustrate, in peptide-modified NPs that are delivered 

directly to the brain, positively charged peptides show restricted distribution compared to 

neutral, zwitterionic, or negatively charged particles, while the opposite is true for off-target 

organs [131]. Depending on their engineering, NPs can themselves elicit some therapeutic 

benefit in addition to shielding pharmacological payloads during targeted delivery.

The materials used in developing NP therapeutics are chosen based on some permutation 

of their ability to be functionalized with immune-evading, therapeutic, or targeting ligands, 

their capacity to protect their payload in the injury microenvironment, their chemistry to 

foster optimal timing for drug release, their improved biocompatibility, and low off-target 

accumulation and toxicity [130]. Poly(ethylene)glycol (PEG), a polyether compound, is 

regularly conjugated to NP polypeptides to prevent aggregation, improve solubility, and 

increase half-life in the circulatory system [132]. The PEG coating minimizes opsonization 

by avoiding plasma protein adsorption via steric hindrance and shield charging, thereby 
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abating interactions with phagocytotic cells and avoiding clearance [133, 134]. Poly(lactic 

-co-glycolic acid) (PLGA) and Tween® 80, an amphiphilic non-ionic polysorbate (PS) 

surfactant, are also commonly employed in NP synthesis to improve biodegradability and 

biocompatibility as well as foster delivery across the BBB through low-density lipoprotein-

mediated endocytosis, respectively [135, 136]. Incorporation of metals, such as gold 

[137, 138] and cerium[139, 140], are also used when synthesizing NPs to target injured 

parenchyma since their native properties can be utilized for their enhanced drug release 

chemistry, enzymatic actions, and anti-inflammatory capabilities.

Across the literature, investigations which harness this multifunctional diversity and 

potential for developing NP therapeutics to treat TBIs center around different strategies 

to improve the secondary injury sequelae. Similar therapeutic applications of NPs have 

been achieved through employing different nanomaterials. Therefore, here, NPs are 

discussed based on their shared function or pharmacological effect. In general, the NPs 

studied to treat TBI, and their respective payloads, function to elicit some combination 

of immunomodulatory, hemostatic, neuroprotective, anti-oxidative, anti-inflammatory, 

and stem-cell integration assistance through either modified surface chemistry, peptide 

functionalizations on the NPs, encapsulating and delivering gene therapies, pharmaceutical 

agents, neuroprotective substances, or growth factors. A summary of the most recent NPs 

investigated to treat TBIs are categorized by their primary function listed in Table 2.

5.1 Immunomodulatory NPs

Immunomodulatory NPs include those nanoscale technologies which alter the immune 

system in a manner that improves TBI outcome. Investigators in this field have focused 

on designing NPs that mitigate upstream inflammatory players and sequester inflammation 

both in the vasculature and around the injured parenchyma sometimes solely through surface 

modifications, omitting a payload [141].

Immunomodulatory nanoparticles (IMPs), 500nm-diameter NPs made from Food and Drug 

Administration (FDA)-approved biodegradable biopolymer carboxylated PLGA, are shown 

to improve TBI in the acute phase by binding to macrophage receptors with collagenous 

structure (MARCO) positive hematogenous monocytes (hMos) [142]. These monocytes are 

then sequestered to the spleen (see Figure 3A for possible translation in humans), unable to 

home sites of inflammation evidenced by an overall reduction in infiltrating immune cells 

and glial scarring, mitigation of the inflammatory status of infiltrating cells exemplified 

by microglia shifting to a more M2-like profile, improved visual and motor function, and 

reduced edema in both CCI and WDI models [142]. Even at the chronic time point of 10 

weeks, CCI animals saw a significant 44.7% reduction in lesion volume compared to the 

vehicle-treated animals.

Biomimetic nanoparticles can also be employed as they provide the stealth of evading 

clearance by the mononuclear phagocyte system (MPS), reduce elimination by Kupffer cells 

in the liver, and glomerular filtration in the kidneys, while still being able to maintain the 

delivery capabilities of a synthetic NP [141]. Leukocyte-based biomimetic NPs (Leuko NPs) 

are <200 nm and are fabricated using liposomes and membrane proteins extracted from 

cultivated leukocytes. These NPs target activated endothelia through CD11b targeting and 
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evade MPS uptake through CD45 present on their surface [143]. Using the In Vivo Imaging 

System, Leuko NPs were shown to accumulate in the brain through paracellular diffusion 

and breaks in the BBB (see Figure 3B) as well as in peripheral organs such as the liver, 

spleen, kidneys, and lungs where no abnormal or pathological morphology was found as a 

result of this treatment. A significant increase in Iba-1 positive cells 24 hours post-injury 

was observed and can be linked to an increase in M2 microglia, decreased lesion size, 

and a reduction in F4/80 positive cells which are usually highly expressed on infiltrating 

macrophages. On a systemic level, Leuko NPs also attenuated peripheral inflammation as 

those organs which saw NP accumulation are speculated to aid in blocking the inflammatory 

response, thereby contributing to the reduction in infiltrating macrophages observed (see 

Figure 3A) [143]. In line with immunomodulating NPs, interleukin-4 protein-loaded 

liposomes were evidenced to facilitate oligodendrocyte precursor cell differentiation and 

oligodendrogenesis through peroxisome proliferation-activated receptor-γ signaling, thereby 

reducing oxidative stress, promoting mitochondrial function, and improving sensorimotor 

neurological recovery [144].

Also in the arsenal to modulate the immune response are NPs which deliver gene therapies. 

Short hairpin RNA-loaded shCCL20-CCR6 nanodedriplexes, made of polyamidoamine, 

target chemokine (C-C motif) ligand 20 via receptor chemokine receptor 6 to 

attenuate inflammation after repeated TBI [145]. This reduction of the inflammatory 

microenvironment improves the efficacy of human mesenchymal stem cell transplantation, 

resulting in reduced pro-inflammatory cytokine IL-6, neurodegeneration, microgliosis, 

and astrogliosis, and increased brain-derived neurotrophic factor (BDNF) expression in 

the cerebral cortex indicating possible neurogenesis in mice. MicroRNAs (miRNAs), 

small non-coding RNA molecules that regulate post-transcriptional gene expression, have 

also been employed in gene therapy strategies toward thwarting the deleterious immune 

response post-TBI. Upon observing that certain miRNAs in the mitochondria, compared 

to the cytosol, display a compartmental re-distribution post-injury, one study developed 

melittin-derived cell-permeable peptide (p5RHH)+miR-146a NPs which have shown to 

significantly reduce the expression of tumor necrosis factor (TNF) receptor-associated factor 

6 and interleukin-1 receptor-associated kinase 1, two important modulators of the NF-κB 

pro-inflammatory pathway after injury [146]. Future studies in this field must continue 

to consider how inflammatory cells and immunological signaling regulate the post-TBI 

recovery mechanisms, keeping in mind the timing of pro- and anti-inflammatory processes 

when developing immunomodulatory NPs [147].

5.2 Hemostatic NPs

Though all TBIs are susceptible to hemorrhaging, severe blast-induced injuries can 

especially elicit internal bleeding in multiple organs. Immediate intervention is among the 

most effective solutions to minimizing mortality in cases of severe polytrauma yet, the only 

available treatments are pressure dressings and absorbent materials which are only effective 

for superficially exposed wounds and are unable to ameliorate internal injuries. To find more 

viable solutions to reduce the chance of coagulopathy and mortality in severe trauma, many 

investigators are developing hemostatic NPs which aim to stop bleeding and reduce the 

progression of inflammatory processes. Commonly functionalized to hemostatic NPs, the 
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synthetic peptide Gly-Arg-Gly-Asp-Ser (GRGDS) contains the amino acid sequence Arg-

Gly-Asp (RGD) which mimics a recognition site in the interaction between extracellular 

matrix molecules and cell membrane receptors. When platelets are activated, they expose 

glycoprotein IIb/IIa receptor. RGD can block the receptors of these glycoproteins, inhibiting 

fibrinogen binding and modulating hemostasis through anti-thrombotic actions [148, 149].

In one study 500 nm PLGA-poly(ε-cbz-L-lysine)-PEG-GRGDS NPs (hNPs) were 

synthesized to encapsulate dexamethasone (hDNPs), an anti-inflammatory glucocorticoid 

loaded at a final concentration of 22 ± 1μg of dexamethasone/ mg of NP, to stop bleeding 

and mitigate pro-inflammatory processes in a blast TBI model [150]. Results revealed an 

elevation in survival with these NPs regardless of whether dexamethasone is encapsulated or 

not. Interestingly, hDNPs were able to confer a decrease in apoptosis and BBB disruption 

in the amygdala which correlated with a significant reduction in anxiety-like behavior 

when tested in an open-field tracking system. Importantly, hNPs significantly mitigated 

hemorrhaging and hDNPs conferred a significant reduction in astrogliosis, a restoration 

of microglia levels, an alleviation of vascular endothelial growth factor expression, which 

at high levels can indicate BBB permeability, and increased expression of SM1–71, a 

recognized antibody against rat endothelial barrier antigen that indicates the functionality of 

the BBB [150].

In an earlier study, PLGA-poly(ε-cbz-L-lysine)-PEG-GRGDS NPs encapsulated 

poly(acrylic acid) (PAA) [151], a flocculating agent implicated as an anticoagulant due 

to its antithrombin-activating properties [152]. Results from these hemostatic NP studies 

showed a significant increase to 95% survival following a 20-psi blast compared to 60% 

in the control and there were no complications or toxicity observed in the experimental 

groups. In a more recent study, carboxyl-functionalized biodegradable polyurethane (PU) 

NPs have been delivered with Spongostan™ as a hemostatic agent and has shown that PU 

NP-contained gelatin attenuated brain edema, suppressed expression of M1 biomarkers such 

as IL-1β, elevated M2 biomarkers, reduced the activation of inflammatory cells near the 

implant site, and increased BDNF by almost 3-folds [153].

5.3 Neuroprotective NPs

Neuroprotectants are those agents which restrict injury to the brain parenchyma and attempt 

to salvage or regenerate neuronal cell structure and function [154]. Though in general, 

NPs which elicit some immunomodulatory, hemostatic, anti-inflammatory, and anti-oxidant 

effects can result in neuroprotection downstream, discussed here are those NPs that contain 

agents in which their primary function is to elicit a direct neuroprotective or neuronal-related 

interaction.

Recently, many studies have utilized NP encapsulation of short interfering or silencing 

RNA (siRNA) to deliver gene therapies across the BBB and improve neuronal pathology 

post-TBI, since their efficiency and specificity avoid off-target effects that can be seen with 

some small-molecule drugs. Neuron-targeted nanocomplex (TP-RVG) NPs were developed 

to encapsulate siRNA against caspase 3, a lysosomal enzyme involved in apoptosis. 

Researchers synthesized this NP using a tandem peptide consisting of a targeting peptide 

found in the rabies virus, RVG, and intracellular trafficking molecule transportan (TP) [155]. 
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Data revealed that after treatment with these TP-RVG NPs 5 minutes post-TBI, there was 

a significant accumulation of NPs in neurons. By day 3 there was an ~80% decrease in 

caspase 3 in the injured hemisphere, with no knockdown observed in the contralateral 

hemisphere. These results show the potential for TV-RVG NPs to target injured neurons 

and deliver siRNA to reduce neuronal apoptosis. Another group utilized 60 nm high-density 

Tau siRNA-loaded-PLGA-PS 80-coated NPs (PS 80 (H)-NPs) to penetrate an intact BBB 

and accumulate in the brain at a level 3-folds higher than conventional PEGylated NPs 

in mice with WDI modeled TBI [135]. Tau pathology is strongly linked to TBI-caused 

neurodegeneration and brain dysfunction [156]. This study was the first to show that PS 

80 (H)-NPs could reduce tau expression in cultured primary neural cells and also achieved 

40-50% tau silencing in TBI mice regardless of being administered within or outside the 

window of the physically breached BBB.

In a recent study, NP-wrapped siRNA-Fyn and siRNA-c-Src were shown to knockdown Fyn 

and c-Src messenger RNA, members of the Src family kinases activated by transmembrane 

receptors implicated in pathways leading to the release of toxic molecules post-TBI 

[157]. Researchers in this study support that Src kinases activate neurotoxic downstream 

signaling including the Rho-associated protein kinase (ROCK) pathway which suppresses 

central nervous system regeneration, leading to neuronal loss and cognitive decline post-

injury. Data from this study revealed that combined NP-wrapped siRNA-Fyn and siRNA-c-

Src delivery demonstrated significantly reduced CA2/3 NeuN+ neuronal cell loss in the 

hippocampus post-TBI and improved cognitive function 12-16 days post-injury. Another 

group recently looked to target the RhoA/Rock pathway using poly (lactide-co-glycolide)-

graft-polyethylenimine (PgP) as a NP to encapsulate and deliver siRNA targeting RhoA 

(siRhoA) [158]. Data showed that in rats with CCI modeled TBIs, the PgP/siRhoA NPs 

significantly reduced RhoA expression, lesion volume, neuroinflammation, apoptosis, and 

increased neuronal survival. This team recently used PgP NPs to deliver Rolipram which 

restored cyclic adenosine monophosphate (cAMP) levels in the injured brain close to the 

sham level and reduced brain lesion volume, neuroinflammation, and apoptosis at 7 days 

post-TBI [159].

The use of peptides in NPs systems have also been a popular target of neuroprotective 

studies on improving TBI outcome. A couple of studies have explored the use of NPs for 

sustained release of cerebrolysin (CBL), a neuroprotective agent characterized by a peptide 

mixture able to ameliorate TBI symptomology with factors including BDNF, glial cell 

line-derived neurotrophic factor, nerve growth factor, and ciliary neurotrophic factor [160, 

161]. CBL-loaded PLGA NPs, ranging 250-300nm, showed superior neuroprotective effects 

following a CHI compared to free CBL [161]. BDNF, in particular, is known to regulate 

neuronal plasticity, neuronal growth, proliferation, cell survival, and long-term memory but 

its short half-life and low BBB permeability create a barrier to effective therapeutic delivery 

[162, 163]. BDNF-loaded-PLGA NPs coated in poloxamer 188 have also circumvented this 

obstacle by demonstrating that they can increase BNDF levels in both sham and WDI mice 

in both ispsi- and contralateral hemispheres and also markedly improved NSS [164].

Another peptide, NR2B9c, has also been studied for its neuroprotective properties. N-

methyl-d-aspartate receptor (NMDAR)-dependent excitotoxicity, induced by postsynaptic 
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density protein-95 (PSD-95) binding, is the primary mechanism of neuronal injury 

following ischemic injury [165]. Activatable protein nanoparticles (APNPs) are made of 

3 independent polypeptides with enzyme-responsive sequences located between therapeutic 

peptides. APNPs home to target tissues and when activated by proteases rich in the injury 

microenvironment, release their payload. In one study Tat-NR2B9c, a post-synaptic PSD-95 

inhibitor, was encapsulated with APNPs conjugated with PEG (TN-APNPs). When TN-

APNPs were delivered to the injured ischemic brain, there was a significant reduction 

in infarct size, which was on average 22.6% larger than the contralateral side (compared 

with 58.8% and 38.7% in rats treated with PBS and free Tat-NR2B9c, respectively), 

and significant improvement in neurological function [166]. Tat-NR2B9c colocalized with 

PSD-95 only in the ipsilateral hemisphere of the ischemic injury, suggesting that the 

improved biological outcomes are due to the release of Tat-NR2B9c from TN-APNPs. In a 

more recent study, researchers enhanced the efficiency of TN-APNPs to deliver Tat-NR2B9c 

to TBI brain tissue by conjugating the NPs with peptides CAQK, which has a high affinity 

for extracellular matrix at the site of the injured brain, and CCAQK which contains an extra 

cysteine since the N-terminal cysteine could be important for the targeting effect of CAQK. 

In mice that underwent CCI and were treated with both peptide conjugated TN-APNPs, 

both showed improved brain penetrability and CCAQK-TN-APNPs demonstrated higher 

brain targeting efficiency, reduced injury size, and improved psychological outcomes [167]. 

CAQK has been implicated in many other TBI NP studies [168, 169] including the use 

of CAQK-conjugated silver NPs for targeting chondroitin sulfate proteoglycans-rich scars 

on mature oligodendrocytes of the injured region which would address a major barrier to 

regeneration [170].

Neuroprotectants can also be derived from natural and unconventional sources. For instance, 

curcumin, the principal secondary metabolite of turmeric or Curcuma longa, has been 

explored as a neuroprotectant in many studies [171-173]. Angiopep-2 functionalized and 

manganese-doped eumelanin NPs encapsulate curcumin (AMEC) as a neuroprotectant to 

influence anti-oxidation and anti-neuroinflammation in TBI parenchyma [171]. According 

to results from this study, after CCI in mice and subsequent intravenous administration 

of AMEC, these specialized ~160 nm nanoparticles can penetrate the brain through 

angiopep-2 binding low-density lipoprotein receptor-related protein-1 on the BBB enhancing 

drug accumulation, reduce inflammation and oxidative stress as exemplified by a lower 

M1/M2 ratio through ROS scavenging, and promote neuronal regeneration and functional 

recovery through the synergistic effects of eumelanin and curcumin [171]. In another 

study, curcumin-loaded niosome NPs were orally administered, after transplantation of 

human neural stem/progenitor cells, for 10 days. This combinatorial treatment showed a 

significant improvement in brain edema after TBI, increased locomotor activity, a decrease 

in astrogliosis, and an overall decrease in TLR4-, NF-κB, and TNR-α-positive cells 

[172]. Another recent study evaluated curcumin-loaded AmyloLipid nanovesicles (ALNs) 

administered intranasally and showed evidence for its potential to increase its bioavailability 

to treat CNS disorders. ALNs are NPs based on a cross-linked starch enveloping a solid 

lipid core which liquifies at body temperature exposing the payload [173]. Multi-lamellar 

vesicle NPs have also shown great potential as a carrier for therapeutic agents to the injured 

Mohammed et al. Page 14

Expert Opin Drug Deliv. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain considering they are non-toxic, biocompatible, biodegradable, can cross the BBB, and 

maintain stability in the blood [174].

Nanocoffee NPs have also been investigated to exploit the neuroprotective potential of 

caffeine to prevent neuronal death. Caffeine can increase protein kinase A, suppressing 

β-secretase by reducing the Raf-1/ NF-κB inflammatory pathway, and reducing γ-

secretase, through lowering GDK-3α, which decreases brain amyloid-beta, a marker of 

neurodegenerative disease [175]. Data from CHI animals treated intraperitoneally with 

nanocoffee NPs showed an enhancing effect on recognition memory, reduced anxiety, 

displayed an increase in T-type spines associated with learning, mitigated the increase in 

poly(ADP-ribose) polymerase (PARP) expressions seen after TBI which has been linked 

to microglia activation, and demonstrated a decrease in Erk and other MAPK signaling 

pathway members which mediate secondary injury [175]. Another NP encapsulating a 

neuroprotectant is poly(n-butyl-2-cyanoacrylate) (PBCA) coated in Tween® 80 which 

can cross the BBB via low-density lipoprotein receptor-mediated transcytosis and was 

recently studied for its potential to delivery β-nerve growth factor (β-NGF), a neurotrophin 

essential to maintaining the survival and normal functioning of neurons [176]. After a 

TBI, intravenous administration of PBCA- β-NGF-Tween® 80 NPs revealed a dramatic 

elevation in β-NGF concentration within 1 day which kept increasing significantly to day 

7 compared to treatment with free β-NGF. The NP-treated group saw reduced mortality 

in vivo and increased neurite regeneration in vitro in PC12 cells through PBCA-delivered 

β-NGF enhanced MAPK kinase activity [176].

Recombinant human erythropoietin (rh-EPO) has shown pre-clinical evidence in protecting 

nerves, resisting apoptosis, promoting vascular regeneration, and reducing cerebral edema 

[177]. In efforts to increase neuroprotectant rh-EPO penetrability and accumulation in the 

brain, rh-EPO loaded Tween® 80 modified albumin nanoparticles (~438 nm) administered 

after TBI was shown to be non-toxic and significantly enhanced the distribution of rh-EPO 

(5000 IU/kg), reduced the expression of activated astroglia, and recovered AQP4 levels, 

relieving brain edema. As demonstrated the efficacy of neuroprotectants has been greatly 

augmented by the use of NP encapsulation technology for efficient targeted delivery. 

Relevant to previously failed Phase III clinical trials, progesterone has been studied for 

efficient encapsulation using Flash NanoPrecipitation to produce 300 nm progesterone-

loaded polymeric NPs [178]. Work continues in this field to more effectively harness the 

neuroprotective potential of progesterone and other agents to improve secondary outcomes 

of TBI.

5.4 Anti-inflammatory and anti-oxidative NPs

The pro-inflammatory and oxidative pathways described in the Pathophysiology of TBI 

section contribute to the neurodegenerative and other deleterious effects exacerbated by 

positive feedback loops, such as those prompted by DAMPs, in secondary injury processes. 

Described here are those NPs which have been employed in brain injury studies to directly 

confer either anti-oxidative, anti-inflammatory, or both, effect(s).

Thioether core-crosslinked NPs (NP1) were shown to enter the brain parenchyma through a 

break in the BBB to scavenge and inactivate ROS such as hydrogen peroxide and superoxide 
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[179]. NP1, made from PS 80, is evidenced to reduce ROS in the ipsilateral hemisphere 

1-day post-CCI and reduce acrolein, a product of lipid peroxidation, up to 1-month post-CCI 

[180]. Furthermore, NP1 conferred a significant reduction in activated microglia in the 

contralateral CA1 region and neuron-astrocyte-microglia triad formation in the contralateral 

CA1, ipsilateral CA2/3, and bilateral DG region 1 month post-CCI [180].

Many studies including the development of cerium oxide nanoparticles (CeONPs) [139] 

and redox-reactive nitroxide radical containing NPs [181] have also elicited antioxidative 

effects that resulted in improved TBI outcomes. The crystal lattice of cerium oxide 

has multiple valence states that confer its high redox capacity. After FPI, the higher 

concentration and dosing paradigm of CeONPs were shown to increase neuronal survival, 

preserve endogenous calcium anti-oxidant activity, reduce oxidative stress in part through 

improved superoxide dismutase activity, and restored reduced glutathione (GSH)/oxidized 

glutathione (GSSG) ratios [139]. Interestingly the shape of cerium oxide nanoparticles 

affects its efficiency. Ceria nanorods, ~130nm, were shown to exhibit better antioxidant 

activity and cytotoxicity than Ceria nanospheres, ~3.5 nm, due to nanorods displaying more 

high-energy surfaces with more active sites [140]. Other metal-containing NPs developed 

to treat TBIs include Au24Cd1 and Au24Cu1 clusters [137] which utilize the enzymatic 

activity of gold while taking advantage of its negligible toxicity and high renal clearance, 

ability to safely target hydrogen evolution reactions (HER), oxygen evolution reactions 

(OER), and reduce O2. Gold nanoclusters have also been explored with dihydrolipoic 

acid (DHLA) functionalization, an anti-oxidant with demonstrated neuroprotective potential 

that suppresses pro-inflammatory processes by inducing M2 polarization in macrophage/

microglia associated with a reduction of NF-κB signaling, a decrease in ROS, and improved 

cell survival [182]. This study also highlighted the role of autophagy as a potential target for 

immunomodulation in regenerative medicine.

Other studies that focus on reducing oxidative and inflammatory processes include redox-

active nitroxide radical-containing NPs which encapsulate antioxidant 4-amino-2,2,6,6-

Tetramethylpiperidine-1-oxyl to scavenge free radicals and improve lesion volume and 

cognitive behavior while greatly lowering the toxicity of its payload [181]. In another 

study using sinomenine, an anti-inflammatory/anti-oxidant drug, conjugated to hydroxyl-

terminated generation-4 poly(amidoamine) dendrimers (D-Sino), these NPs were able 

to target activated microglia/macrophages without conjugation of a targeting ligand 

[183]. D-Sino NPs were synthesized using enzyme-sensitive covalent linkages via a 

highly efficient and robust copper (I) catalyzed alkyne-azide click reaction to attach 

sinomenine to dendrimers. Results demonstrate that D-Sino NPs specifically target 

activated microglia/macrophages via endocytotic activity and can inhibit NF-κB, a key 

regulator of atherosclerotic pathogenesis, proving its potential in suppressing acute 

inflammation post-TBI [183]. Another dendrimer NP, Triphenyl-phosphonium-Dendrimer-

N-acetyl cysteine encapsulated NAC (TPP-D-NAC), an antioxidant and anti-inflammatory 

agent, for mitochondrial targeting under oxidative stress. Results showed that TTP-D-

NAC specifically co-localized with mitochondria in activated microglia after systemic 

administration, confirming promise in BBB penetrability and targeting injured glia [184].
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Betulinic acid (BA) NPs derived from the herb E. ulmoides have been shown to penetrate the 

BBB and elicit an antioxidative effect, improving functional recovery after a middle cerebral 

artery occlusion injury. BA NPs can cross the BBB via cannabinoid receptor 1-mediated 

transcytosis (see Figure 3B) [185]. Recently, researchers converted BA to betulinic amine 

(BAM). BAM accelerates drug release in the acidic conditions of the ischemic environment 

after a stroke and when surface conjugated with AMD3100, which interacts with CXCR4 

abundant in ischemic tissue, enhances brain penetration [186]. In this study, investigators 

delivered NA1, a peptide designed to protect neurons against NMDA receptor-mediated 

excitotoxicity. These NA1-AMD3100-BAM NPs significantly increased survival, reduced 

infarct volumes by 69.8%, and enhanced neurological scores [186]. Acidic conditions also 

characterize injured tissue post-TBI [187], thus acid-responsive NPs such as these which can 

cross the BBB and quickly deliver a payload would be advantageous to treating TBI in the 

acute phase. There are many other ROS scavengers considered in NP therapeutics for TBI 

treatment including nimodipine [168], PEG conjugated hydrophilic carbon clusters [188], 

and surfactant poloxamer 188- N-acetylcysteine-loaded PLGA NPs [189].

5.5 NPs enhance stem-cell integration for improved TBI outcome

In the past decade, nanotherapeutics began to focus on enhancing stem cell transplantation 

and recruitment to repair the secondary injury-induced lesion cavity and promote tissue 

regeneration usually through some NP-complex [138, 145, 172, 190-192]. Mesenchymal 

stem cells (MSCs) are of special interest to cell therapy approaches as their autologous 

origins evade any immune response, display inherent pluripotency, and demonstrate 

reparative properties at sites of injury [193, 194]. In an in-vitro study, gold NPs surface-

modified with a zwitterionic pentapeptide designed from Bax inhibiting peptide (Ku70) to 

enhance cellular uptake and a linearized expression vector to induce expression of BDNF in 

rat-derived MSCs have shown promise in engineering for efficient transplantation of MSCs 

post-TBI in the future [138]. This technique demonstrated higher transfection efficiency than 

more complicated viral gene transfer technology as MSCs exposed to a single transfection 

by the gold NP-gene construct showed ~80% cell transfection and exhibited successive 

expression of BDNF/mCherry fusion [138].

In vivo, transfected human fetal tissue-derived neural stem cells (hNSCs) with neurogenin-2-

loaded poly(β-amino ester)-based NPs produced a larger number of neuronal cells compared 

to non-transfected cells. Delivery of these hNSCs with a hyaluronic acid hydrogel promoted 

vascular formation at the lesion site at 4 weeks following injection in a CCI injury model 

[190]. In a different study, another hydrogel model was investigated using imidazole groups-

modified gelatin methacrylate (GelMA-imid) loaded with polydopamine NPs used as a 

carrier for stromal-derived factor-1 (SDF-1α). Human amniotic mesenchymal stromal cells 

(hAMSCs) were injected into the damaged area of cryogenic TBI in rats and SDF-1α 
promoted the migration of hAMSCs and their differentiation into nerve cells [191]. More 

recently, SDF-1α-loaded NPs were shown to slowly release SDF-1α and induce NSC/

neuroblasts to migrate to injured areas and potentially improve the lesion volume [192]. 

Though the work in this field is few and in the early stages, results show promise in 

recovering lesion volume through efficient NP complexing.

Mohammed et al. Page 17

Expert Opin Drug Deliv. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Conclusion

The multifunctionality and customizability of NPs make this versatile technology best 

suited to address the challenges that have previously impeded potential therapeutics from 

meeting their clinical endpoints. In this review, we have presented an overview of the 

major pathways that constitute the complex pathophysiology of the continuum of focal to 

diffuse TBIs, described the current pre-clinical and clinical management of TBI, discussed 

the logistical considerations and clinical relevance of popular animal models of TBI, and 

reported on the existing literature centered on the use of NPs for TBI treatment. NP 

technology shows promise in safely and specifically delivering pharmacological payloads 

across the BBB while potentially eliciting therapeutic benefits through surface chemistry 

and functionalizations, improving secondary outcomes.

7. Expert opinion

The prospect of an approved TBI therapy is contingent upon the specific delivery of a 

therapeutic which confers minimal off-target effects while maintaining a predictable release 

profile. TBIs present on a spectrum of focal to diffuse types and therapeutics must be able 

to penetrate both the intact and compromised BBB not only to address this injury continuum 

but also to be used in both acute and chronic therapies. Nanoparticle technology is the 

best fit to meet these demands as their modifiable chemistry, size, charge, and customizable 

multifunctionality harness the potential to foster payload protection and improve therapeutic 

efficacy, avoiding off-target toxicity and biodegradation. NPs can also complex with other 

materials like hydrogels to improve therapies to regain structural and cognitive functioning 

of TBI patients, in combination with existing post-injury clinical treatment strategies. To 

facilitate the translation of the use of NPs to treat TBIs, NPs should be simple to formulate, 

stable at clinically relevant temperatures, and easily stored and transported for use in both 

acute and long-term treatment.

Though in general, research in this field is in the nascent phase of clinical translation, its 

potential to address multiple facets of downstream injury cascades is noteworthy. Stem cell 

therapies alone have shown great promise in treating TBI [195-199], and their efficacy can 

be improved by NP complexing as demonstrated in section 5.5. For instance, in the 2021 

STEMTRA Phase II trial, intracranial implantation of allogenic modified bone marrow-

derived mesenchymal stromal cells in patients with chronic motor deficits secondary to TBI 

showed significant improvement from baseline Fugl-Meyer Motor Scale scores at 6 months 

but failed to meet the secondary efficacy endpoint at statistically significant levels [200].

Future studies should investigate the effects of combining multiple NP therapeutics on TBI 

outcomes, consider how the dosage volume and frequency can be optimized for human 

applications, and study how practical these approaches are in a clinical setting or even pre-

hospital environments, like in the case where, for example, hemostatic NPs could potentially 

improve acute survival on-site. Investigators must also be diligent about measuring off-target 

NP accumulation in other organs, measuring for toxicity, and having quantifiable evidence 

that the NPs improve physiological, functional, and cognitive outcomes. Future studies 

should also focus on designing more assessments in these areas for animals phylogenetically 
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closer to humans as well as continue to improve the injury model designs to better simulate 

human TBI outcomes. Bearing in mind these considerations, NP technology has the capacity 

to greatly improve the chances of achieving an approved therapeutic for TBI treatment.
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Article highlights

• The pathophysiology of TBIs is biphasic and pharmacological intervention is 

only possible in the secondary injury phase. Determining prognosis can be 

complex and is accomplished through a combination of interpreting imaging 

data such as MRI and CT scans in addition to employing the Glasgow Coma 

Scale and assessing other motor and cognitive symptomology.

• Many Phase III clinical trials fail mainly due to poor targeting efficiency, 

experimental design, and low retention of the drug in the injured brain.

• When using animal models to understand the pathophysiology and cognitive 

and functional outcomes of TBI, researchers must choose between models 

that elicit either focal, diffuse, or mixed injuries, tune the parameters of the 

injury setup, when possible, to reflect the target injury severity, and use sham 

animal groups to account for cerebral metabolic and physiological effects that 

are a result of the surgical environment.

• Nanoparticles can increase the efficiency and efficacy of therapeutics as 

their customizable size, stealthy chemistry, and multifunctionality allow 

NPs to cross the BBB, target the injured brain, and protect and deliver its 

pharmacological payload all while avoiding off-target effects.

• Nanoparticles designed to treat TBIs broadly include NPs with hemostatic, 

immunomodulating, anti-inflammatory, anti-oxidative, and gene-editing 

properties to enhance trauma recovery.
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Figure 1. 
BBB-level cellular and molecular response after a TBI. Leukocytes including neutrophils, 

macrophages, mast cells, eosinophils, natural killer cells, and dendritic cells transmigrate 

between and through endothelial cells, as well as through breaks in the BBB following 

the gradient of DAMPs released into the parenchyma after a TBI. Concurrently, PDGF-B/

PDGF receptor-β expression is downregulated resulting in impaired pericyte-endothelium 

interactions evidenced by a decreased in the expression of gap junction proteins like 

Connexin-43, adherent junction proteins like N-cadherin, which connect endothelium and 

pericytes, and tight junction proteins, increasing BBB permeability. Vasogenic edema can 

also be seen by the increased expression of AQP4 towards the astrocyte end-feet surrounding 

the perivascular region. Created with BioRender.com.
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Figure 2. 
Brain tissue-level response to TBI. After the BBB is compromised, DAMPs are released 

from injured cells and are recognized by pattern recognition receptors. In response to 

the DAMPs signals, an inflammatory response is elicited by leukocytes, microglia, and 

astrocytes which release pro-inflammatory molecules in a positive feedback loop. Prolonged 

inflammation promotes astrogliosis resulting in a scar-like formation around the injury 

perimeter and a reversal of glutamate uptake mechanisms which can contribute to persistent 

activation of N-methyl-d-aspartate acid (NMDA), α-amino-3-hydroxy-5-methylisoxazole 

propionic acid (AMPA) receptors, and voltage-gated ion channels, resulting in a lethal influx 

of calcium and subsequent neuronal excitotoxicity. Macrophages, microglia, and other cell 

types also respond to DAMPs signals by activating pro-inflammatory pathways such as 

the NF-κB inflammatory pathway which contributes to edema and neuronal apoptosis. The 

pro-inflammatory mechanisms and molecules described, along with glutamate accumulation 

from sheared neurons, impaired reuptake mechanisms, and neighboring glutamate-induced 

aggravated release from pre-synaptic terminals, exacerbate excitotoxic mechanisms, reduce 

ATP production leading to mitochondrial dysfunction, increase oxidative stress, and 

eventually cell death, triggering the further release of DAMPs. Created with BioRender.com.
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Figure 3. 
Nanoparticles can accumulate in the brain and peripheral organs to improve secondary 

injury outcomes. (A) Immunomodulatory NPs attenuate peripheral inflammation by 

accumulating in the spleen, liver, kidneys, and lungs to block inflammatory processes 

and render immune cells unable to home sites of inflammation. (B) Neuromodulatory 

nanoparticles enter the brain to elicit, hemostatic, immunomodulatory, and neuroprotective 

functions as well as deliver targeted therapeutics into the injured parenchyma. Depending 

on its chemistry, size, and charge NPs can enter the injured brain through breaks in the 

BBB, mechanisms of transcytosis such as cannabinoid receptor 1-mediated transcytosis and 

low-density lipoprotein receptor mediated transcytosis (not shown), and to a lesser extent 

paracellular transport which allows permeation of selective substances regulated by tight 

junction proteins between endothelia of the BBB. Created with BioRender.com.
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Table 2

List of NPs developed to treat TBIs categorized by function.

Targeted Effect Relevant NPs
Developed

Payload Target Reference

Immunomodulation Immunomodulatory NP (PLGA-
COOH) N/A MARCO+ hMos [142]

Leuko NPs (Leukocyte-Based 
Biomimetic NP) N/A Activated endothelial cells through 

CD11b [143]

Interleukin-4 protein-loaded- 
liposome IL-4 Peroxisome proliferator-activated 

receptor gamma [144]

shCCL20-CCR6 
nanodendriplexes shRNA (CCL20 or CCR6) Chemokine (C-C motif) ligand 20 

via receptor chemokine receptor 6 [145]

p5RHH+miR-146a NPs miR-146a
Nuclear factor-kappaB 
inflammatory modulators TRAF6 
and IRAK1

[146]

Hemostasis PLGA-PLL-PEG-GRGDS NPs Dexamethasone

Or

Poly(acrylic) acid (PAA)

Glycoprotein IIb/IIIa receptors & 
Glucocorticoid receptor [150]

Antithrombin mechanisms [152]

Polyurethane NPs in Gelatin 
(Spongostan™)

Polyurethane NPs M1/M2 mRNA expression / 
Nuclear factor-kappaB pathway [153]

Neuroprotection Neuron-targeted nanocomplex NP 
(TP-RVG NP) Caspase 3 siRNA

Receptor for rabies virus (e.g. 
nicotinic acetylcholine receptor) on 
neurons and caspase 3 expression

[155]

Tau siRNA-loaded-PS 80 (High 
Density) (PS 80 (H)-NPs) Tau siRNA

PS 80: Endogenous apolipoproteins 
such as lipoprotein receptor-related 
protein 1 to promote BBB 
penetration
Tau expression: Pathology linked 
to neurodegeneration and brain 
dysfunction in TBI

[135]

NP-wrapped siRNAs-Fyn/siRNA-
c-Src Fyn and c-Src siRNA Fyn & cSrC messenger RNA (to 

inhibit ROCK) [157]

Poly(lactide-co-glycolide)-graft-
polyethylenimine

RhoA siRNA
or

Rolipram

RhoA expression [158]

Restore cAMP [159]

Cerebrolysin-loaded PLGA NPs Cerebrolysin Injured neuronal tissue [160, 161]

BDNF-loaded-PLGA NPs coated 
with poloxamer 188 (NP-BDNF-
PX)

BDNF Penetrate CNS to deliver BDNF [164]

Tat-NR2B9c-loaded Activatable 
protein nanoparticle (TN-APNPs) 
*conjugated with CAQK or 
CCAQK for TBI

NR2B9c Disrupt interaction between 
NMDARs & PSD-95 [166, 167]

Angiopep-2 functionalized and 
manganese doped eumelanin NPs 
(ANG-MnEMNPs-Cur/AMEC)

Curcumin

Angiopep-2; low-density 
lipoprotein receptor-related 
protein-1 for transcytosis across 
BBB
Eumelanin: Reactive oxygen 
species Curcumin: Inflammatory 
cytokines

[171]

Curcumin-loaded niosome NPs 
(CM-NPs) Curcumin TLR4/NF-κB and inflammatory 

cytokines [172]

Curcumin-loaded AmyloLipid 
nanovesicles (ALNs) Curcumin

Amyloid-β-protein, β-secretase, 
acetylcholinesterase, and anti-
inflammatory cytokines such as 
IL-4 and IL-10

[173]
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Targeted Effect Relevant NPs
Developed

Payload Target Reference

Nanocoffee particles N/A

Amyloid-β-protein, β- & 
γ-secretase Poly adenosine 
diphosphate-ribose polymerase 
(PARP), p-Erk, Erk2, 
phosphorylated GSK3

[175]

Nerve Growth Factor (β-
NGF) bound to Poly(n-butyl-2-
cyanoacrylate) (PBCA) NPs

β-NGF Mitogen-activated protein kinase 
kinase (MAPKK) [176]

Recombinant human 
erythropoietin-loaded Tween 80 
modified albumin NPs (rh-EPO-
Tw-ABNPs)

rh-EPO AQP4 and pro-inflammatory 
processes (e.g. reactive astroglia) [177]

Anti-inflammatory/
Anti-oxidative 

action
Thioether core-cross-linked NP Sulfoxides and sulfones 

via thioether cores Hydrogen peroxide & Superoxide [179, 180]

Cerium Oxide NP (CeONPs) N/A Radical species (e.g. superoxide, 
hydroxyl, and nitroxyl radicals) [139]

Au24Cd1, Au24Cu1 Clusters N/A HER, OER, O2, H2O2 [137]

Gold nanoclusters - dihydrolipoic 
acid (DHLA-AuNCs) DHLA Reactive oxygen species, NF-κB 

pathway [182]

Redox-active nitroxide radical- 
containing NPs (RNP)

4-amino-2,2,6,6-
Tetramethylpiperide-1-

oxyl
Reactive oxygen species [181]

Sinomenine conjugated to 
hydroxyl-terminated generation-4 
Poly(amidoamine) dendrimer) (D-
Sino)

Sinomenine NF-κB nuclear translocation [183]

Triphenyl-phosphonium-
Dendrimer-N-acetyl cysteine 
(TPP-D-NAC)

NAC Reactive oxygen species, 
glutathione [184]

Glyburide-Loaded Betulinic Acid 
NP Glyburide

Betulinic Acid NPs: cross BBB via 
CB1-mediated transcytosis
Glyburide: antagonist to the 
sulfonylurea receptor -transient 
receptor potential melastatin 4 
channel

[185, 186]

Nimodipine (CL-PPS/Np)
NPs
Surface material : lecithin, 
CAQK-DSPE-PEG2000, and 
DSPE-PEG2000
Core material: poly(propylene 
sulfide)60 (PPS60)

Nimodipine
PPS60 : Reactive oxygen species
Nimodipine: Ca2+ channels

[168]

Poly(ethylene)glycol conjugated 
hydrophilic carbon clusters (PEG-
HCCs)

N/A
Reactive oxygen species (e.g. 
superoxide anions & hydroxyl 
radicals)

[188]

Surfactant poloxamer 188-N-
acetylcysteine-loaded poly(lactic-
co-glycolic acid) (P188-NAC-
loaded PLGA) NPs

NAC

P-selectin glycoprotein ligand-1: E-
selectin, P-selectin, L-selectin
P188 & NAC: Reactive oxygen 
species

[189]

Stem cell therapy
Gold NP-Bax 
inhibiting pentapeptide-linker-
modified(gene) (Au-NP-Ku70)

Ku70 Plasmid Mesenchymal stem cell to secrete 
BDNF [138]

Neurogenin-2-loaded poly(β-
amino ester)-based NPs Neurogenin-2 Induce differentiation of hNSCs to 

neurons [190]

Stromal-cell derived factor-1 
loaded Polydopamine NPs 
(PDA@SDF-1α)

SDF-1α Receptor CXCR4/Guide stem-cell 
homing/ proliferate neuroblast [191, 192]
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