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SUMMARY

Cachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia 

progressively and differentially impacts distinct tissues is largely unknown. Here, we find that 

the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally 

most impacted by cachexia. We also identify general and organ-specific transcriptional changes 

that indicate functional derangement by cachexia even in tissues that do not undergo wasting, 

such as the brain. Secreted factors constitute a top category of cancer-regulated genes in host 

tissues, and these changes include upregulation of the angiotensin-converting enzyme (ACE). ACE 

inhibition with the drug lisinopril improves muscle force and partially impedes cachexia-induced 

transcriptional changes, although wasting is not prevented, suggesting that cancer-induced host-
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secreted factors can regulate tissue function during cachexia. Altogether, by defining prevalent 

and temporal and tissue-specific responses to cachexia, this resource highlights biomarkers and 

possible targets for general and tissue-tailored anti-cachexia therapies.

In brief

Graca et al. examine the transcriptional and cellular changes that occur during the progression 

of cancer cachexia in mice and identify general and organ-specific transcriptional changes that 

underlie the differential propensity and temporal dynamics of cancer-induced tissue wasting and 

dysfunction. This resource highlights biomarkers and possible targets for anti-cachexia therapies.

Graphical Abstract

INTRODUCTION

In cancer patients, an unintentional loss of >5% body weight is an important disease 

complication known as cachexia,1–5 a multifactorial condition that negatively affects 

survival.6–9 Consistently, several studies have demonstrated that cachexia worsens disease 

outcome. For example, preventing muscle mass loss in tumor-bearing mice improves 

prognosis and prolongs their survival even if cancer progression per se is not halted.6–9 

Moreover, cachexia frequently occurs in conjunction with metastasis,8,10 and thus it is 

a component of malignant and typically less treatable cancers. Although anti-cachexia 

treatments have the potential to improve the prognosis of some of the most aggressive 
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tumors, no therapy is currently available. Overall, the National Cancer Institute (NCI) 

estimates that cancer cachexia occurs in ~50% of all tumors, and that it is responsible for 

one-third of all cancer deaths.11

Cachexia arises from behavioral and systemic changes induced by circulating cytokines 

secreted by cancer cells and associated stromal cells,1,2 as well as by immune cells, 

including those that infiltrate the tumor and host tissues.12,13 The local and systemic impact 

of such inflammatory signaling can be modified by host-dependent variables such as the 

responsiveness of target tissues to inflammatory signaling and the concurrent activation of 

compensatory mechanisms to mitigate cachexia-induced changes.1,2,14

Although it is well known that cachexia induces wasting and functional changes in skeletal 

muscle, heart, and white adipose tissue (WAT),4,5,15,16 relatively less is known about the 

impact of cachexia on other tissues and organs. It is also largely uncharted how cachexia 

develops over time and whether the temporal dynamics and magnitude of cachexia-induced 

changes differ across target organs. Moreover, it is likely that many more tissues than 

currently appreciated are affected by cachexia. Specifically, although body and tissue 

wasting is a defining and well-documented result of cachexia,4,5,15,16 it remains relatively 

unexplored whether cachexia impacts the function of target tissues, including those that are 

typically considered not to be affected by cachexia because they do not undergo wasting. 

For example, despite the finding that cachexia affects brain functions such as feeding 

behavior,17,18 relatively little is known about the molecular adaptations induced by cachexia 

in the brain.19 Similarly, beyond molecular changes that have been mechanistically linked to 

wasting of target tissues such as the skeletal muscle and WAT,4,5,15,16 little is known about 

cachexia-induced changes that impact tissue function independently from wasting.

Recently, we have identified a pediatric melanoma xenograft from the Childhood Solid 

Tumor Network20,21 that induces profound body wasting (~25%) compared with controls.22 

Here, we have utilized this model to examine the systemic impact of cachexia on diverse 

tissues and organs. By following the progressive development of cachexia, we find that 

distinct magnitudes and temporal patterns of tissue wasting and transcriptional changes 

define the response to cachectic signaling of the heart, liver, brown and white adipose, 

skeletal muscles (soleus, tibialis anterior [TA], and gastrocnemius), and brain regions 

(cerebellum, hippocampus, neocortex). Interestingly, secreted factors are highly modulated 

by cachexia across tissues. These include the angiotensin-converting enzyme (ACE): ACE 

expression increases during cachexia, and this occurs most prominently in skeletal muscles. 

ACE inhibition with the anti-hypertension drug lisinopril does not impede wasting but 

preserves muscle strength, and this occurs by impeding cachexia-induced transcriptional 

changes. Altogether, this study provides a resource that outlines how cachexia differentially 

impacts host tissues, which may help identify leads for anti-cachexia therapies.

Graca et al. Page 3

Cell Rep. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Comparison of pediatric melanoma xenografts with distinct capacity to induce 
cachexia reveals defining transcriptional changes in cancer cells and the associated 
microenvironment

To examine the mechanistic basis underlying the body wasting capacity of cachectic 

versus non-cachectic melanoma xenografts, we injected ~106 pediatric melanoma xenograft 

cells subcutaneously in the flank of NCI athymic NCr-nu/nu female mice and allowed 

them to grow for 2, 4, 6, and 8 weeks. Tumors were retrieved at these time points 

and examined via RNA sequencing (RNA-seq) to determine (1) the differences in gene 

expression that characterize the cachectic versus the non-cachectic melanoma, and (2) 

whether tumor growth is associated with major gene expression changes over time 

that could contribute to the progressive development of body wasting. Although the 

same number of cells was injected for the cachexia-inducing (“cachectic”) melanoma 

(MAST360B/SJMEL030083_X2) and for the cachexia non-inducing (“non-cachectic”) 

melanoma (MAST552A/SJMEL031086_X3) at day 0, there was a significantly lower 

growth of the non-cachectic melanomas, which could therefore be analyzed only at 8 weeks 

after cancer cell injection.

Principal-component analysis (PCA) of RNA-seq from the cachectic tumors at 2, 4, 6, and 8 

weeks of age indicates that there are limited changes in gene expression over time in cancer 

cells. However, the non-cachectic melanoma radically differs from the cachectic melanoma 

(Figure 1A), as indicated by a cluster of 7,071 genes (Figure 1B) and by upregulated (Figure 

1C) and downregulated (Figure 1D) gene categories.

In addition to human cancer cells, the xenografts retrieved from mice include mouse host 

cells of the tumor microenvironment, which contribute to cancer progression.23 Because 

human transcripts can be easily differentiated from mouse RNA-seq reads, we examined 

gene expression changes in these cancer-associated stromal cells. PCA revealed that the 

microenvironment of cachectic melanomas differs from that of non-cachectic melanomas 

(Figure 1E), and that a cluster of 1,517 genes most stringently defines the transcriptional 

changes that occur in the microenvironment of cachectic versus non-cachectic melanomas 

(Figure 1F), and that several gene categories are upregulated (Figure 1G) and downregulated 

(Figure 1H), including secreted and extracellular matrix proteins, which suggests that 

secreted factors produced by host stromal cells contribute to cachexia.

Secreted factors are differentially expressed in cachectic versus non-cachectic tumor cells 
and the host stroma

Cachexia is induced by inflammatory cytokines secreted by cancer cells, as well as by 

stromal and immune cells.4,5,24 Out of the 2,641 secreted factors encoded by the human 

genome,25 1,557 were detected by RNA-seq in the melanoma xenografts: 1,331 were 

significantly (p < 0.05) regulated in cachectic versus non-cachectic melanoma cells, and 

810 of these had at least a 2-fold regulation (Log2R > 1 or Log2R < −1), indicating that 

cachectic cells radically differ from non-cachectic cancer cells for the expression of secreted 

factors (Figure 1I).
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Closer analysis of the most highly upregulated (Figure 1J) and downregulated (Figure 

1K) secreted factors in cachectic versus non-cachectic melanomas (8 weeks post-injection) 

indicates that some of them had been previously implicated in cancer-induced body 

wasting. Upregulated factors include CXCL8/IL826–28 and LIF29–31 (Figure 1J), as well 

as the lipocalin PAEP (Figure 1J), which may contribute to cancer-induced anorexia, as 

inferred from the function of lipocalin-2 (LCN2),17 and to melanoma growth and immune 

evasion,32,33 similar to NT5E34 (Figure 1J). Conversely, downregulated factors included 

extracellular matrix proteins (collagen [COL3A1] and brevican [BCAN]) and the insulin-

like growth factor binding protein 7 (IGFBP7), which impairs insulin receptor signaling35 

(Figure 1K).

We next examined the expression timeline of a few cytokines upregulated in cachectic 

versus non-cachectic melanomas and previously implicated in cachexia4,5 (Figures 1L–1U). 

IL1A, IL1B, LCN2, PTHLH, and TGFB1 expression increases progressively from 2 to 8 

weeks after cancer cell injection (Figures 1M, 1N, 1Q, 1S, and 1U). However, the expression 

of other wasting factors (GDF15, IL6, IL8/CXCL8, LIF, and TGFA) does not substantially 

change over time (Figures 1L, 1O, 1P, 1R, and 1T). Altogether, these analyses highlight 

the different temporal modulation of cachectic factors produced by cancer cells during 

melanoma progression.

In addition to cancer cells, tumor-associated host stromal cells also produce cachectic 

cytokines.27,36 Secreted factors upregulated by stromal cells of cachectic versus non-

cachectic melanomas include matrix metalloproteases (Mmp3, Mmp9, Mmp10, Mmp13, 

and Mmp16) and chemokines (Cxcl2 and Cxcl5) (Figure S1A). Other chemokines (Ccl5, 

Ccl17, Cxcl9, and Xcl1), collagens (Col8a1, Col8a2, and Col10a1), and extracellular matrix 

proteins (Nov/Ccn3, Fmod, and Ogn) are downregulated (Figure S1B). Cross-comparison of 

secreted factors expressed by cancer and stromal cells reveals minimal overlap (R2 = 0.1384; 

Figure S1C), indicating that cancer cells and the microenvironment contribute different sets 

of secreted factors, some of which may be causally involved in systemic wasting.

Wasting induced by cachectic melanoma xenografts distinctly impacts different organ 
systems

Despite the well-known impact of cancer cachexia,4,5,18 whether and how tumor-initiated 

inflammatory signaling differentially affects tissue and organ wasting remains incompletely 

understood. To address this question, we have examined the weight of tissues and organs 

at 2, 4, 6, and 8 weeks after subcutaneous (orthotopic) injection of cachexia non-inducing 

(“non-cachectic”) melanomas, cachexia-inducing (“cachectic”) melanomas, and mock (PBS) 

into 2-month-old NCI athymic NCr-nu/nu female mice (Figure 2A).

As expected based on our previous study with these models,22 progressive body weight 

loss occurs in mice injected with cachectic melanomas (Figure 2A). This wasting occurs 

without overall changes in the length of the tibia bone (Figure 2B). The cachectic melanoma 

xenografts displayed a higher tumor mass compared with the non-cachectic melanoma 

xenografts at 8 weeks of age (Figure 2C), indicating that cachectic melanoma cells have 

a growth advantage. Although theoretically such higher tumor mass could explain why 

cachectic melanoma xenografts induce body weight loss compared with slow-growing non-
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cachectic melanoma cells, this does not appear to be the case here because body weight 

loss did not occur in mice injected with non-cachectic melanoma cells even after 13 weeks 

from tumor implantation, a time point at which the mass of non-cachectic melanomas 

surpassed that of cachectic melanomas (~4 g versus ~1.5 g; Figures S2 and 2C) at 8 

weeks (the humane endpoint for mice implanted with cachectic melanomas). Therefore, the 

capacity to induce body wasting does not merely correlate with the tumor burden but rather 

likely depends on pro-wasting factors secreted by cachectic versus non-cachectic melanomas 

(Figures 1 and S1), although other variables (such as the rate of tumor growth) may also 

contribute.

Although cachexia arises from systemic adaptations that lead to body weight loss,4,5,18 

it remains largely unknown how different organs progressively respond to cachexia and 

distinctly contribute to body wasting. To address this question, we have examined the weight 

of a panel of tissues and organs over the course of cachexia development. Because the length 

of the tibia bone does not significantly change over the 8-week time course of tumor growth 

(Figure 2B), it was used as a normalization factor.

There was no significant difference in brain weight across mice injected with cachectic 

and non-cachectic cancer cells and controls (Figure 2D). However, there was a significant 

decline in the weight of several skeletal muscles that differ for function and myofiber-type 

composition, i.e., the diaphragm (Figure 2E), the gastrocnemius (Figure 2F), the soleus 

(Figure 2G), and the TA (Figure 2H). There was no major effect of cachectic melanomas on 

the mass of the interscapular brown adipose tissue (BAT; Figure 2I), whereas the mass of the 

gonadal WAT declined (Figure 2J), although with high variability.

The weight of the heart was reduced at all time points in response to cachectic melanomas 

compared with controls (Figure 2K). Although decline in heart weight appears to be an early 

event in cachexia (i.e., 2 weeks after cancer cell injection), it did not substantially further 

decline over time, possibly because of compensatory heart hypertrophy37,38 that could be 

induced to counteract cachexia-associated anemia.39,40

Lastly, although liver weight increased in all groups over time (as a result of post-natal 

development41), it was reduced in mice injected with cachectic melanomas at 6–8 weeks 

post-injection, compared with time-matched controls (Figure 2L). Altogether, distinct 

temporal dynamics characterize the impact of cachexia on organs and tissues.

Differential impact of cachexia on cell atrophy across tissues

To investigate whether cancer-induced tissue wasting arises from a reduction in cell size 

(atrophy), we utilized hematoxylin and eosin (H&E) staining and image analysis to examine 

cell size in the liver, BAT and WAT, heart, and skeletal muscles (gastrocnemius, soleus, and 

TA). These analyses identified varying degrees of cancer-induced cell atrophy (Figure 3).

In agreement with other models that have found cachexia-induced liver dysfunction,18,24 

hepatocyte cell size was significantly reduced 8 weeks after implantation of cachectic 

melanomas, compared with controls (Figures 3A and 3B). It was previously found that 

cancer increases BAT function,42 and that it induces the loss of WAT mass.2,4,5,16,18,24 
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We find that cachectic melanomas have an overall minor and variable impact on brown 

adipocyte cell size (Figures 3C and 3D), whereas that of white adipocytes is significantly 

reduced at 8 weeks (Figures 3E and 3F). Moreover, fat stores of white adipocytes are lower 

in mice that carry cachectic melanomas versus controls (Figures 3G and 3H).

In addition to liver and adipose tissue changes, patients with cancer cachexia display signs 

of chronic heart failure, including fatigue and decreased exercise capacity, and this is 

considered a major cause of cachexia-induced mortality.30,43–48 Although we found that 

cardiac cell size (as indicated by the Feret’s minimal diameter) is not affected at the 2- and 

8-week time points, it significantly declines at 4–6 weeks (Figures 3I and 3J). Although 

cachectic melanomas strongly induce cardiac atrophy, non-cachectic melanomas also induce 

some level of cardiac cell atrophy compared with mock-treated controls (Figures 3I and 3J). 

This suggests that cancers, including those that do not induce overt cachexia, may impact 

the heart. However, apart from the 6-week time point, there was no substantial difference 

in cardiac cell size, suggesting that cachexia-induced heart wasting (Figure 2K) may result 

from apoptosis and/or necroptosis.44–48

Beyond the heart, previous studies have shown that different skeletal muscles have distinct 

propensity to atrophy induced by cachexia.49–51 To determine the impact of melanoma-

induced cachexia on skeletal muscles, we have investigated wasting of the gastrocnemius 

(Figures 3K and 3L), soleus (Figures 3M and 3N), and TA skeletal muscles (Figures 3O and 

3P), which differ for their myofiber-type composition.52–54 Immunostaining with antibodies 

specific for myosin heavy chain (MHC) isoforms (specific for different myofiber types) 

revealed that there are minimal changes in myofiber size at 2–4 weeks after xenograft 

implantation; there was, however, a decline in myofiber sizes at 6–8 weeks (Figures 3L, 3N, 

and 3P) after tumor implantation, with no changes in the % of myofiber types and number 

of myofibers, as expected based on previous studies.49–51 Contrary to the relative resistance 

to cancer-induced wasting of the soleus (Figure 3N), the TA displayed significant myofiber 

atrophy at early stages of cancer progression (Figure 3P). Altogether, these studies identify 

varying degrees of cell atrophy in distinct tissues in response to cancer-induced wasting.

Transcriptional profiling identifies molecular determinants of organ and tissue wasting 
induced by cachectic melanoma xenografts

To determine the mechanistic basis of differential responses of organs and tissues to 

cachexia, we have examined the transcriptional changes induced by cachectic melanomas 

compared with controls.

PCA revealed that although all samples clustered together at 2 weeks of age, the samples 

obtained from cachectic animals progressively diverged from the respective controls for 

the same tissue at later time points, i.e., 4, 6, and 8 weeks post-injection (Figure S3). 

Cluster analysis of the transcriptional changes associated with cachexia further indicated 

that body wasting was linked with upregulation, and to a lower extent downregulation, of 

five gene clusters (for a total of 1,094 genes) across multiple tissues and organs (Figures 

4A–4C). Cluster 1 consisted primarily of genes downregulated during cachexia, and these 

included genes encoding for secreted proteins, proteins involved in antigen processing and 

presentation, and mitochondrial matrix proteins (Figure 4C). Clusters 2–4 consisted of 
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genes moderately upregulated during cachexia: these included genes that regulate lipid 

metabolism, peroxisomes, endoplasmic reticulum (ER), and glutathione metabolism (cluster 

2); ribosomal components, mitochondrial proteins, and splicing factors (cluster 3); and 

secreted factors and extracellular matrix proteins (cluster 4). Lastly, cluster 5 (the largest 

cluster, n = 440) consisted of genes highly upregulated during cachexia, which included 

inflammatory factors such as regulators of neutrophil chemotaxis, innate immunity, mast cell 

activation, and complement factors (Figure 4C).

Although genes in clusters 1–5 were typically regulated in a consistent manner across tissues 

during cachexia, there were some noticeable exceptions. Specifically, cluster 2 genes were 

moderately upregulated in all tissues during cachexia but were downregulated in the liver 

(Figures 4A and 4B). Likewise, genes in cluster 4 were upregulated by cachexia across 

tissues but downregulated in the white adipose, and partly downregulated and upregulated in 

the liver (Figures 4A and 4B). Moreover, a fraction of cluster 5 genes was upregulated in the 

liver during cachexia (Figures 4A and 4B). Altogether, gene expression profiling identifies 

a cachexia signature that generally occurs across tissues but that also has tissue-specific 

features.

The analysis of transcriptional changes associated with cachexia identifies different 

magnitudes of gene modulation that occur in tissue-specific fashions. Specifically, analysis 

of the average absolute Log2R values for clusters 1–5 indicates that the heart and the 

gastrocnemius are the tissues most impacted by cachexia, followed by the TA, the BAT, and 

the diaphragm (Figure 4B). Gene expression in the soleus, WAT, and liver appears to be 

moderately affected, whereas there is relatively little impact of cachexia on gene expression 

in the hippocampus, neocortex, and cerebellum (Figure 4B, clusters 1–5). Analysis of the 

average absolute Log2R values indicates that the most affected tissues are the soleus and 

white adipose in cluster 1, the liver in cluster 2, the hippocampus in cluster 3, the heart and 

liver in cluster 4, and the heart and gastrocnemius in cluster 5 (Figure 4B).

Interestingly, whereas the progressive changes in gene expression observed in skeletal 

muscle (gastrocnemius, diaphragm, TA, and soleus; Figure 4A) mirror the progressive 

wasting that occurs during cachexia in this tissue (Figures 2E–2H), the correlation between 

transcriptional changes and weight loss is less noticeable or even absent for other tissues. 

Specifically, the interscapular BAT undergoes profound gene expression changes during 

cachexia (Figure 4A) but little weight loss (Figure 2I). Moreover, heart mass is reduced early 

during cachexia (i.e., 2 weeks), but not substantially further in the following weeks (Figure 

2K), whereas cachexia-induced transcriptional changes occur progressively in the heart from 

2 to 8 weeks (Figure 4A).

A possible explanation for the disconnect in the dynamics of tissue weight loss and 

transcriptional changes is that cachexia impacts not only size but also organ/tissue 

metabolism and function. Therefore, many of the cachexia-associated transcriptional 

changes are likely involved in modulating tissue function independently from size. For 

example, cancer-downregulated genes in the liver included those necessary for lipid 

metabolism, fatty acid and tryptophan metabolism, and peroxisomes (Figures S4A–S4D), 

consistent with previous findings that cancer reduces hepatic functions.55,56 Conversely, 
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melanoma-induced cachexia may increase brown adipocyte function (i.e., fatty acid β-

oxidation and thermogenesis), as previously reported in other models42 (Figures S4E–S4H). 

In agreement with this scenario, cachexia upregulates expression in the brown adipose of the 

Ctsb and Ctsc cathepsins, perhaps indicative of increased lysosomal functions, and of Scd1, 

which is necessary for mitochondrial fatty acid oxidation (Figure S4H).

Beyond the liver, brown adipose, and white adipose (Figures S4I–S4L), the heart provides 

a remarkable example of cancer-induced transcriptional changes that are likely involved in 

tissue dysfunction rather than in wasting. Specifically, there are several voltage-gated ion 

channels that are downregulated and that may contribute to reduce heart contractile function 

during cachexia (Figure S5A). These include Scn4a, a sodium voltage-gated channel subunit 

that is mutant in Brugada syndrome and arrhythmias57; Cacna1s, a calcium voltage-gated 

channel mutant in malignant hyperthermia and hypokalemic periodic paralysis58,59; Hcn2, 

a pacemaker channel that is mutant in arrhythmias60,61; and Clcn1, which is mutant 

in myotonia congenita62,63 (Figure S5A). Although autophagy and ubiquitin ligases are 

highly modulated by melanoma-induced cachexia (Figures S5B–S5D and S6A–S6C) and 

are considered key drivers of muscle mass loss,49,50,64–66 they may also alter muscle 

metabolic and functional properties by tagging for degradation regulators of these processes 

(Figures S6A–S6C). Altogether, these examples highlight cachexia-induced transcriptional 

changes that are likely involved in altering tissue function, rather than size, in cancer-bearing 

animals.

Cancer cachexia impacts the expression of secreted proteins and of genes with metabolic 
functions in the cerebellum, hippocampus, and neocortex

Systemic inflammation is a key component of cachexia.2,4,5 Although inflammation 

promotes neurodegeneration and modulates brain function,67–70 little is known about 

the impact of cancer cachexia on the brain.19 Previously, it was found that pancreatic 

cancer cachexia alters cholinergic and glutamatergic brain metabolites,71 and that hepatoma-

induced cachexia decreases the expression of brain voltage-gated potassium channels.72 

However, beyond these few genes, it remains unknown how the brain is globally affected by 

cancer cachexia.

To address this question, we have examined the transcriptional changes induced in three 

different brain areas (cerebellum, hippocampus, and neocortex) at 2–8 weeks after tumor 

implantation. Overall, relatively few genes were modulated by cachexia in the cerebellum 

(87 genes), hippocampus (165 genes), and neocortex (88 genes) (Figures 5A, 5D, and 

5G). These gene sets are largely upregulated by cachexia in the cerebellum and neocortex 

(Figures 5A and 5G). Conversely, downregulation of gene expression occurs early (2 weeks) 

in the hippocampus (Figure 5D) and includes genes encoding for ribosomal components, 

mitochondrial proteins, histones, and secreted proteins.

Although the impact of cachexia on the brain appears minimal compared with other organs 

(Figure 4), many genes important for brain function are modulated by melanoma-induced 

cachexia in the cerebellum (Figures 5B and 5C), hippocampus (Figures 5E and 5F), and 

neocortex (Figures 5H and 5I). Some of these transcriptional changes (such as those for 

secreted/extracellular proteins) likely reflect cachexia-induced neuroinflammation, which 
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has been previously found to depend on neutrophil infiltration in the brain via CCL2-CCR2 

signaling.73

Beyond secreted factors involved in immunity, there are other cachexia-modulated secreted 

factors that could have signaling roles (Figure 5J). For example, the Lcn2 lipocalin and 

the Scgb3a1 secretoglobin increase during cachexia in the cerebellum, hippocampus, and 

neocortex (Figure 5J), whereas Myocilin (Myoc), Gastrokine 3 (Gkn3), and Tenascin C 
(Tnc) decline (Figure 5J). Although the function of many of these secreted factors is 

unknown, cancer cell-secreted Lcn2 (Figure 1Q) induces anorexia,17 which is a component 

of cachexia.18,19,74,75 Therefore, in addition to cancer cell-secreted Lcn2, also cachexia-

induced Lcn2 expression in the brain could regulate feeding behavior.

Several genes with metabolic functions were also upregulated in the brain of mice implanted 

with cachectic tumors, including Etnppl (which catalyzes phosphoethanolamine breakdown), 

Txnip (which inhibits glucose uptake76–78), Lrg1 (a glucose-responsive glycoprotein that 

promotes apoptosis and reduces brain-derived neurotrophic factor [BDNF] signaling79–81), 

and Plin4 (a perilipin involved in intracellular lipid storage), whereas the fatty acid-binding 

protein Fabp7 was downregulated (Figure 5K).

Altogether, these findings indicate that cachexia impacts the expression of key metabolic 

genes in the brain and suggest a possible overlap between cachexia-induced changes in the 

brain and pathways that drive neurodegeneration. For example, decreased glucose uptake is 

a key feature of Alzheimer’s disease and other neurodegenerative diseases.82,83 Our finding 

that Txnip is upregulated by cachexia in the brain (Figure 5K), together with previous 

knowledge that Txnip inhibits intracellular glucose import,76–78 suggests that impairment of 

glucose uptake is a common feature and a possible point of synergy between cancer-induced 

cachexia and neurodegeneration.

Derangement of gene expression in the brain is a common feature of cachexia induced by 
pediatric melanoma xenografts and by Lewis lung carcinoma (LLC) cells

Subcutaneous injection of LLC cells is an established model to investigate cachexia, which 

develops ~3 weeks after cancer cell injection.84–87 Although the impact on the adipose and 

skeletal muscle is well known,84–86 it remains unexplored whether LLC tumors regulate 

gene expression in the brain, as we have found for melanoma-induced cachexia (Figures 

5A–5K).

To address this point, we have examined the cerebellum, hippocampus, and neocortex from 

mice after 3 weeks from LLC cancer cell injection. RNA-seq indicates that 586 genes 

define the impact of LLC-induced cachexia on the brain (Figure S6D). Glycoproteins, 

extracellular matrix, and secreted proteins are among the genes that are upregulated in 

control versus LLC cerebellar samples (cluster 1), whereas other proteins of the same 

gene categories are conversely regulated (cluster 2; Figure S6E). Peroxidases and proteins 

involved in immunity and chemotaxis are upregulated in LLC samples from all brain regions 

(cerebellum, hippocampus, and neocortex) compared with controls (cluster 3). Other clusters 

(4–5) consist of genes that differ across brain regions (Figure S6E). Altogether, these 
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findings indicate that alteration of brain gene expression is a common feature of cachexia 

induced by different tumor types.

Next, we examined the overall similarity in the gene expression changes induced in different 

brain areas by melanoma xenografts. There was overall similarity in the gene expression 

changes (p < 0.05) induced by melanomas in the cerebellum versus the hippocampus (R2 

= 0.65) and even more so in the cerebellum versus the neocortex (R2 = 0.81) and the 

hippocampus versus the neocortex (R2 = 0.88; Figure 5L). Moreover, cross-comparison of 

the transcriptional changes (p < 0.05) induced by melanomas versus LLC revealed a good 

correlation in the cerebellum (R2 = 0.56), hippocampus (R2 = 0.44), and neocortex (R2 = 

0.61) (Figure 5M). Altogether, these analyses indicate that the brain is a target of cachectic 

signaling induced by different cancer types.

The expression of secreted factors is profoundly remodeled by cachexia across tissues

By analyzing gene sets regulated across tissues, “secreted factors” and related categories 

emerge as prominently modulated by cancer cachexia (Figures 4, S4, and S5). Further 

analysis of the 2,641 genes encoding for secreted factors25 indicates that cachexia primarily 

upregulates the expression of secreted factors in most tissues, although it overall reduces 

their expression in the soleus, white adipose, and stromal cells (Figure 6A). Comparison 

of the similarity in the cancer-induced gene expression changes for secreted factors reveals 

that, as expected, tissues that are related (such as different skeletal muscles) display a 

high degree of similarity (Figure 6B). Modulated secreted factors include cytokines, growth 

factors, growth factor-binding proteins, and secreted enzymes (Figure 6C). Interestingly, 

the expression of ACE (also known as ACE1) progressively increases during melanoma-

induced cancer cachexia across tissues (Figure 6C), including the TA muscle (Figure 6D), 

which undergoes profound cancer-induced wasting (Figures 3O and 3P). ACE protein 

levels similarly increase with cachexia in TA muscles (Figure 6E). Further analysis of a 

published gene expression dataset (GEO: GSE41726) consisting of rectus abdominis muscle 

biopsies from cancer patients88,89 further indicates that ACE mRNA levels significantly 

correlate with the expression of the known atrophy markers FBX O 32 (atrogin-1) and 

TRIM63 (MuRF1) in female cancer patients but minimally in males (Figure 6F). Altogether, 

these findings indicate that ACE transcriptional upregulation can occur (albeit with varying 

degrees) in wasting skeletal muscles.

Pharmacological inhibition of the cachexia-induced secreted factor ACE does not halt 
body and muscle wasting but partially preserves skeletal muscle function

ACE is a secreted enzyme that converts the hormone angiotensin I to the vasoconstrictor 

hormone angiotensin II, and that therefore is key for regulating blood pressure as part 

of the renin-angiotensin system.90 On this basis, ACE inhibitors are widely used to treat 

hypertension.91

We have found that ACE is progressively upregulated during cancer cachexia across tissues 

(Figure 6). An ACE gene variant encoding for a protein with lower enzymatic activity was 

previously found to enhance skeletal muscle performance in humans.92,93 Moreover, it was 

suggested that ACE inhibition might counteract cachexia.94 On this basis, we next examined 
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whether pharmacological ACE inhibition during cancer progression impedes cachexia. 

To this purpose, the US Food and Drug Administration (FDA)-approved ACE inhibitor 

lisinopril was administered from day 0 (i.e., from the day of cancer cell injection) in the 

drinking water (at 40 mg/L), as previously done.95 As expected, there was a progressive 

decline in body weight (Figure 7A) and in the tumor-free body mass (Figure 7B) of 

mice bearing cachectic melanomas. However, this occurred to a similar extent also in 

mice treated with lisinopril (Figures 7A and 7B), indicating that ACE inhibition does not 

block cancer-induced body wasting. The tumor size and mass were also similar (Figures 

7C and 7D), indicating that lisinopril does not impact tumor growth in this system. As 

previously found (Figure 2), the length of the tibia bone does not change during cachexia 

development (Figure 7E) and was therefore used as a normalization factor for the analysis 

of tissue weight. Cancer-induced atrophy occurred in the heart, liver, pancreas, and WAT, 

and this equally occurred with or without lisinopril treatment (Figures 7F–7I). Interestingly, 

although there was a reduction in the weight of the brown adipose in response to cancer, 

this decline was in part prevented by lisinopril (Figure 7J). The weight of distinct skeletal 

muscles (gastrocnemius, soleus, diaphragm, and TA) declined in response to the injection of 

cachectic melanomas (Figures 7K–7N) independently from lisinopril treatment. There was 

no significant effect of either cachexia or lisinopril on the normalized tetanic force (Figure 

7O), i.e., the maximal muscle contraction normalized by the TA muscle mass.96,97 However, 

ACE inhibition improved the normalized twitch force produced by TA muscles (Figure 7P), 

which is indicative of its physiological contraction on stimulation.96,97 Specifically, pairwise 

comparisons indicate that cachexia significantly reduces the normalized twitch force of 

TA muscles, and that this is mitigated by lisinopril (Figure 7P). Altogether, these findings 

suggest that lisinopril helps maintain skeletal muscle function during cancer cachexia.

Lisinopril partially prevents cachexia-induced transcriptional changes and promotes the 
expression of genes that support muscle contraction

To determine its mechanisms of action, we utilized RNA-seq to determine the transcriptional 

changes induced by cachexia with and without concomitant treatment with lisinopril 

(Figure 7Q). Globally, melanoma-induced cachexia resulted in the significant modulation 

of 2,195 genes, but lisinopril prevented the significant regulation of 978 (~45%) of them 

(Figure 7R). Differentially regulated genes possibly connected with the lisinopril-mediated 

improvement of muscle function include Myh2 and PGC-1α (Figure 7S). Myh2 encodes 

for the contractile protein MHC 2a, and it is significantly downregulated by cachexia, 

but not if mice are concomitantly treated with lisinopril (Figure 7S). Previous studies 

have reported a cancer-induced general decline in MHC protein abundance and sarcomere 

disintegration,98,99 which impairs muscle contraction. In our model, Myh2 is the only 

MHC protein that is transcriptionally downregulated by cachexia, and this is prevented 

by lisinopril. Interestingly, cachexia tends to reduce the relative proportion of type 2a 

myofibers (Figure S7D), and this might explain why Myh2 (i.e., MHC 2a) levels decline on 

cachexia. However, this occurs also in cachectic mice treated with lisinopril (Figure S7D), 

and therefore preservation of Myh2 expression by lisinopril does not arise from changes in 

the number of type 2a myofibers. The capacity of lisinopril to promote Myh2 expression 

may therefore, at least in part, explain how lisinopril preserves muscle function in cachectic 
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mice. Because human muscles contain type 2a myofibers,52–54 the protective effects of 

lisinopril on MHC 2a expression may have therapeutic relevance for humans.

Another gene that was differentially modulated by cachexia and lisinopril is PGC-1α 
(Figure 7S), which is a transcription factor responsible for exercise-induced muscle 

adaptations and that is transcriptionally upregulated by muscle contraction.100–102 Although 

cachexia does not modulate PGC-1α mRNA levels, its expression is significantly induced by 

lisinopril during cachexia (Figure 7S), and this may contribute to the improvement in muscle 

function caused by lisinopril and/or be a readout of increased contractile capacity (Figure 

7P).

Altogether, these studies indicate that lisinopril opposes several of the transcriptional 

changes induced by cachexia, some of which may be responsible for decreased muscle 

force production during cachexia.

DISCUSSION

Cachexia is an important medical condition, but the mechanisms underlying its progression 

are incompletely understood. Here, we have examined the cellular and transcriptional 

changes that progressively occur in skeletal muscles, heart, white and brown adipose, liver, 

and brain during cachexia. By analyzing tissue weight over time, we find that some tissues 

undergo atrophy (such as skeletal muscles), whereas others like the liver and brain are 

less affected or not affected by cachexia (Figure 2). There are also differences in the 

dynamics of wasting. For example, there is heart atrophy already after 2 weeks from tumor 

implantation, a time point at which there are minimal (if any) signs of wasting in other 

tissues. However, heart weight remains constant in the following weeks, whereas the weight 

of other tissues and their cell size progressively declines (Figures 2 and 3). These studies 

therefore indicate a differential response of organs and tissues to cachectic signaling and that 

this is characterized by different degrees and timelines of wasting.

As expected based on previous studies, we find that cachexia induces the expression of 

genes that are likely drivers of tissue wasting, such as proteases, ubiquitin ligases, and 

components of the autophagy/lysosome system.49,50,64–66 However, many transcriptional 

changes are temporally disconnected from wasting. For example, heart wasting occurs 

at early time points (2–4 weeks), but its weight remains stable in the following weeks 

of cachexia progression (6–8 weeks). In contrast, heart transcriptional changes gradually 

increase over time from 2 to 8 weeks and consist primarily of genes that regulate heart 

function, such as downregulation of voltage-gated ion channels that are necessary for 

myocardial contraction and that cause arrythmias when mutant (Figure S5). Consistent with 

this disconnect between tissue wasting and transcriptional changes, we find that cachexia 

prominently modulates gene expression also in tissues and organs that do not undergo 

wasting, such as the brain, and that these include several genes with metabolic functions, 

such as Txnip (Figure 5), an inhibitor of glucose import,76,78 suggesting that, similar to 

neurodegeneration,70,103 cachexia deranges brain glucose metabolism. Although cachexia 

induces transcriptional changes associated with decreased function in many tissues (heart, 

muscle, brain, liver), the converse occurs for the brown and white adipose, where cachexia 
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increases the expression of genes necessary for fatty acid β-oxidation, as previously 

observed.104 Altogether, our study pinpoints cachexia-induced gene expression changes that 

are involved in tissue wasting, as well as others that are likely drivers of tissue functional 

changes.

Although many gene sets are regulated by cancer-initiated signaling, secreted factors 

constitute a top category of regulated genes in host tissues. Because inter-tissue signaling 

is a known driver of cachexia,2,104 it is possible that the induction of such secreted 

factors in host tissues in turn contributes to the cancer-initiated systemic signaling that 

drives tissue dysfunction and wasting. For example, the heart is one of the tissues that 

displays early wasting and that is transcriptionally most affected by cachexia (Figures 

2 and 4). Interestingly, chronic heart failure has been found to induce systemic wasting 

in non-cancerous systems,105–107 suggesting that some of the transcriptional changes and 

tissue wasting observed in other tissues during cachexia may derive from cancer-induced 

heart dysfunction.

To probe the relevance of secreted factors that are induced in host tissues by cancer cells, 

we have utilized an FDA-approved pharmacological inhibitor of the ACE, a secreted factor 

that is induced by cachectic melanomas across tissues, including skeletal muscles (Figure 

6). ACE inhibition via lisinopril provides some benefits: although it does not impede 

tissue wasting (Figures 7A–7N), lisinopril partially preserves muscle force production 

(Figure 7P), and this occurs, at least in part, by hindering cachexia-induced transcriptional 

changes (Figures 7Q–7S). A series of previously published studies indicates that cancer 

cachexia reduces the integrity and function of pre- and post-synaptic portions of the 

neuromuscular junction (NMJ), which can result in a denervation-like phenotype.108–111 

Therefore, it is possible that lisinopril-mediated improvements in muscle force arise also 

from NMJ preservation. Interestingly, ACE inhibitors attenuate tumor-induced myocardial 

dysfunction112 and even tumor growth in other systems.113,114 Although we have not 

observed any effects on tumor growth, these studies indicate that ACE inhibition may be 

beneficial in diverse ways depending on the cancer context. Altogether, we propose that 

lisinopril may help maintain motor function in cachectic patients.

In summary, our longitudinal analysis of transcriptional changes induced by cachexia 

suggests that paracrine and endocrine signaling via cachexia-induced secreted factors 

released by non-cancerous host tissues contributes to systemic cachexia.

Limitations of the study

This study was done in athymic nude mice that lack T lymphocytes to avoid the immune 

rejection of the human melanoma xenografts used here. Previous studies have found 

that different populations of T cells can induce or rather protect from cachexia.13,115,116 

Therefore, a limitation of this study is that the progressive development of cachexia has 

been observed in the absence of T lymphocytes. Nonetheless, in combination with studies 

in immunocompetent mice, this study’s limitation could be exploited as a vantage point to 

define T cell-independent versus -dependent mechanisms of cachexia.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Fabio Demontis 

(Fabio.Demontis@stjude.org).

Materials availability—There are no restrictions to the availability of tools generated in 

this study.

Data and code availability

• All data supporting the findings of this study are available within the paper, 

the supplemental information, and the Data S1, which reports the source data. 

The 747 RNA-seq samples reported in this publication have been deposited in 

the NCBI’s Gene Expression Omnibus and are accessible through GEO Series 

accession numbers GEO: GSE183613 and GEO: GSE214981.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Mouse husbandry—Mice were handled following animal ethics guidelines and the 

protocol was approved by the IACUC at St. Jude Children’s Research Hospital. All mice 

were housed in a ventilated rodent-housing system with a controlled temperature (22–23°C) 

and given free access to food and water.

Mice that carry LLC (Lewis Lung Carcinoma) tumors—LLC (Lewis Lung 

Carcinoma) cells were obtained from the American Type Culture Collection (ATCC 

#CRL-1642) and regularly screened to exclude the presence of mycoplasma before 

experimental use. LLC cells were cultured at 37°C with 5% CO2 in DMEM (high 

glucose DMEM, with Glutamax, GIBCO, #10566016) containing 10% fetal bovine serum 

(GIBCO, #10437–028), and penicillin/streptomycin (10,000 U/ML, GIBCO, #15140122). 

Male C57BL/6J (The Jackson Laboratory, JAX#000664) mice were utilized at 4 months 

of age. 106 LLC cells were injected into the right and left flank16,85,86 and tumors were 

allowed to grow up to ~3 weeks, at which time tumor-bearing mice were euthanized.

Mice bearing orthotopic pediatric melanoma xenografts—MAST360B/

SJMEL030083_X2 and MAST552A/SJMEL031086_X3 are patient-derived melanoma 

xenografts22 from the Childhood Solid Tumor Network collection at St. Jude Children’s 

Research Hospital.20,21,117–119 In preparation for injection, melanoma cells were thawed, 

gently washed in RPMI, resuspended in Matrigel (Corning #354234) at 0.1 mL Matrigel/106 

cells, and kept on ice before the injection. Subsequently, 106 melanoma cells were 

inoculated subcutaneously into the flank of female 2-month-old NCI Ath/nude mice 
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(Charles River Laboratory #553NCIATH/NU). Tumors were monitored and allowed to grow 

typically for 2, 4, 6, and 8 weeks.

METHOD DETAILS

Tissue collection—At each time point of cachexia progression, mice were euthanized and 

the body weight recorded. All tissues and organs were dissected and weighed. The tumors 

were removed, weighed, and immediately snap-frozen for RNA-seq. A portion of the liver, 

gonadal white adipose tissue (WAT), and interscapular brown adipose tissue (iBAT) was 

fixed in 10% formalin for histology (H&E) and another portion was snap-frozen for RNA-

seq. The brain was dissected, weighed, and the hippocampus, neocortex and cerebellum 

were removed and snap-frozen. Skeletal muscles were bisected at the mid-belly whereas the 

heart was transversally cut. One part was mounted onto tragacanth gum and frozen in liquid 

nitrogen-cooled isopentane (Sigma-Aldrich, #277258) for subsequent histological analyses; 

a second part was snap-frozen for RNA-seq. Schemes were drawn with BioRender.

RNA preparation—Snap-frozen tissues and organs were homogenized with a 

NextAdvance bullet blender in TRIzol at 4°C.120 RNA was extracted by isopropanol 

precipitation from the aqueous phase.121 The integrity and purity of RNA was assessed 

with a bioanalyzer.

RNA sequencing—RNA sequencing libraries for each sample were prepared from total 

RNA by using the Illumina TruSeq RNA Sample Prep v2 Kit per the manufacturer’s 

instructions, and sequencing was completed on the Illumina NovaSeq 6000. The 100-bp 

paired-end reads were trimmed, filtered against quality (Phred-like Q20 or greater) and 

length (50-bp or longer), and aligned to the mouse reference genome GRCm38/mm10 (for 

reads obtained from the mouse host tissues and from the mouse stromal cells of the tumor 

xenografts) and to the human reference genome GRCh38/hg38 (for reads obtained from 

the human melanoma cells of the tumor xenografts) by using CLC Genomics Workbench 

v12.0.1 (Qiagen). For gene expression comparisons, we obtained the TPM (transcript per 

million) counts from the CLC RNA-Seq Analysis tool. The differential gene expression 

analysis was performed by applying the non-parametric ANOVA using the Kruskal-Wallis 

and Dunn’s tests on log-transformed TPM between three to five replicates of experimental 

groups, implemented in Partek Genomics Suite v7.0 software (Partek Inc.). The gene sets 

were analyzed by DAVID (v6.8, https://david.ncifcrf.gov).

The 747 RNA-seq samples discussed in this publication have been deposited in the NCBI’s 

Gene Expression Omnibus and are accessible through GEO Series accession numbers GEO: 

GSE183613 and GEO: GSE214981.

Hierarchical clustering of RNA-seq data—Protein-coding genes with significantly 

different expression between sample groups (p value <0.01 and log2R > 1 in more than 

one tissue type, compared to its corresponding control samples) and protein coding genes 

with significantly different expression through the time course of cachexia progression 

(p value <0.01 and log2R > 1 between any two different timepoints from any tissue 

type) were hierarchically clustered into heatmaps by using the UPGMA clustering 
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method (unweighted pair group method with arithmetic mean) with similarity measure of 

correlation, implemented in Spotfire v7.5.0 software (TIBCO).

Hematoxylin and eosin (H&E) staining—Formalin-fixed tissues and organs were 

processed and embedded in paraffin by standard techniques, sectioned at 4-μm, mounted on 

positively charged glass slides (Superfrost Plus; Thermo Fisher Scientific, Waltham, MA), 

and dried at 60°C for 20 min. Tissue sections were then stained with H&E according to 

standard procedures.122

Image analysis of H&E slides—The mean cell size was estimated from H&E slides 

that were scanned with a Zeiss Axioscan and a 20x objective. For these image analyses, 

StarDist123,124 was used to define for each image the mean cell size (in μm2 units), defined 

as the tissue area divided by the number of nuclei. StarDist is a deep learning segmentation 

method with pre-trained weights for bright-field images and can be used to segment the 

cell nuclei in H&E slides. In addition, QuPath 0.2.3125 was used to draw ROIs and batch 

segment the images.

For the quantitation of cachexia-induced delipidation, we defined areas occupied by lipid 

droplets in white adipocytes as those that have intensities greater than 185. We defined all 

regions within WAT with intensities less than 185 to be the rest of the adipose tissue (non-fat 

regions). We defined the fat and non-fat regions in the brown adipose tissue (BAT) by using 

a machine-learning based pixel classifier trained with the QuPath software.125 Because the 

ROIs used for the quantification include white background regions consisting of glass, we 

used a machine-learning-based pixel classifier to detect glass regions; subsequently, glass 

areas were subtracted from the total ROI area to accurately estimate the total area of tissue 

within the ROIs. We then estimated the relative fat content of WAT and BAT by calculating 

the ratio of the area occupied by fat normalized to the total tissue area.

All analyses were done in a consistent, automated manner for each image, tissue type, and 

time point. Statistical significance was estimated by performing pairwise Mann-Whitney U 

tests between cohorts for each tissue type and time point. In the boxplots reporting this data, 

the top and bottom of the box represent the 25th and 75th percentile, and the centerline is 

the 50th percentile; the lower whisker is defined by the smallest observation greater than or 

equal to the lower hinge −1.5*IQR; the upper whisker is defined by the largest observation 

less than or equal to the upper hinge +1.5*IQR (IQR = the inter-quartile range between the 

first and third quartiles).

Analysis of myofiber type, size, and number in the soleus, tibialis anterior, 
and gastrocnemius skeletal muscles—Unfixed slides with sections of skeletal 

muscles were incubated for 1h with blocking buffer (PBS with 2% BSA and 0.1% Triton 

X-100) prior to overnight immunostaining with primary antibodies at 4°C. The primary 

antibodies used were mouse IgG2b anti-myosin heavy chain type 1 (DSHB, cat. no. BA-F8), 

mouse IgG1 anti-myosin heavy chain type 2a (DSHB, cat. no. SC-71), and rat anti-laminin 

α2 (4H8–2; Santa Cruz, cat. no. sc-59854). The slides were washed and incubated with the 

secondary antibodies including anti-mouse AlexaFluor555-conjugated IgG2b (Invitrogen, 

cat. no. A21147), anti-mouse AlexaFluor488-conjugated IgG1 (Invitrogen, cat. no. A21121), 
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and anti-rat AlexaFluor647-conjugated IgG (Invitrogen, cat. no. A21247). DAPI (Sigma 

Aldrich, cat. no. 10-236-276-001) was used to identify nuclei. The soleus was imaged on the 

Nikon C2 confocal microscope with a 10X objective. Myosin heavy chain immunostaining 

was used to classify type 1 myofibers (red), type 2a myofibers (green), and presumed 

type 2x/2b myofibers (black) for which no MHC type 1 or type 2a immunoreactivity was 

detected. Myofiber type and size were analyzed with the Nikon Elements software by 

using the inverse threshold of laminin α2 staining to determine myofiber boundaries. To 

categorize myofiber types, the intersections of the inverse of laminin and the myosin heavy 

chain-specific staining was used. The myofiber size was measured by using the inverse 

laminin immunostaining for boundaries, excluding myofibers with diameters of <10 and 

>150 μm and areas of <100 and >10,000 μm2. The Feret’s minimal diameter was used as the 

myofiber measurement size as this is a geometrical parameter for the analysis of unevenly 

shaped or cut objects.54 The analysis was performed by using the Nikon Elements software 

and the “Object Count” function.

Similar procedures were used for the analysis of tibialis anterior muscles. However, the 

following primary antibodies were used to detect the myofiber types that compose tibialis 

anterior muscles: antibodies against type 2a (SC-71) and 2b myosin heavy chain (BF-

F3). The sections were then washed and incubated with secondary antibodies to detect 

primary antibodies for type 2a (anti-mouse AlexaFluor488-conjugated IgG1) and type 2b 

myosin heavy chain (anti-mouse AlexaFluor555-conjugated IgM). Myosin heavy chain 

immunostaining was used to classify type 2b myofibers (red), type 2a myofibers (green), 

and presumed type 2x myofibers (black) that were not stained for type 2a or 2b MHC 

isoforms.

For the analysis of the gastrocnemius, the primary antibodies used were mouse IgG2b 

anti-myosin heavy chain type 1 (DSHB, cat. no. BA-F8), mouse IgG1 anti-myosin heavy 

chain type 2a (DSHB, cat. no. SC-71), mouse IgM anti-myosin heavy chain type 2b (DSHB, 

cat. no. BF-F3), and rat anti-laminin α2 (4H8–2; Santa Cruz, cat. no. sc-59854). Staining for 

MHC type 1 was done separately (i.e. on different slides) from staining for MHC type 2a 

and 2b isoforms. Myosin heavy chain immunostaining was used to classify type 1 myofibers 

(pink), type 2a myofibers (green), type 2b myofibers (red), and presumed type 2x myofibers 

(black) that were not stained for type 1, 2a, or 2b.

For the quantification of the number of myofibers composing soleus, tibialis anterior, and 

gastrocnemius skeletal muscles, all myofibers in muscle cross-sections were counted based 

on the myofiber borders identified by laminin α2 immunostaining.

Western blot—The Western blot analysis of ACE1 levels was done by utilizing the 

KO-validated rabbit anti-ACE1 antibody (Abcam, cat. no. ab254222) and normalized by α-

Tubulin levels (Cell Signaling Technologies, cat. no. 2125S), which were detected according 

to standard procedures.87,126

Lisinopril treatment—Lisinopril was administered from day 0 (i.e. from the day of 

cancer cell injection) in drinking water at 40 mg/L.95 The water was changed regularly as for 

the mock-treated mice.
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Muscle force measurements—The measurement of the twitch and tetanic force of 

the tibialis anterior (TA) muscle85,126,127 was normalized by the TA mass. Mice were 

deeply anesthetized via isofluorane and monitored throughout the experiment. The distal 

tendon of the tibialis anterior was carefully dissected and individually tied with 4.0 braided 

surgical silk. The sciatic nerve was exposed and all branches were cut except for the 

common peroneal nerve. The foot was secured to a platform and the knee immobilized 

using a stainless-steel pin. The body temperature was monitored and maintained at 37°C. 

The suture from the tendon was individually attached to the lever arm of a 305B dual-

mode servomotor transducer (Aurora Scientific, ON, Canada). Muscle contractions were 

then elicited by stimulating the distal part of the sciatic via bipolar electrodes, using 

supramaximal square-wave pulses of 0.2 msec (701A stimulator; Aurora Scientific). Data 

acquisition and control of the servomotor were conducted by using a Lab-View-based DMC 

program (version 5.202; Aurora Scientific). Optimal muscle length (Lo) was determined 

by incrementally stretching the muscle until the maximum isometric twitch force was 

achieved. The maximum isometric tetanic force (Po) was acquired by using a train of 

150Hz supramaximal electrical pulses for 500 ms at the optimal length in the muscles and 

the highest Po was recorded. A 2-min resting period was allowed between each tetanic 

contraction. Lo was measured using digital calipers. The relative force (N/g) was normalized 

by dividing the force by the muscle weight.

Analysis of cardiomyocyte size—Unfixed slides with the transversally cross-sectioned 

heart were incubated for 1h with blocking buffer (PBS with 2% BSA and 0.1% Triton 

X-100) prior to overnight immunostaining at 4°C with rat anti-laminin α2 (4H8–2; Santa 

Cruz, cat. no. sc-59854) and AlexaFluor635-conjugated phalloidin (Invitrogen, cat. no. 

A22284). The slides were washed and incubated with anti-rat AlexaFluor488-conjugated 

IgG (Invitrogen, cat. no. A48262). DAPI (Sigma Aldrich, cat. no. 10-236-276-001) was used 

to identify nuclei.

For the analysis of cardiomyocyte size, the left ventricle of the heart was identified and 

imaged on the Nikon C2 confocal microscope with a 20X objective. Phalloidin was used 

to classify the individual cardiomyocytes (red), while the inverse threshold of laminin α2 

was used to determine cardiomyocyte boundaries. Cardiomyocyte size was determined with 

the Nikon Elements software by using the intersection of inverse laminin and the phalloidin 

staining. Cardiomyocytes with an area of <100 and >1000 μm2 were excluded. The Feret’s 

minimal diameter was used to measure cardiomyocyte size and this analysis was performed 

by using the Nikon Elements software and the “Object Count” function.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data organization, scientific graphing, and statistical analyses were performed with 

Microsoft Excel (version 14.7.3) and GraphPad Prism (version 6). The unpaired two-tailed 

Student’s t-test was used to compare the means of two independent groups to each other. 

One-way ANOVA with post hoc testing was used for multiple comparisons of more than 

two groups of normally distributed data. Two-way ANOVA with post hoc testing was used 

for multiple comparisons of more than two groups of normally distributed data in presence 

of two independent variables. Data in Figure 6F was statistically analyzed with a Pearson 
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correlation test. The n for each experiment can be found in the figures and represents 

independently generated samples from individual mice. Tissue weight graphs in Figure 2 

display the mean ± SEM. In all other figures, bar graphs represent the mean ± SD. A 

significant result was defined as p < 0.05. Throughout the figures, asterisks and ampersand 

symbols indicate the significance of p values: *p < 0.05, **p < 0.01, ***p < 0.001, ****p 

< 0.0001. Statistical information of RNA-seq data is described in the RNA-seq method 

section.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cancer cachexia induces prevalent, as well as temporal and tissue-specific, 

changes

• Cachexia causes dysfunction also in tissues that do not atrophy, such as the 

brain

• Secreted factors are a top category of cancer-regulated genes in host tissues

• Inhibition of the secreted factor ACE impedes cachexia-induced muscle 

weakness
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Figure 1. The secretome of cachectic melanomas includes signaling factors with known roles in 
body wasting
(A) PCA of human RNA-seq reads from tumor xenografts reveals substantial differences 

between cachectic versus non-cachectic melanomas. There are limited changes that occur in 

cachectic melanomas over time.

(B) Heatmap of 7,071 genes that are highly modulated in cachectic versus non-cachectic 

melanomas.

(C and D) Genes modulated with p < 0.05 and Log2R > 1 (C) and Log2R < −1 (D) in 

cachectic versus non-cachectic melanomas at 8 weeks after tumor implantation are shown.
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(E and F) PCA of mouse RNA-seq reads from melanoma xenografts, indicative of host 

mouse cells of the stroma (microenvironment) associated with human cancer cells (E). There 

are progressive changes in the stroma from 2 to 8 weeks after melanoma injection, including 

a core set of 1,517 genes (F).

(G and H) Several categories are represented among upregulated (G) and downregulated (H) 

genes.

(I) Out of 2,641 secreted proteins, 1,557 are expressed by melanoma cells, 1,331 are 

significantly modulated (p < 0.05) in cachectic versus non-cachectic melanomas, and 810 

are differentially expressed with p < 0.05 and Log2R > 1 or Log2R < −1.

(J and K) Secreted factors that are most highly upregulated (J) and downregulated (K) in 

cachectic versus non-cachectic melanomas. Log2R values are shown on the y axis (p < 

0.05).

(L–U) Several signaling factors known to drive body wasting are significantly upregulated in 

cachectic versus non-cachectic melanomas, including GDF15 (L), IL1A (M), IL1B (N), IL6 
(O), IL8/CXCL8 (P), LCN2 (Q), LIF (R), PTHLH (S), TGFA (T), and TGFB1 (U).

Bars represent SD; n is indicated. All comparisons are significant (p < 0.05) in cachectic 

versus control at 8 weeks after tumor cell injection. TPM, transcripts per million reads. See 

also Figure S1.
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Figure 2. Melanoma-induced cachexia differentially impacts tissue and organ wasting in mice
Orthotopic melanoma xenografts were established via the subcutaneous injection of 

cachectic cancer cells and compared with mock (PBS) and non-cachectic melanomas. 

Organs and tissues were harvested at 2, 4, 6, and 8 weeks after implantation and processed 

for histology and RNA-seq.

(A) Cachectic melanomas progressively induce body wasting, which is significant from 

week 4. No decline in body weight is seen in mice injected with non-cachectic melanomas.

(B) The length of the tibia bone does not change between groups, and it is used for 

normalization.

(C) Cachectic melanomas grow more than non-cachectic xenografts.

(D) There is no change in brain weight.

(E–H) Cachexia leads to profound wasting of the diaphragm (E), gastrocnemius (F), soleus 

(G), and tibialis anterior (TA) (H) skeletal muscles.

(I and J) The weight of the interscapular brown adipose tissue (BAT) marginally declines 

with cachexia (I), whereas the gonadal white adipose tissue (WAT) undergoes wasting (J).

(K) Heart mass declines already at 2 weeks after cancer cell injection.

(L) Whereas liver weight increases in controls, such post-natal growth is stunted by 

cachexia.

SEM with *p < 0.05, **p < 0.01, and ***p < 0.001 compared with controls. Ampersands 

(&) indicate the statistical significance within each group compared with the 2-week time 

point. The hashtag symbol (#) indicates significance when comparing cachectic melanomas 

versus controls within the same time point: ##p < 0.01. ND, not detected. See also Figure S2.
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Figure 3. Different degrees of cancer-induced cell atrophy in distinct tissues
(A) H&E staining of liver sections after 8 weeks from melanoma injection. Scale bar, 100 

μm.

(B) Cachexia reduces hepatocyte size at 6 and 8 weeks. Control values are shown in red, 

whereas cachectic and non-cachectic values are shown in green and blue, respectively. *p < 

0.05.

(C–F) Cachexia leads to cell atrophy at 4 and 6 weeks (brown adipocytes; C and D) and at 8 

weeks (white adipocytes; E and F).
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(G and H) There is also a trend toward decreased fat content of brown adipocytes (G), and 

such delipidation is significant for white adipocytes (H).

(I) Analysis of cardiomyocyte size at 8 weeks after melanoma injection; nuclei are shown in 

blue, F-actin in red, and laminin α2 in green. Scale bar, 100 μm.

(J) For each time point, the Feret’s minimal diameter provides an estimate of the average 

cell size. There are no substantial changes at 2 weeks, whereas cardiomyocyte size is 

significantly reduced at 4–6 weeks.

(K) Myofiber size in the gastrocnemius at 8 weeks after tumor implantation. Scale bar, 1000 

μm.

(L) Atrophy of type 1 and 2b myofibers occurs significantly at 6 weeks, whereas general 

decline in myofiber size is found at week 8.

(M and N) The soleus muscle is relatively resistant to wasting, and a significant or trending 

decline in type 1 and 2a myofiber size is found only at 6–8 weeks.

(O and P) On the contrary, atrophy of type 2x and 2b myofibers occurs at 4 and 6 weeks and 

is further exacerbated by 8 weeks in the tibialis anterior muscle, which is prone to wasting.

In (I)–(P), SD is shown with *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Figure 4. Gradual transcriptional changes define cachexia progression in tissues and organs of 
mice implanted with cachectic melanoma xenografts
(A) Heatmap of 1,094 genes (five clusters) that are most highly associated with cachexia 

development. Most of these genes are upregulated by cachexia, particularly in skeletal 

muscles and the heart. Downregulation of gene expression occurs primarily in the WAT 

and liver. Few of these genes are modulated in brain areas (cerebellum, hippocampus, 

and neocortex). No expression changes occur in the tissues/organs of mice implanted with 

non-cachectic melanomas, compared with controls. The mean Log2R values are color coded 
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(downregulated genes are shown in blue, upregulated genes in red). Different shades of 

yellow indicate 2, 4, 6, and 8 weeks after tumor cell injection.

(B) Cumulative gene expression changes induced by cachexia in distinct tissues for each 

gene cluster, analyzed separately (clusters 1, 2, 3, 4, and 5) and cumulatively (clusters 1–5). 

The absolute Log2R values are shown. The red line identifies the tissues where cachexia 

induces the most prominent gene expression changes. The boxes indicate the 25th and 75th 

percentiles, whereas the whiskers indicate the range.

(C) GO term analyses for gene clusters 1–5 identify different gene categories that are 

modulated by cachexia.

See also Figures S3–S6.
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Figure 5. Cachexia induces transcriptional changes in the brain
(A–I) Heatmap of 87, 165, and 88 genes that define the response of the cerebellum (A), 

hippocampus (D), and neocortex (G) to cachexia induced by melanoma xenografts. The 

average Z scores are color coded (downregulated genes are shown in blue, upregulated genes 

in red). Gene categories that are upregulated (p < 0.05 and Log2R > 1; B, E, and H) and 

downregulated (p < 0.05 and Log2R < −1; C, F, and I) are shown.

(J and K) Extracellular matrix and secreted proteins (J) are modulated by cachexia in the 

cerebellum, hippocampus, and neocortex, as well as genes with metabolic functions (K). 
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Bars represent SD. All comparisons are significant (p < 0.05) in cachectic versus control at 8 

weeks after tumor cell injection.

(L) There is high similarity in the responses induced by cachectic melanomas across brain 

regions.

(M) There is also a moderate degree of similarity (R2 = 0.44–0.61) in the changes induced 

by cachectic melanomas versus LLC cells.

See also Figure S6.
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Figure 6. Cachexia remodels the expression of secreted factors across tissues
(A) Expression of secreted factors is regulated across tissues by cancer cachexia.

(B) Comparison of the similarity in the cancer-induced transcriptional changes for secreted 

factors.

(C) Cachexia-induced secreted factors include cytokines, growth factors, growth factor-

binding proteins, and enzymes, such as ACE.

(D) ACE expression progressively increases in the TA muscle during cancer-induced 

wasting. SD with **p < 0.01 and ***p < 0.001.
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(E) Western blots indicate that cachexia increases ACE protein levels in TA muscles. SEM 

with *p < 0.05 and n = 4–5.

(F) ACE expression correlates with that of FBX O 32 (atrogin-1) and TRIM63 (MuRF1) in 

muscle biopsies from female cancer patients.
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Figure 7. ACE inhibition with lisinopril does not prevent cancer-induced wasting but preserves 
muscle force
(A and B) Cachectic melanomas induce progressive decline in body weight (A) and tumor-

free body mass (B), and this is not prevented by the ACE inhibitor lisinopril.

(C and D) The tumor size and mass are similar in lisinopril- versus mock-treated mice.

(E and F) Tibia length (E) is unchanged, whereas heart mass (F) declines with cachexia 

irrespective of lisinopril treatment.

(G–I) Cancer-induced wasting occurs in the liver, pancreas, and WAT and is not modulated 

by lisinopril.

Graca et al. Page 40

Cell Rep. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(J) Reduction in the weight of the BAT is partly prevented by lisinopril.

(K–N) The weight of several skeletal muscles (including the TA) declines with cachexia, and 

this is not rescued.

(O) There is no substantial effect of cachexia or lisinopril on the tetanic force normalized by 

the TA mass.

(P) ACE inhibition improves muscle force production, as indicated by the normalized twitch 

force of TA muscles. Specifically, pairwise comparisons indicate that cachexia significantly 

reduces the normalized twitch force of the TA, and this is mitigated by lisinopril.

(Q) Heatmap of 1,562 genes that define the response of TA muscles to cachexia and 

lisinopril. The average Z scores are color coded.

(R) 2,195 genes are differentially modulated by cachexia, but lisinopril impedes the 

significant modulation of 978 (~45%) of them.

(S) Examples of differentially modulated genes include Myh2, i.e., myosin heavy chain 2a, 

which is significantly downregulated by cachexia but less so with concomitant lisinopril 

treatment. PGC-1α expression is not modulated by cachexia, but it is significantly higher on 

concomitant lisinopril treatment.

In (A)–(P), SD with *p < 0.05, **p < 0.01, and ***p < 0.001. In (S), SD with *p < 0.05 and 

**p < 0.01; n(TA) = 3–4. See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse IgG2b anti-myosin heavy chain type 1 DSHB BA-F8; RRID: AB_10572253

Mouse IgG1 anti-Myosin heavy chain type 2a DSHB SC-71; RRID:AB_2147165

Mouse IgM anti-Myosin heavy chain type 2b DSHB BF-F3; RRID:AB_2266724

Rat anti-laminin α-2 (4H8-2) Santa Cruz Sc-59854; RRID:AB_784266

Rabbit anti-ACE1 (KO-validated) Abcam ab254222

Rabbit anti-α-Tubulin Cell Signaling Technologies 2125S; RRID:AB_2619646

Anti-rabbit IgG, HRP-linked Cell Signaling Technologies 7074S; RRID:AB_2099233

Alexa Fluor 488 anti-mouse IgG1 Life Technologies A21121; RRID:AB_2535764

Alexa Fluor 555 anti-mouse IgM Life Technologies A21426; RRID:AB_2535847

Alexa Fluor 647 anti-rat Life Technologies A21247; RRID:AB_141778

Chemicals, peptides, and recombinant proteins

Alexa Fluor 635 Phalloidin Life Technologies A22284

DAPI Roche 10236276001

TRIzol Ambion 15596018

6-well plates Corning REF3516

Transparent 96-well plates Corning REF3599

High glucose DMEM, with glutamax Gibco 10566016

Fetal bovine serum Gibco 10437-028

Penicillin streptomycin Gibco 15140122

PBS Gibco 10010023

16% Paraformaldehyde Electron Microscopy Sciences 15710

Isopentane Sigma-Aldrich 277258

Matrigel Corning 354234

Qbrelis (Lisinopril), oral solution, 1 mg/mL Azurity pharmaceuticals NDC52652-3001-1

Deposited data

RNA-seq data of tissues and organs from 
mice implanted with cachexia-inducing and non-
inducing melanoma xenografts and controls, at 
different timepoints of cachexia progression

This study Gene Expression Omnibus, GEO: GSE183613

RNA-seq data of brain regions from mice 
implanted with LLC cancer cells and controls

This study Gene Expression Omnibus, GEO: GSE183613

RNA-seq data of muscles from mice implanted 
with cachexia-inducing melanoma xenografts and 
controls, and either treated with Lisinopril or mock

This study Gene Expression Omnibus, GEO: GSE183613 and 
GEO: GSE214981

Microarray data of muscle biopsies from cancer 
patients with cachexia

(Martinelli et al.; Johns et 
al.)88,89

Gene Expression Omnibus, GEO: GSE41726

Experimental models: Cell lines

Mouse: LLC cells ATCC CRL-1642
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human: melanoma xenograft MAST360B/
SJMEL030083_X2

Childhood Solid Tumor
Network collection at St.
Jude Children’s
Research Hospital

N/A

Human: melanoma xenograft MAST552A/
SJMEL031086_X3

Childhood Solid Tumor
Network collection at St.
Jude Children’s Research 
Hospital

N/A

Experimental models: Organisms/strains

Mouse: C57BL/6J The Jackson Laboratory JAX000664

Mouse: NCI Ath/nude Charles River Laboratory 553NCIATH/NU

Software and algorithms

GraphPad Prism Graphpad https://www.graphpad.com/

Nikon Elements Nikon https://www.microscope.healthcare.nikon.com/
products/software

Photoshop CSX Adobe https://www.adobe.com/products/photoshop.html

ImageJ NIH https://imagej.nih.gov/ij/

Dynamic Muscle Control LabBook 610A Aurora Scientific https://aurorascientific.com/
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